分油机原理

分油机原理
分油机原理

船用分油机的原理

一概述

二分油机的基本结构

三分油机的工作原理与过程

四分油机几个常见故障的排除方法

一概述

在船舶动力装置中,所用的燃油和滑油含有水分和固体杂质,这样将影响机器的运行和使用寿命。

进入柴油机内的燃油中含有水分和杂质使喷油器磨损加剧,燃油的雾化质量下降,燃烧恶化等不良影响。

润滑油中含水分和杂质,破坏了运动部件间油膜的形成,加速机件运动磨损。

燃油和滑油在运输和储存过程中,会混入一些水分、铁锈和泥沙等杂质,同时使用中的滑油所含磨损产生的金属屑也随使用的时间而增加,因此,必须对其进行净化处理,以保证动力装置的可靠运行,并延长其使用寿命,尤其是在为了降低营运成本而燃用重柴油石渣油的船舶,油液的净化设施更是必不可少,常见的净化方法有三种:

1)过滤:只能净化油中粗粒杂质,故只能作为辅助净化之用。可以选用不同过滤精度的装置来满足不同的要求。

2)重力沉淀:是利用油、水、固体微粒密度的不同,在沉淀柜中静置,而达到净化分离。3)离心分离:是让油液在分离筒内高速旋转,由于油、水、杂质的比重不同,因而产生离心力不一样而实现分离,由内到外依次为油、水、杂质。

1.分油机外观

分油机从上至下分为三个部分:

上部为接口部分,有污油进口、净油出口、置换水进口等;中部为分离室部分,主要是高速旋转的分离桶;

下部为传动部分

由离合器、传动轴、斜齿轮、驱动轴(立轴)以及轴承等组成

二分油机的基本结构

1.分离筒结构

分离筒主要由本体、活塞、分离片、上盖、锁紧环等组成,分离鼓是经过高速动平衡试验的重要部件,组装中所有组件标记要对应,同型号分离鼓的主要部分也不得更换。

2.外观图片(174000t分油机室)

三分油机的工作原理及过程

1.基本工作原理

混合液在重力场或离心力场作用下,密度不同的液体将重新分层分布。在静置的重力场作用下,由于粘滞阻力的影响,密度不同的液体分层速度很慢,而在离心力场作用中,不同密度的液体在离心惯性力作用下将迅速沿径向重新分布,分层速度快,而且不容易掺混。因此离心式分油机就是根据油、水、杂质密度的不同,在高速回转中的离心力场作用下,依靠离心惯性力不同,而将油、水、杂质沿转轴径向重新分布,从而将水和杂质分离出来这一基本原理而完成净化处理工作的。

分离筒是分油机的核心部件。其由分离筒本体、有孔盘架、分离片组、颈盖、分离筒盖、活动底盘、重力盘(比重环)等组成。分离筒在高速回转的立轴带动下旋转,转速一般在6000r/min以上,叠套在盘架上的带分配孔的分离盘(片)将待分离燃油分隔成若干层并随分离盘一起高速回转,这时分离筒内的燃油就会按油、水、杂质的不同密度分隔成三层,从而达到净化目的。

分离盘:盘厚0.4~1.5mm,盘距0.5~1.0mm,盘呈锥形,中心角为60~100o。

分杂机与分水机在结构上的区别仅仅在个别零件上,分杂机的盘架不带分配孔,其无水通道;将分水机水通道封死并换上分杂盘架或最底层的分离盘换上无分配孔的分离盘就可改装为分杂机。

分水机可单独使用并作为串联工作方式的一级分油机;燃油分杂机不单独使用,常作为串联工作方式的二级分油机。

分油机的分油和排渣作业依靠活动底盘将排渣口关闭或打开来实现。为了使活动底盘上移或下移,依靠配水系统来实现。

2.部分排渣分油机

(ALFA-LAVAL MMPX)

水封水直接引入重力盘下方,以减少与油的掺混。工作水系统分成两个部分。补偿水和开启水。补偿水由分油机下部的水箱经空心轴供到活动底盘下部和操纵滑盘C处;开启水则由电磁阀控制的开启水管供应,经滑盘直通道进入滑盘上部空间,实现自动排渣操作。

3.补偿水的作用

1)将补偿水导入滑盘腰部C处形成水环后将滑盘托起,关闭活动底盘下方的3个卸水通道D;

2)给活动底盘补充工作水使排渣口关闭;

3)补充C处和活动底盘下方的漏水。

4.开启水的作用

需要排渣作业时,首先关闭进油阀引入水封水驱油后,电磁阀将开启水通道B接通后,开启水经滑盘直通道进入滑盘上部空间。

四分油机几个常见故障的排除方法

滑油分油机由于存在着一些问题,有好几年没有使用了,在恢复其使用的过程中,我们遇到了种种问题,在此向大家做一介绍。以求在今后解决分油机问题时有所帮助。

1.齿轮箱进水

在恢复No.2滑油分油机使用的过程中,首先发现齿轮箱进水的问题。为了解决此问题,我们对分油机进行了拆检,通过检查发现,导致进水的原因是:配水盘部件(paring disc device)下面的防护罩(protecting plate)腐蚀、锈烂。我们知道,该防护罩(protecting plate)的主要功能就是防止分配盘(distributing cover)和分离筒(bowl body)上漏泻、排出的水进入轴承室和齿轮箱,该处的水应经过机体上的泄放槽排放掉。由于它的腐蚀、锈烂结果导致了齿轮箱进水。

由于当时没有该备件,我们使用铜板自制了一个防护罩,并更换了相关密封令,就此解决了齿轮箱进水问题。

2.不能建立油压

当分油机启动后开始进油时,发现没有油压。检查分油机供给泵和分离筒的密封情况均正常,因此判断其油压低的原因应是气控三通阀不能打开,油还在旁通循环。为了得到证实,改用手动开启该三通阀,此时分油正常了。

为简化问题,更准确的判断出是由于三通阀本身还是其控制机构的原因导致了三通阀不能正常工作,我们在分油机工作期间,直接将三通阀顶部的空气管接头拆开,结果发现没有气压输入。由此判断出问题出在了控制电磁阀MV1(solenoid valve block, air)上,通过拆检该电磁阀,发现里面的膜片安装反了。

此外,还有一种试验方法:在控制电磁阀MV1上有一个手动开关,分油机正常工作时它是水平放置的,如果因为某个原因,需要改为手动操作时,可以在进油开始时,将此开关旋转90度,放在垂直方向,此时将有空气输出到供油三通阀上。

3.不排渣

分油机恢复使用不到一天,出现了不排渣现象。解决此问题主要从两个部分去查找,一是工作水,再就是分油机本体的问题。

该型分油机控制排渣的电磁阀是MV16,排除其发生问题的方法就是在分油机排渣过程中,松开其连接管接头,观察其排水量及压力是否正常。在分油机本体内,影响排渣的因素主要有,定量环(dosing ring)内的滑动圈(operating slide)及喷嘴(nozzle)状况,以及配水盘部件(paring disc device)的状况等。我们通过拆检滑动圈(operating slide),发现其密封令槽内有大量水垢存在,这直接影响了滑动圈(operating slide)的上下运动,结果在分油机工作期间,滑动圈(operating slide)卡死在使尼龙阀处于关闭的位置,最终导致滑动底盘(sliding bowl bottom)下的密封水不能泄放,从而影响了排渣过程。

