大学微积分(常见问题与解答)

大学微积分(常见问题与解答)
大学微积分(常见问题与解答)

辅导答疑

第一章微积分的基础和研究对象

1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?

答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。微积分这座大厦是从上往下施工建造起来的。微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。在以后的发展中,后继者才对逻辑细节作了逐一的修补。重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。

微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。而初等数学研究不变的数和形,属于常量数学的范畴。

2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?

答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。

《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。

第二章微积分的直接基础-极限

1.问:阿基里斯追赶乌龟的悖论到底如何解决的?

答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。

芝诺的说法中有合理的成分:阿基里斯追赶乌龟的过程确实是一个无穷的过程--一个无穷的位置变化过程。芝诺的说法中的错误在于:他把阿基里斯追赶乌龟的无穷的位置变化过程与无穷的时间变化过程混为一谈了。

芝诺的结论"阿基里斯永远也追不上乌龟"中的"永远"一词,指的当然是"时间"。条件中谈的是"位置"的变化,结论却谈"时间",这是芝诺悖论偷梁换柱之所在。

事实上,阿基里斯追赶乌龟的悖论的解决借助于高等数学的一部分重要内容---无穷级数,在那里,我们将会看到,尽管是无穷多个数相加,却可以等于一个有限的数。虽然芝诺将追赶时间一段一段叙述,造成无穷多个时间的迷惑,实际上,这无穷多个时间的和是个有限的数。从而,阿基里斯在有限的时间内就可以追赶上乌龟了,这与我们的生活常识一致。

2.问:极限的定性描述和定量描述有何不同之处?

答:极限的定性描述是用所谓的描述性语言,例如,“无限趋近”“越来越靠近”这些都只是一种模糊的描述,一种直观的想象,缺乏精确性;为避免直观想象可能带来的错误判断,作为微积分工具的极限概念,必须有定量描述的精确定义。

在R.克朗的名著《数学是什么》一书中,数学大师也提到:定量描述极限的语言接受起来有一定的心理上的困难,但是文科学生要通过这种定量定义,理解、领悟、欣赏数学语言区别于自然语言的简洁、一义、科学、严谨的方面。3.问:如何理解连续的概念?连续函数有什么应用?

答:自然界中连续变化的现象是很多的,例如,我们身边的容易理解例子:空气的流动,植物的生长,温度的变化,这种种现象反映到数学的函数关系上,就是函数的连续性。实际遇到的情形是:当自变量的改变非常小时,相应的函数值改变也非常小。例如,气温作为时间的函数,就有这种性质。一天之中的温差

可能很大,但考虑时间间隔很短的瞬间,温度的改变将是很微小的。

连续函数是大学数学中着重要讨论的一类重要函数。一方面,连续函数是人们在科学实验,生产实践中经常碰到的一类函数(例如,初等函数在其有定义的区间内均为连续的);另一方面,在数学上,人们经常用连续函数去逼近非连续函数,进而研究非连续函数的性质和近似计算函数值。

第三章 变量变化速度与局部改变量估值问题-导数与微分

1. 问:导数是如何引进的?举例说明导数的实际运用。

答:在生产实践和科学实验中,常常需要研究函数相对于自变量变化的快慢程度。例如,要预报人造地球卫星飞过各大城市的时间,就要知道卫星的飞行速度,要研究轴和梁的弯曲变形问题,就必须会求曲线的切线的斜率,等等。

求曲线的切线斜率、求速度的问题,叫做求变化率的问题,数学上称为求导数。

例如,我们可以应用导数的概念,证明旋转抛物面的光学性质。(抛物线绕它的对称轴旋转所形成的曲面就是旋转抛物面。放在焦点处的光源所发出的光,经过旋转抛物面各点反射之后就形成平行光束,人们利用这一性质制造需要发射平行光的灯具,例如,探照灯、汽车前灯等)。

2. 问:如何理解微分的概念?

答:可以从多个角度和方面来理解和加深对微分的认识。

1)从几何角度考,微分dx x f dy )(0'=正好是切线函数的增量;

2)从代数角度看,微分dx x f dy )(0'=是增量)()(00x f x x f y -?+=?的线性主要部分,二者之差是一个高阶无穷小量)(x o ?;

3)有了微分的概念以后,可以把导数的记号

dx

dy 解释为dy 与dx 之商:)(0x f dx dy '=,故导数也称为微商; 4)可以利用微分做近似计算和误差估计(dy y ≈?),但精度受限。

第四章 导数的应用问题-洛必达法则、函数的性质和图像

1. 问:微分学的中值定理的作用?如何运用中值定理解决问题

答:微分中值定理是由函数的局部性质来研究函数的整体性质的桥梁,其应用十分广泛。

在具体处理问题时,注意首先确定函数以及讨论的区间,判断函数在所讨论的区间上是否满足中值定理的条件。人们常用中值定理证明某些不等式或者涉及函数和它的一阶导数的问题。