4.A7-12报警,MV10A常流水

当分油机正常工作期间,如果由于某原因导致被分离的净油中的水份增加,致使水份传感器(WT-200)连续被触发五次后,EPC-400将发出A7-12报警。

很显然,现在A7-12报警说明了净油中的水份含量已经过高了,是什么原因引起的呢?MV10A流水不断的现象给我们带来了答案。

我们知道水路电磁阀体(solenoid valve block, water)上的四个阀中,MV10,MV15,MV16三个阀正常状态是常闭的,MV10A是常开的。MV10A的作用是,在分油机正常工作期间泄放掉从分离筒内带给电磁阀体上的背压,以防止MV10不正常的开启。

因此,在分油机正常工作期间MV10A泄放阀处有水不断的流出,表明了MV10电

磁阀已经不正常的打开(或关闭不严),其结果导致了净油中水份的增加。由于水份的增加致使水份传感器连续五次发出排渣信号,最终EPC-400发出A7-12警报。经拆检MV10发现,由于膜片的老化,在膜片四周已经出现多处裂纹,结果使阀不能关闭。根据情况,我们更换了阀顶部备件(valve top part),解决了此问题。

5.A7-11、A7-1报警

说明书中表明,A7-11报警说明置换水(displacement water)量不足。

根据分油机控制原理,我们知道,分油机工作期间,在每排渣十次时(即在第十次排渣时),EPC-400要对置换水量进行一次检测,根据检测结果,自动调节置换水量的加减。如果经过反复的检测,都没有得到置换水量增加的信号,最终将发出A7-11报警。由于EPC-400的这种适应工作条件的功能,才保证了分油机在工作期间置换水量的正常。

显然,A7-11报警,就要找置换水的原因,MV10是新更换的备件,那么就应该先从分油机里找原因了。我们通过拆检分油机发现,定量环上开启室的喷嘴(opening chamber nozzle)发生了堵塞。(在定量环上,上面的喷嘴是开启室喷嘴,下面的喷嘴是关闭室喷嘴)。

通过分析使我们明白了:开启室喷嘴(opening chamber nozzle)的堵塞将影响到开启水(opening water)的泄放,如果此水不能完全泄放掉,将导致滑动圈上的尼龙阀不能将分离筒(bowl body)下的泄水阀完全关闭,最终结果是滑动底盘(sliding bowl bottom)不能完全关闭,这样就造成了分离筒内调节水/置换水从排渣口的泄漏(这期间也许还发生了跑油情况)。由于调节水/置换水的流失,使得水份传感器检测到的是置换水量不足的信号,最终EPC发出了A7-11报警。

排除喷嘴问题后重新启动分油机,然而刚进行第一次排渣,分油机又发出A7-1警报。

A7-1的含义就是水份传感器检测到的水份已超过了最大值。根据说明书的指导,我们对水份传感器进行了拆检、清洗、测量,除传感器圆管壁内有一点脏以外,振荡器的输出、输入电压,电流以及绝缘等均符合要求。然而,装复水份传感器后,重新启动分油机,依然报A7-1警报。

至此,我们开始怀疑油中水份真的高了。根据此类型分油机的控制特点,我们将P10由1转为0,即进入stand by模式。在此模式下分油时,水份指示和正常情况基本一样为280个单位。这样我们排除了油中含水量高的可能。

此时,我们再回过头来分析一下stand by模式的特点。当设定P10=0时,系统进入stand by模式,同时系统将:(1)切除与水份传感器有关的警报,(2)不显示净油中含水量达到触发值的百分数,(3)在运行P61程序时,切除由水

份传感器控制的排渣程序,(4)切断置换水/调节水的供给。

从stand by模式运行的结果与上述工作特点的比较,我们做出了判断:问题出在了置换水的供给量上(因为在on mode模式运行时,恢复的stand by模式下的前三种情况都不会造成A7-1报警)。通过进一步分析可以知道,影响置换水/调节水水量的原因主要有两方面,一是供置换水/调节水的设定时间,再就是阀本身问题。

为此,我们从EPC-400中查阅了置换水/调节水的工作时间,这些设定时间与说明书均相符合,并且与No.1分油机也一样。接着,我们对两台分油机的置换水/调节水的水量进行了测量、比较,结果发现No.1供水量大约为1900ml/m,而No.2供水量达到了3200ml/m左右,这个流量已远远大于了说明书的要求。因此我们对电磁阀再次进行了拆检,很快我们发现,原来流量阀(flow valve, 0.9ml/m)上控制流量大小的橡皮圈的孔径被扩大了,虽然流量阀体上标注着0.9的标记,但实际流量已远远超过了此值。为此,我们根据橡皮圈原型重新用橡皮胶板制做了一个,并在其中心部位用1.5mm的钻头打上中心孔,通过测量,其流量大约为1500ml/m。

装复电磁阀后,启动分油机进行工作,一切正常。至此,No.2分油机存在的问题得到了彻底的解决。

ALFALAVAL(阿法拉伐)分油机排渣原理

ALFALAVAL(阿法拉伐)分油机排渣原理 ALFALAVAL(阿法拉伐)分油机是船舶油品处理设备的主流品牌,在此以其FOPX-607型分油机为例解析其排渣原理。分油机是一种离心式沉淀设备,作用是将待分离油中的杂质颗粒和水分分离,基本原理是利用分离盘之间的微小间隙和分油机高速旋转的离心力将杂质颗粒和水分等密度较大的成分分离出去。实际上,原始原理与一杯有杂质的水杂质的沉淀过程是一样的,水中杂质受重力作用而向下运动,对于高速旋转的分离桶中的待分油,除受重力作用,还有离心力里,之于所受重力,离心力大了NN多,杂质快速向外运动。根据流体力学,固体杂质颗粒在分离盘中的径向速度为: 式中符号分别为:杂质与纯油的密度差,Kg/m3;杂质颗粒的直径,m;分离盘的旋转角速度,rad/s;分离盘的分离半径,m;燃油的绝对粘度,kg/m·s; 工作水高速旋转产生的对滑动底盘的动压头以及开启水高速旋转产生的对滑动圈的动压头可由下式得到: 式中符号分别为:工作水或开启水进入其水空间的入口处半径,m;工作水或开启水其水空间的最大半径,m;水的密度Kg/m3;水的旋转角速度rad/s; 上式忽略了工作水和开启水进口压力的影响,当工作水或开启水在其腔室高速旋转时产生的动压头足以密封滑动底盘和克服滑动圈弹簧弹力。 阿法拉伐分油机排渣过程如下图解: W:密封圈;I:排渣口;K:滑动底盘;X:密封堵头;Y1:开启室;N:定量环;Y2:定量室;L:滑动圈;0:弹簧;R:密封圈;M1:Y1的泄水小孔;M2:Y2的泄水小孔;W15:开启水; W16:工作水

图1正常分油运行 W:密封圈;I:排渣口;K:滑动底盘;X:密封堵头;Y1:开启室;N:定量环;Y2:定量室;L:滑动圈;0:弹簧;R:密封圈;M1:Y1的泄水小孔;M2:Y2的泄水小孔;W15:开启水;W16:工作水。 图2准备排渣 图3排渣中

大学生毕业论文分油机的工作原理与故障分析诊断

第一章分油机的跑油故障 1.1分油机的工作原理 当燃油泵入正在运行的离心分油机时,离心力将迫使重质成分,如油渣和水沿分离盘底面向外周滑移。重质成分(水)和轻质成分(油)之间形成圆柱形分界面。轻质成分被迫使向向上移到净油出口,重质成分集结在分离筒污渣空间,或(有些分油机)定期排向污渣柜。当(油水)分界面接近分离桶外周而必须在分离盘外缘时才获得最佳分离效果。燃油的密度将决定所配比重环的尺寸,参照生产厂说明书(选配比重环)很重要。大分离量时,将油加热,降低粘度将获得高效分离效果。因此,系统中设有加热器。建议高粘度燃油的(加热)温度为80~95oC,依燃油粘度而定。 如需分离相对清洁的燃油,应使用分杂分离筒。它只有净油出口,没安装分油用的比重环。因此,由于油总是在分离盘外缘供入,所以可获得最佳分离效果。 实验表明,两级分离,先分水后分杂能取得极好的分离效果。燃油(首先)泵入配有比重环的分水机,分离出油、水和渣。相对清洁的油(再)进入分杂机,分离出极少量的水和油中残留杂质。若燃油加热不足、分离量过大或选错比重环,那么仍有大量杂质残留在油中。 燃油净化技术的提高和离心分离机的发展,已使单级分油机取得了新进展,它们自身装备已改进的温度控制器、加热器、溢油警报器及其他辅助设备。更新的发展是自动排渣分油机,它能长时间无人值守和(自动)排渣。自动排渣装置可在任何时刻动作而无需人工拆卸清洁,这是项耗时而脏污的工作。 如果装置不是自动排渣,必须进行严格的日常维护。维护不当是故障频繁的原因。使分油机超规定时间运转将使分离筒污堵,特别是在分离严重脏污的油时。离心分油机的分离效果会在杂质积聚到一定程度时急剧下降。 对安装在无人机舱的自动排渣分油机,控制的设置是这样的:一台分油机故障时,另一台备用机自动投入运行。分油机装有电动计时器用于控制分离筒的排渣周期,程序控制装置控制各种排渣操作。分油机必须配有声光警报器,以便运转不正常时报警。当在报警状态时,分油机应停止运转或燃油循环阀打开,油在外围循环而不致跑油。为控制分离筒的油水分界面,净油出口安装了定压控制阀。当施加高背压时,油水分界面外移,反之移。当油中有大量水时,必须特别注意,

船用分油机

第二节分油机 船舶柴油机所用的燃油在使用前必须经过净化处理,除去其中的水分和杂质。而柴油机系统润滑油在使用过程中应循环净化,除去其润滑过程中产生和进入的各种杂质。油料净化中的核心环节是离心分离,离心分离的最主要设备是离心式分油机

一、分油机的工作原理 分油机分离筒简图 1-立轴;2-分离筒本体;3-分离盘; 4-分离筒盖;5-进油管;6-出油管;7-出水管8-分杂盘; 9-重力环(比重环);10-盘架(有孔);11-排渣孔;12-分离盘上盖;13-油水分界面; 14-盘架(无孔);15-滑动底盘;16-排水向心泵;17-排油向心泵 1 2 4 13 15 10 14 11 7 6 5 (a ) (b ) 16 17 17

1、分杂机分离原理 ) /(4.17622s m r R d v r ?????= ωρ (6-1) 式中:△ρ――杂质与纯油的密度差,kg/m 3 ; d 一一杂质的直径,m ; ω一一分离盘的旋转角速度, rad/s ; R 一一 分离盘的半径,m ; r 一一燃油的动力粘度,Pa/s 。

2、分水机的分离原理及排出方法 目前分油机油水分界面的位置由两种方式控制。一种是由被称做“重力 盘”(比重环)的内径来确定的: E D D D D 2 12323 2 -- = (6-2) 式中 : D 1 一一出油口直径,固定不变,mm ; D 2 一一出水口直径(重力盘的内径),可以选择,mm ; D 3 一一油、水分界面的直 径,mm ; E 一一在某分离温度时油、水密度的比值。 Y 分水机工作原理

另一种分油机的比重环被分杂盘8代替, 另外,两种分油机(有比重环和无比重环)被分离出并聚集在分离筒外围的水分,在排渣期间,随着分油机的排渣操作筒杂质一同被排出分离筒。 净油出

离心式分油机的工作原理

离心式分油机的工作原理 未经净化分离的燃油由纯油、水份和机械杂质组成,它们的密度各不相同,其中纯油的密度最小,机械杂质密度最大,水分密度居中。如果把燃油置于高速回转的分离筒中,燃油随同分离筒高速回转,燃油中的纯油、水分和机械杂质便处在离心力场中。与沉淀分离利用重力场一样,油、水和机械杂质所产生的离心惯性力各不相同,就会沿着离心力的方向分层。机械杂质的离心惯性力最大,留在分离筒的最外圈;纯油的离心惯性力最小,汇聚在转轴附近;水份则位于两者之间。机械杂质、水份、纯油的离心惯性力要比本身的重力大几千倍,使用离心分油机可以缩短燃油净化时间,提高净化效果。 分油机是船舶油品处理设备的主流品牌,在此以其FOPX-607型分油机为例解析其排渣原理。分油机是一种离心式沉淀设备,作用是将待分离油中的杂质颗粒和水分分离,基本原理是利用分离盘之间的微小间隙和分油机高速旋转的离心力将杂质颗粒和水分等密度较大的成分分离出去。实际上,原始原理与一杯有杂质的水杂质的沉淀过程是一样的,水中杂质受重力作用而向下运动,对于高速旋转的分离桶中的待分油,除受重力作用,还有离心力里,之于所受重力,离心力大了NN多,杂质快速向外运动。根据流体力学,固体杂质颗粒在分离盘中的径向速度为: 式中符号分别为:杂质与纯油的密度差,Kg/m3;杂质颗粒的直径,m;分离盘的旋转角速度,rad/s;分离盘的分离半径,m;燃油的绝对粘度,kg/m·s; 工作水高速旋转产生的对滑动底盘的动压头以及开启水高速旋转产生的对滑动圈的动压头可由下式得到:式中符号分别为:工作水或开启水进入其水空间的入口处半径,m;工作水或开启水其水空间的最大半径,m;水的密度Kg/m3;水的旋转角速度rad/s; 上式忽略了工作水和开启水进口压力的影响,当工作水或开启水在其腔室高速旋转时产生的动压头足以密封滑动底盘和克服滑动圈弹簧弹力。 FOPX排渣功能和步骤 ①部分排渣 A、步骤1—排渣前 分离筒排渣操纵系统与工作水箱和程序控制设备相联,上电磁阀控制密封工作水,下电磁阀控制开启工作水。由于滑动底盘下部工作水接触面大于上部与处理液的接触面,滑动底盘保持在上面位置,关闭排渣口。板式滑动圈在弹簧作用下关闭泄水口。此时分油机处于分油工作状态,泥渣聚积于分离筒周壁。 B、步骤2—排渣 部分排渣不必停止分油。排渣程序控制器发出脉冲信号,打开开启水电磁阀,让工作水进入滑动圈上部开启室,此时两个电磁阀同时开启,而不影响配水室的水位。 滑动圈上部开启室有一泄放喷嘴。由于进入开启室的水量大于喷嘴排出水量,在离心力作用下滑动圈上的液压力逐渐增大,当作用力超过弹簧力时,滑动圈向下移动。泄水孔打开,滑动底盘下部密封水高速通过泄水孔进入开启室,增大了滑动圈开启力和下移速度。 C、步骤3—排渣 滑动圈移到下面位置,水通过在滑动圈上若干斜孔从开启室溢流到它的下部空间。 在开启水电磁阀保持开启之时,继续供水给开启空间,随着滑动底盘下部水位向外移,向上的力减小,当该力小于分离筒内液体的向下力时,滑动底盘下落打开排渣口进行排渣。 D、步骤4—密封 滑动圈下部由滑动圈和定量环组成一个密封室,也有泄水喷嘴。由于进入密封室内的水多于泄水喷嘴排出的水量,在离心力作用下逐渐建立起一定量的水环,使水施加在滑动圈下面向上的力逐渐增大,当该力和弹簧力的合力超过开启室向下的液压力时,滑动圈上移。 滑动底盘下部腔室内流出的水跟快,滑动圈下面的密封室很快充满形成一个密封力。 排渣期间,密封水电磁阀保持开启,由于流入滑动底盘下部的水量小于排出的水量,因此在部分排渣时并不会对开启步骤有多大影响,而在密封步骤时,在密封水管路中的工作水则将关闭排渣口。 E、步骤5—密封 从滑动底盘下部空间排出的水将滑动圈下部密封室充满到和上部开启空间的水位一样,滑动圈在下部弹簧力作用下关闭。滑动底盘下部的密封水开始建立,当下部水压超过分离筒内水压力时,滑动底盘上移,关闭分离筒排渣。

分油机结构与原理

第1章船舶分油机系统概述 船用分油机一般是指自动排渣分油机,它是在一般 分油机的基础上加装了活动底盘、配水盘、密封环、滑动环及复位弹簧等部件。 1.1分油机的基本结构 分油机的类型有很多,但是基本结构和工作过程大同小异。现以ALFA-LAVALMMPX型自动排渣分油机为例加以说明。该分油机机体下部安装着分离筒的传动机构。分离筒由马达经摩擦离合器、涡轮机构驱动,以较高速度旋转。分离筒是分油机的核心部件,图1显示出了其分离筒和自动 A E.顶盘; F.L.滑动 进油口; R. VV)和分 (E), 旋转, 分离 排出。 机。 后流向下部,再经盘架的分配孔进入分离盘间,被分离盘片分成若干层的油随分离筒一起高速转动。由于外围有一层水封,故能防止油从出口跑掉。从油中分出的水将挤兑原来的水封水,使之经顶盖(E)和分离筒盖(F)、重力环(AA)间的环形空间,由向心水泵排出。油中的机械杂质将穿过水封区被甩出聚集在分离筒内壁上,然后定期自动或手动排出。净油则连续地经过盘架和顶盖间的环形通道,由向心油泵排出。 在分离筒内油水因密度不同而形成油水分界的圆柱形面叫油水分界面。分界面以内的空间是油,分界面以外的空间为水和杂质。有水分界面的位置非常重要,其直接影响油的分离质量,其最佳位置应在分离盘的外边缘,从而使油能充分利用分离通道的全部长度,达到最佳的分离效果。若油水分界面向内移动进入分离盘组件,则造成分离盘片堵塞,被油携带的若干水滴和细小杂质将分

离不出而随油一起排出分离筒,降低了分离效果。若分界面向外移动,一方面会降低从水中分离出油的效果,从而造成水中带油,另一方面,有可能破坏水封,造成油经出水口流出,即出水口跑油。 油水分界面的位置是由重力环的内径来确定的。重力环内径增大,油水分界面向外移。重力环内径减小,油水分界面向内移。所分离的油密度越大,选用的重力环内径应越小。为此,每台分油机均附带有一套不同内径的重力环已被选用。 1.3分油机的工作过程 该分油机的工作过程可以自动控制也可以手动控制,具体过程如下: 启动、密封:当进行分油作业时,启动分油机,3-5min后达到额定转速(表现为分油机启动控制箱上的电流表有较高的启动电流下降为一个稳定的额定工作电流),水阀16打开,密封和补偿水 进口(P 2)进水,密封水经配水盘进入滑动底盘下部的密封水腔(Y 2 )。由于此时在弹簧(O)的 层, )和配油器(D (S 进口( 以利阀(X 每

ALFALAVAL(阿法拉伐)分油机排渣原理

A L F A L A V A L(阿法拉伐)分油机排渣原理 ALFALAVAL(阿法拉伐)分油机是船舶油品处理设备的主流品牌,在此以其FOPX-607型分油机为例解析其排渣原理。分油机是一种离心式沉淀设备,作用是将待分离油中的杂质颗粒和水分分离,基本原理是利用分离盘之间的微小间隙和分油机高速旋转的离心力将杂质颗粒和水分等密度较大的成分分离出去。实际上,原始原理与一杯有杂质的水杂质的沉淀过程是一样的,水中杂质受重力作用而向下运动,对于高速旋转的分离桶中的待分油,除受重力作用,还有离心力里,之于所受重力,离心力大了NN多,杂质快速向外运动。根据流体力学,固体杂质颗粒在分离盘中的径向速度为: 式中符号分别为:杂质与纯油的密度差,Kg/m3;杂质颗粒的直径,m;分离盘的旋转角速度,rad/s;分离盘的分离半径,m;燃油的绝对粘度,kg/m·s; 工作水高速旋转产生的对滑动底盘的动压头以及开启水高速旋转产生的对滑动圈的动压头可由下式得到:式中符号分别为:工作水或开启水进入其水空间的入口处半径,m;工作水或开启水其水空间的最大半径,m;水的密度Kg/m3;水的旋转角速度rad/s; 上式忽略了工作水和开启水进口压力的影响,当工作水或开启水在其腔室高速旋转时产生的动压头足以密封滑动底盘和克服滑动圈弹簧弹力。 阿法拉伐分油机排渣过程如下图解: W:密封圈;I:排渣口;K:滑动底盘;X:密封堵头;Y1:开启室;N:定量环;Y2:定量室;L:滑动圈;0:弹簧;R:密封圈;M1:Y1的泄水小孔;M2:Y2的泄水小孔;W15:开启水; W16:工作水 图1正常分油运行 W:密封圈;I:排渣口;K:滑动底盘;X:密封堵头;Y1:开启室;N:定量环;Y2:定量室;L:滑动圈;0:弹簧;R:密封圈;M1:Y1的泄水小孔;M2:Y2的泄水小孔;W15:开启水;W16:工作水。 图2准备排渣 图3排渣中 图4排渣后 正常分油运行期间(图1),密封堵头X受弹簧作用封住水出口,工作水W16每过一定时间补充一次,弥补蒸发和泄露造成的损失,滑动底盘K下部充满工作水。 准备排渣(图2),工作水W16持续提供,开启水W15提供约三秒,在此期间,开启室Y1

分油机的故障原因和工作原理

再混有水和杂质的油中,机械杂质的密度最大,油的密度最小,水的密度介于两者之间。油在沉淀柜中存放一定的时间能使机械杂质和水沉淀分离,但速度慢。目前船上主要靠离心式分油机来净化燃油和滑油。其工作原理是:让需要净化的油进入分油机中高速旋转,密度较大的水和机械杂质所受的离心力最大,被甩向外周,水被引出,杂质则排出,密度较小的油所受离心力较小,便于向里流入,从靠近转轴的出口流出,油从而得到净化。对于杂质,水所受离心惯性比自身重力大几千倍,因此,离心分油机具有净化时间短,流量大和效果好的优点。 分油机根据其传动方式可以分为蜗轮传动和平皮带传动。分油机的传统设计中,采用蜗杆轮传动机构。 燃油在沉淀柜中静置,纯油在最上面,水在中间,机械杂质在最下面。燃油是粘性液体,水滴和固体小颗粒在其中运动会受到粘带阻力,所需时间长,效果也不好。 分油机净化油料能缩短净化时间和提高净化效果。船舶上通常使用叠片式(转盘式)分油机净化燃油。核心部件是分油筒,主要作用是净化油料。 轻柴油,船用柴油,重柴油,润滑油 减少管理人员额外的工作量,有利于维持分油机工作的可靠性和使用寿命 1,分离筒达不到规定转速 可能原因是:制动器未松开;摩擦离合器中混入油脂,摩擦片打滑或损坏;电动机或电气设备故障 2不能进油或分油过程断油 分油机供油泵一般为齿轮泵,不能供油的原因有以下几类。第一类是由于泵或管路的问题不能产生足够低的吸入压力,原因是:油泵传动齿轮锥销折断;泵严重磨损,间隙太大;泵转速太低;吸入管漏气;油柜用空。第二类原因是泵吸入压力过低。属于这类的原因有:油柜油位太低;供油泵前滤器堵塞或管路不通;油温太低,粘度太大。 2,出水口跑油 第一类是水封未能建立或受到破坏:启动时水封水未加或加的过少;进油阀开的太猛,水封被破坏;油温太高,水封水被蒸发,水封被破坏;转速不足使水封压力不足;分离盘片间脏堵。 第二类情况是油水分界面外移到分离盘外。属于这类的原因有:重力环内径过大;油未加热到要求值,密度大。 3,接渣口跑油 由于排渣口未能封闭。原因有以下几类: 第一类是滑动圈不能上移堵死密封水腔泄水口。原因是:分离筒上泄水口小孔堵塞,不能泄水;滑动圈上方塑料堵头失严。 第二类原因是滑动底盘下部缺密封水,可能是高置水箱无水;工作水系统管道或控制阀堵塞或严重漏泄;滑动底盘周向密封圈失效漏泄。 第三类原因是滑动底盘与分离筒盖不能贴紧,原因是:滑动底盘上端面主密封环失效;传动齿轮和轴承过度磨损使立轴下沉。 4,不能排渣

(完整版)ALFA-LAVAL分油机原理及结构演化

ALFA-LAVAL分油机原理及机构演化 (海事大学) 摘要:为便于学员对分油机工作原理的理解,分析了ALFA-LAVAL分油机工作的物理原理,并比较了ALFA-LAVAL FOPX型和S型分油机主要结构和工作原理,有利于学员对ALFA-LAVAL分油机工作原理的掌握,指导轮机员对ALFA-LAVAL分油机进行的操作及维护。 关键词:分油机;原理;机构演化 The principle and mechanism evolution of ALFA-LAVAL oil separator ( Maritime University) Abstract:For easy understanding of the working principle of oil separator,analyzed the physical principle of ALFA-LAVAL oil separator, compared the primary construction and working principle of FOPX type and S type ALFA-LAVAL oil separator which made good for the students to know well about the working principle of oil separator and also gave guidance to marine engineer operation and maintenance. Key words: oil separator; principle; mechanism evolution 船舶中低速柴油机普遍使用劣质燃油,分油机是燃油净化的核心设备,在船舶动力装置辅助机械中有着重要地位。分油机的正常工作,对动力装置的正常运行起着保障作用,ALFA-LAVAL公司生产的分油机性能优越,故障率低,在船舶配套设备中普遍采用。轮机员要对分油机的工作原理全面掌握,才能更好地做好分油机的维护保养工作。在教学教材中,对分油机工作原理的论述较少,学员不易理解分油机的工作原理。本文分析了ALFA-LAVAL分油机工作的物理原理,并比较了ALFA-LAVAL FOPX型和S型分油机主要结构和工作原理,有利于学员对ALFA-LAVAL分油机工作原理的掌握。 1 ALFA-LA V AL分油机物理原理 1.1 分油机离心沉降原理 图 1 离心力场中颗粒的受力 分油机分离燃油中的杂质,是基于离心沉降的原理,当分油机正常工作时,分离筒高速旋转,筒内的燃油也一起高速旋转,燃油流体中的杂质颗粒处于离心力场当中,被快速沿径向沉降分离。 假设含有杂质颗粒物的非均相流体处于离心力场中,如图1所示,颗粒与流体一起以角速度ω围绕中心轴旋转。设某一质量为m、密度为 p ρ、 粒径为 p d的球形颗粒处于与中心轴距离为r的离 心场中,则该颗粒受到的惯性离心力 c F可用下式计算[1]: 232 1 6 c p p F mr d r ωπρω ==(1) 惯性离心力的作用方向为沿径向向外。同时 颗粒受到来自周围流体的浮力 b F,此浮力的大小 等于密度为ρ的与颗粒同体积的流体在该位置所受的惯性离心力,此浮力的方向指向中心轴[1]: 32 1 6 b p F d r πρω =(2) 如果颗粒的密度大于流体的密度,则颗粒在 ( c F- b F)的作用下沿径向向外运动;反之,则向中心轴运动。 由于颗粒与流体之间的相对运动,颗粒还会 在运动过程中受到流体阻力 D F的作用。流体阻力的方向与颗粒物在流体中的运动方向相反,其大小与流体和颗粒物之间的相对运动速度、流体的密度、黏度以及颗粒物的大小、形状有关。对于

分油机结构与原理

第1章船舶分油机系统概述 船用分油机一般就是指自动排渣分油机,它就是在一般 分油机的基础上加装了活动底盘、配水盘、密封环、滑动环及复位弹簧等部件。 1、1 分油机的基本结构 分油机的类型有很多,但就是基本结构与工作过程大同小异。现以ALFA-LAVAL MMPX型自动排渣分油机为例加以说明。该分油机机体下部安装着分离筒的传动机构。分离筒由马达经摩擦离合器、涡轮机构驱动,以较高速度旋转。分离筒就是分油机的核心部件,图 1 显示出了其分离筒与自动排渣系统的主要结构。 图1 分离筒与自动排渣系统结构 A.带翅套筒;a、水腔;AA、比重环;aa、油腔;B、小锁紧圈;C、液位环;D、配流器;E、 顶盘;F、筒盖;G、分离盘组;H、大锁紧圈;I、排渣口;ii、渣空间;J、筒本体;K、滑动底盘;L、滑动圈;M1、M2、喷嘴;N、定量环;O、弹簧;P1、开启工作水进口;P2、密封与补偿水进口;Q、进油口;R、净油出口;S、出水口;T、向心水泵;U、向心油泵;V、进口管;VV、配油锥体;W、筒盖密封环;X、泄水阀;Y1、开启水腔;Y2、密封水腔;Z、配水

盘;ZZ、弹簧座;10、水封水/置换水进口 分离筒本体(J)与筒盖(F)用大锁紧环(H)锁紧。筒内安装配油器(D)、配油锥体(VV)与分离盘组(G),待分油流过配油器、配油锥体,在分离盘组内进行分离。分离盘最上端为顶盘(E),其颈部与液位环(C)形成油腔(aa),向心油泵(U)将油腔中的净油泵出分离筒。分离出的水沿分离盘组的外缘上升,经顶盘流至油腔上部的水腔(a)溢过重力环(AA)由向心水泵泵出。分出的固体残渣向筒内四周运动,汇集在分离盘组外缘的渣空间(ii),通过排渣口(I)定时排出。重力环被小锁紧圈(B)固定在分离筒盖上,此锁紧圈也构成了水腔的上盖。其自动排渣系统主要由分离筒底部的滑动底盘(K)、定量环(N)、滑动圈(L)、配水盘(Z)及工作水系统等构成。 1、2 分油机的基本工作原理与种类 分油机就是靠离心力来净化燃油与滑油。其主要工作原理就是:让需净化的油进入分油机中做高速旋转,密度较大的水滴与机械杂质所受的离心力大,被甩向外围,水被引出,机械杂质则定期排出;密度较小的净油所受到的离心力较小,便向里流动,从靠近转轴的的出口流出,油从而得到净化。 分油机根据用途不同可分为分水机与分杂机。当待分油中含有水分较多时,使用分水机,分离油中的水分及杂质;当待分油中所含水分较少时,使用分杂机,分离出的杂质与少量水分从排渣口排出。该型号分油机只要将盘架换为不带分配孔的盘架,将出水通道封死,便可将分水机改成分杂机。 分油机分油前应将一部分热水经进油口(Q)注入分离筒,直至出水口有谁流出为止,使之在筒内外周形成水封区,引入的水就叫做水封水。然后待净化的油由进油泵泵进分油机,进入分离筒后流向下部,再经盘架的分配孔进入分离盘间,被分离盘片分成若干层的油随分离筒一起高速转动。由于外围有一层水封,故能防止油从出口跑掉。从油中分出的水将挤兑原来的水封水,使之经顶盖(E)与分离筒盖(F)、重力环(AA)间的环形空间,由向心水泵排出。油中的机械杂质将穿过水封区被甩出聚集在分离筒内壁上,然后定期自动或手动排出。净油则连续地经过盘架与顶盖间的环形通道,由向心油泵排出。 在分离筒内油水因密度不同而形成油水分界的圆柱形面叫油水分界面。分界面以内的空间就是油,分界面以外的空间为水与杂质。有水分界面的位置非常重要,其直接影响油的分离质量,其最佳位置应在分离盘的外边缘,从而使油能充分利用分离通道的全部长度,达到最佳的分离效果。若油水分界面向内移动进入分离盘组件,则造成分离盘片堵塞,被油携带的若干水滴与细小杂质将分离不出而随油一起排出分离筒,降低了分离效果。若分界面向外移动,一方面会降低从水中分离出油的效果,从而造成水中带油,另一方面,有可能破坏水封,造成油经出水口流出,即出水口跑油。 油水分界面的位置就是由重力环的内径来确定的。重力环内径增大,油水分界面向外移。重力环内径减小,油水分界面向内移。所分离的油密度越大,选用的重力环内径应越小。为此,每台分油机均附带有一套不同内径的重力环已被选用。

分油机原理

船用分油机的原理 一概述 二分油机的基本结构 三分油机的工作原理与过程 四分油机几个常见故障的排除方法

一概述 在船舶动力装置中,所用的燃油和滑油含有水分和固体杂质,这样将影响机器的运行和使用寿命。 进入柴油机内的燃油中含有水分和杂质使喷油器磨损加剧,燃油的雾化质量下降,燃烧恶化等不良影响。 润滑油中含水分和杂质,破坏了运动部件间油膜的形成,加速机件运动磨损。 燃油和滑油在运输和储存过程中,会混入一些水分、铁锈和泥沙等杂质,同时使用中的滑油所含磨损产生的金属屑也随使用的时间而增加,因此,必须对其进行净化处理,以保证动力装置的可靠运行,并延长其使用寿命,尤其是在为了降低营运成本而燃用重柴油石渣油的船舶,油液的净化设施更是必不可少,常见的净化方法有三种: 1)过滤:只能净化油中粗粒杂质,故只能作为辅助净化之用。可以选用不同过滤精度的装置来满足不同的要求。 2)重力沉淀:是利用油、水、固体微粒密度的不同,在沉淀柜中静置,而达到净化分离。3)离心分离:是让油液在分离筒内高速旋转,由于油、水、杂质的比重不同,因而产生离心力不一样而实现分离,由内到外依次为油、水、杂质。 1.分油机外观

分油机从上至下分为三个部分: 上部为接口部分,有污油进口、净油出口、置换水进口等;中部为分离室部分,主要是高速旋转的分离桶; 下部为传动部分

由离合器、传动轴、斜齿轮、驱动轴(立轴)以及轴承等组成

二分油机的基本结构 1.分离筒结构 分离筒主要由本体、活塞、分离片、上盖、锁紧环等组成,分离鼓是经过高速动平衡试验的重要部件,组装中所有组件标记要对应,同型号分离鼓的主要部分也不得更换。 2.外观图片(174000t分油机室) 三分油机的工作原理及过程 1.基本工作原理 混合液在重力场或离心力场作用下,密度不同的液体将重新分层分布。在静置的重力场作用下,由于粘滞阻力的影响,密度不同的液体分层速度很慢,而在离心力场作用中,不同密度的液体在离心惯性力作用下将迅速沿径向重新分布,分层速度快,而且不容易掺混。因此离心式分油机就是根据油、水、杂质密度的不同,在高速回转中的离心力场作用下,依靠离心惯性力不同,而将油、水、杂质沿转轴径向重新分布,从而将水和杂质分离出来这一基本原理而完成净化处理工作的。

分油机结构与原理

分油机结构与原理 Hessen was revised in January 2021

第1章船舶分油机系统概述 船用分油机一般是指自动排渣分油机,它是在一般 分油机的基础上加装了活动底盘、配水盘、密封环、滑动环及复位弹簧等 部件。 分油机的基本结构 分油机的类型有很多,但是基本结构和工作过程大同小异。现以ALFA-LAVAL MMPX型自动排渣分油机为例加以说明。该分油机机体下部安装着分离筒 的传动机构。分离筒由马达经摩擦离合器、涡轮机构驱动,以较高速度旋转。 分离筒是分油机的核心部件,图 1 显示出了其分离筒和自动排渣系统的主要结构。 图 1 分离筒和自动排渣系统结构 A.带翅套筒;a.水腔;AA.比重环;aa.油腔;B.小锁紧圈;C.液位环;D. 配流器;E.顶盘;F.筒盖;G.分离盘组;H.大锁紧圈;I.排渣口;ii.渣 空间;J.筒本体;K.滑动底盘;L.滑动圈;M 1、M 2 .喷嘴;N.定量环;O.弹 簧;P 1.开启工作水进口;P 2 .密封和补偿水进口;Q.进油口;R.净油出 口;S.出水口;T.向心水泵;U.向心油泵;V.进口管;VV.配油锥体;W.

筒盖密封环;X.泄水阀;Y 1.开启水腔;Y 2 .密封水腔;Z.配水盘;ZZ.弹簧 座;10.水封水/置换水进口 分离筒本体(J)和筒盖(F)用大锁紧环(H)锁紧。筒内安装配油器(D)、配油锥体(VV)和分离盘组(G),待分油流过配油器、配油锥体,在分离盘组内进行分离。分离盘最上端为顶盘(E),其颈部与液位环(C)形成油腔(aa),向心油泵(U)将油腔中的净油泵出分离筒。分离出的水沿分离盘组的外缘上升,经顶盘流至油腔上部的水腔(a)溢过重力环(AA)由向心水泵泵出。分出的固体残渣向筒内四周运动,汇集在分离盘组外缘的渣空间(ii),通过排渣口(I)定时排出。重力环被小锁紧圈(B)固定在分离筒盖上,此锁紧圈也构成了水腔的上盖。其自动排渣系统主要由分离筒底部的滑动底盘(K)、定量环(N)、滑动圈(L)、配水盘(Z)及工作水系统等构成。 分油机的基本工作原理和种类 分油机是靠离心力来净化燃油和滑油。其主要工作原理是:让需净化的油进入分油机中做高速旋转,密度较大的水滴和机械杂质所受的离心力大,被甩向外围,水被引出,机械杂质则定期排出;密度较小的净油所受到的离心力较小,便向里流动,从靠近转轴的的出口流出,油从而得到净化。 分油机根据用途不同可分为分水机和分杂机。当待分油中含有水分较多时,使用分水机,分离油中的水分及杂质;当待分油中所含水分较少时,使用分杂机,分离出的杂质和少量水分从排渣口排出。该型号分油机只要将盘架换为不带分配孔的盘架,将出水通道封死,便可将分水机改成分杂机。 分油机分油前应将一部分热水经进油口(Q)注入分离筒,直至出水口有谁流出为止,使之在筒内外周形成水封区,引入的水就叫做水封水。然后待净化的油由进油泵泵进分油机,进入分离筒后流向下部,再经盘架的分配孔进入分离盘间,被分离盘片分成若干层的油随分离筒一起高速转动。由于外围有一层水封,故能防止油从出口跑掉。从油中分出的水将挤兑原来的水封水,使之经顶盖(E)和分离筒盖(F)、重力环(AA)间的环形空间,由向心水泵排出。油中的机械杂质将穿过水封区被甩出聚集在分离筒内壁上,然后定期自动或手动排出。净油则连续地经过盘架和顶盖间的环形通道,由向心油泵排出。 在分离筒内油水因密度不同而形成油水分界的圆柱形面叫油水分界面。分界面以内的空间是油,分界面以外的空间为水和杂质。有水分界面的位置非常重要,其直接影响油的分离质量,其最佳位置应在分离盘的外边缘,从而使油能充分利用分离通道的全部长度,达到最佳的分离效果。若油水分界面向内移动进入分离盘组件,则造成分离盘片堵塞,被油携带的若干水滴和细小杂质将分离不出而随油一起排出分离筒,降低了分离效果。若分界面向外移动,一方面会降低从水中分离出油的效果,从而造成水中带油,另一方面,有可能破坏水封,造成油经出水口流出,即出水口跑油。 油水分界面的位置是由重力环的内径来确定的。重力环内径增大,油水分界面向外移。重力环内径减小,油水分界面向内移。所分离的油密度越大,选用的重力环内径应越小。为此,每台分油机均附带有一套不同内径的重力环已被选用。

MFPX型分油机工作原理

MFPX型分油机工作原理 MFPX型分油机作为部分排渣型分油机工作时,其特点是待分油连续进分油机,在排渣期间也不切断进油。每次排渣其排渣口仅打开0.1s,排出量分离片外边缘与壳体之间容积的70%。该分油机可净化在15℃时密度为1010kg/cm3的重质燃油,而在净化不同密度的燃油时不受密度的限制,取消了比重环,这给使用和操作者带来较大的方便。该分油机的控制和监视系统采用WT200型水分传感器和EPC-400型监控系统。 一、工作原理 污油连续地送给分油机,当泥渣和/或水被排放时油的流动不中断。净油从净油出口连续地排出。分离出的泥渣和水聚积于分离筒的四周。当分离出的水接近分离盘时,一些水滴开始随净油跑掉。在净油中,水分的少量增加,就立即被安装在净油口的水分传感器所感知。净油中水分的增加是降低分离效率的最重要信号而且未充分净化的油从分油机离去。这作为分离筒中排水的信号。从水分传感器来的信号连续地传给EPC-400控制单元并表示燃油中的水量。每次排渣后在EPC-400中储存信号的参考值。测得的油中的任何水分是对参考值的偏差值。注意测得的水分是变化量,不是水分的绝对值。允许的偏差范围是触发范围。 1.正常情况,油中水分低 跟随每次排渣程序在参考时间期间EPC-400控制单元储存一个新的参考值,由于没有水净油跑出的危险,在此期间获得最好的分离效果。从水分传感器来的信号图解表明位正常情况,即油中不存在水污染。最大和最小排渣间隔时间在EPC-400控制单元中由定时器的功能设定。一旦参考值被存储,调节水就加入分离筒。调节和置换水允许为若干个脉冲。泥渣空间的大约一半容积被调节水注满,以软化泥渣达到一个良好排放。当排渣间隔的最大时间已经过去,在排渣之前置换水被加入到分离筒。最初允许连续加入,然后分成若干短期脉冲加入较少量的水,以避免随净油跑水的危险。排渣初次发生后,脉冲的预定数已经过去。之后排渣的新循环开始,随之储存新的参考值和加入调节水。 2.油中的高水分 当燃油含有一定量的水分时(~0.5%),分离出的水在最大排渣间隔时间到达之前,将充满分离筒的排渣空间。随净油跑出的水分立即被水分传感器测知,并开始排渣。在这种情况下没有置换水加入。排渣后一个新的循环和储存的新的参考值一起开始。在最大时间到达之前连续发生5次排渣时,EPC-400的高水分报警功能动作。报警指出在燃油中含水分高。 3.高水分油分离的自动设定 当水分高时,分离系统必须设定最大水分分离。控制开关自动地转换为应急方式,在控制单元上将有一个指示,显示系统设定为高水分的分离,然后按水分传感器的需要触发排渣动作。无调节水注入。当水分减少时,最大时间允许解除。它将需要注入置换水以避免油损失,逐渐完成系统的复位,恢复到正常操作方式。 4.置换水的适当补充 MFPX分离系统连续地监测分油机效率,即关于净化的燃油和油系统的水分。目的是没有油损失和净油中无水。分界面位置在分离盘外边即可获得最佳分离效率。为避免跑油在排渣开始之前,用置换水使分界面推入接近分离盘而不能进入分离盘。如果分界面进入分离盘,将随净油跑水。EPC -400的适应功能使系统可能自己适应变化的工作状态,例如系统中水分的增多,置换水管生垢等。 (1)减少置换水量 分离筒的补充水呈有停顿的几个波型。停顿时间与系统的反应时间有关。连续地跟随几个波型补充置换水给主要部分。补水的量被储存于EPC-400的存储器中。在置换水补充期间,传感信号值触发排渣时,有过量的水补入。然后置换水量在下次排渣时将减少。 (2)增加置换水量 每第10次排渣的置换水检查一次,以保证补给水的准确数量。然后和置换水一起加入较大量的补给水。如果传感器有信号值增加的反应,那就确认置换水量是足够的。万一传感器对补水量没

最新分油机结构与原理

第1章船舶分油机系统概述 1 2 船用分油机一般是指自动排渣分油机,它是在一般 3 分油机的基础上加装了活动底盘、配水盘、密封环、滑动环及复位弹簧等部 件。 4 5 1.1 分油机的基本结构 6 分油机的类型有很多,但是基本结构和工作过程大同小异。现以ALFA-LAVAL 7 MMPX型自动排渣分油机为例加以说明。该分油机机体下部安装着分离筒的传动8 机构。分离筒由马达经摩擦离合器、涡轮机构驱动,以较高速度旋转。分离筒9 是分油机的核心部件,图 1 显示出了其分离筒和自动排渣系统的主要结构。

10 图 1 分离筒和自动排渣系统结构 11 A.带翅套筒;a.水腔;AA.比重环;aa.油腔;B.小锁紧圈;C.液位环; 12 D.配流器; E.顶盘; F.筒盖; G.分离盘组; H.大锁紧圈; I.排渣口;ii. 13 渣空间;J.筒本体;K.滑动底盘;L.滑动圈;M 1、M 2 .喷嘴;N.定量环;O. 14 弹簧;P 1.开启工作水进口;P 2 .密封和补偿水进口;Q.进油口;R.净油出口; 15 S.出水口;T.向心水泵;U.向心油泵;V.进口管;VV.配油锥体;W.筒盖密16 封环;X.泄水阀;Y 1.开启水腔;Y 2 .密封水腔;Z.配水盘;ZZ.弹簧座;10. 17 水封水/置换水进口 18 分离筒本体(J)和筒盖(F)用大锁紧环(H)锁紧。筒内安装配油器(D)、19 配油锥体(VV)和分离盘组(G),待分油流过配油器、配油锥体,在分离盘组20 内进行分离。分离盘最上端为顶盘(E),其颈部与液位环(C)形成油腔(aa),21 向心油泵(U)将油腔中的净油泵出分离筒。分离出的水沿分离盘组的外缘上升,22

例文-分油机工作原理及常见故障

ALFA-LAVAL MAPX204型分油机工作原理及常见故障 黄兴旺 (青岛港湾职业技术学院,山东青岛266404) 摘要:以ALFA-LAV AL MAPX204型分油机为例,详细介绍了分油机的工作原理,结合船上实际工作遇到的问题,对分油机常见故障进行了分析,并提出了处理意见。 关键词:分油机;工作原理;故障分析;措施 0 引言 随着航运业的迅猛发展,降低运营成本,使用劣质燃油,已成为航运界的主流管理模式。很多船舶使用380或更差质量的燃油,这些油黏度大、杂质多,进入分油机要加热到95℃以上,使得分油机的工作条件越来越恶劣。有时为提高分油机的分油效果而将转速提升到9 000 r/min以上,不仅给分油机的维护保养带来了麻烦,也给轮机员的管理带来了挑战。例如,某船3台分油机在3个月时间同时出现故障,导致不能正常分油,进而使主机燃烧状况恶劣,缸套、活塞环、喷油器遭到不同程度的损坏。由上可见,分油机的管理成为轮机员的重点和难点问题,因此,作为轮机员必须掌握分油机的原理和常见故障,为尽快解决分油机故障做好必要的准备。 1 分油机的工作原理 分油机工作时,让需净化的油进入分油机中作高速旋转,密度较大的水滴和机械杂质所受的离心力最大,被甩向外周,水被引出,杂质则定期清除(排渣);密度较小的油所受离心力较小,便向里流动,从靠近转轴的出口流出,油从而得到净化。由于杂质、水分所受的离心惯性力比自身的重力大几千倍,因此,离心式分油机具有净化时间短、流量大和效果好的优点。 根据水路和油路的走向,分油机的工作过程如下:当分油机的转速达到额定转速后(ALFA-LAV AL MAPX204转速在7 200 r/min左右),将分油机的控制手轮从“空位”转到“密封”位。此时,密封水从高置水箱进入分油机的配水盘。ALFA-LAV AL MAPX204分油机的配水盘上有9个水孔,其中对称的8个孔(图1中的10个孔中有2个定位孔)和进水管的外管相通,1个孔(图1的侧面)与内管相通。密封水是从配水盘的8个孔进入分流圈(图2左侧),然后从固定分流圈的螺丝孔中(3个螺丝,其中1个螺丝中空)流进滑动底盘和分离筒本体的下部空间,将滑动底盘托起,使之与筒盖密封。随着密封水的增加,分流圈中的水越来越多,内径越来越小,当水的内圈刚好和配水盘的外圈接触时,密封水便会从和内管相通的一个小孔,以向心泵的形式进入配水盘,进而从弯管出水口流出,这时证明密封成功。密封成功后,要迅速将控制手柄转到补偿位,否则,密封会失败。补偿水的水量很小,仅从内管流入,用以补偿损耗的密封水,如果不消耗掉密封水,补偿水不会流进。密封完成后,要从分油机的上部进油管进入水封水,水封水满后,再进入待分油,这时分油机就可正常分油。

相关文档
最新文档