补充一点:中值定理有三种常用的形式:Rolle 中值定理,Lagrange 中值定理,Cauchy 中值定理,这三种形式一个比一个适用范围要广。但最常用的还是Lagrange 中值定理,故人们一般提到微分中值定理时均指Lagrange 中值定理。

2. 问:应用计算不定式极限的一般方法-洛必达法则时,有什么注意事项?

答:1)洛必达法则可以处理7种函数不定式极限,十分好用;但是在)

()(x g x f ''极限不存在的情况下,洛必达法则失效;故,不能从

)()(x g x f ''极限不存在推出)

()(x g x f 极限不存在; 2)尽管洛必达法则只针对未定式是函数的极限形式,但对于未定式是数列的极限形式,可以通过归结原则将数列极限转化为函数极限,再利用洛必达法则。(注意:没有数列极限的洛必达法则)

3. 问:利用导数研究函数的图像和进行函数图像的绘制与初等数学中的描点作图的区别是什么?

答:中学《代数》应用描点法绘制了一些简单函数的图像。但是应用描点法得到的函数是比较粗糙的,这是因为,描点法所选取的点不可能很多,而一些关键的点,如极值点、拐点等可能被漏掉;曲线的单调性、描述其弯曲性质的凸性等一些重要性态常常得不到确切的反映。因此,用描点法所描绘的函数图象常与真实的函数图象相差很多。现在,有了微积分这个工具,我们已经掌握了应用导数讨论函数单调性、极值、凸性、拐点、渐近线等的方法,再结合前面所讲的周期性、奇偶性等知识就能比较准确地描绘函数的图像。

注意,利用微积分的方法作图,也具有一定的局限性,更何况许多实际问题

所得到的函数不一定可以用公式表示的,而只是测得一系列数据,因而数值计算适当地多算出一些点,然后描点作图,仍不失为一种有效的作图方法。随着电子计算机的发展和应用的普及,用描点作图就更方便、更精确了。

第五章 微积分的逆运算问题-不定积分

1. 问:不定积分与原函数是同一个概念吗?

答:不是同一个概念。前者是一个集合,是所有原函数构成的集合,后者是集合中的一个元素。

2.问:不定积分运算与微分运算(求导运算)有何关系?

答:由不定积分的定义,有如下关系式: d dx f x dx f x [()]()?= 或 d f x dx f x dx [()]()=?

'=+?F x dx F x C ()() 或 dF x F x C ()()=+?

由此可见,微分运算 (记号为d ) 与不定积分运算 (记号为?)是互逆的。当记号合在一起时,或者抵消,或者抵消后差一个常数。

3. 问:第一类换元积分法与第二类换元积分法有何不同?

答:第一类换元积分法:若 连续可导, 则

C x F dx x x f +='?))(()())((???。

第二类换元积分法:设 是单调的可微函数,并且 又

具有原函数. 则有换元公式

不同在于:前者是作变量代换t x =)(?,后者是作变量代换)(t x ?=。

在求不定积分时,先考虑用第一换元积分法,即凑微分法,如果用此法失效,再考虑用第二换元积分法。

4. 问:在分部积分法如何选取)(),(x v x u ?

答:在分部积分公式??-=vdu uv udv 中,一般来说,选取)(),(x v x u 的原则就

是:使得dx x u x v )()(?'比dx x v x u )()(?'简单,具体说有2个原则:(1)积分容易者选为dv ;(2)求导简单者选为u ,在二者不可兼得的情况下,首先要保证的是前者。在分部积分法中常用凑微分的形式将dx x v )('凑成)(x dv ,因此应熟记常见的凑微分形式。 5.问:是不是所有的初等函数都可以求出其不定积分?

答:不是。如dx x dx x

x x dx ???

2sin ,sin ,ln 都“积不出来”,它们都不能用初等函数表示。 第六章 求总量的问题-定积分

1.问:定积分与不定积分有何区别?

答:定积分和不定积分有很大的不同,不定积分?dx x f )(表示函数)(x f 的所有原函数构成的集合,而?b

a dx x f )(是一个常数。并且定积分有明显的几何意义。但在计算方法上二者是相通的,各种求不定积分的方法都适用于定积分,结合牛顿-莱布尼兹公式便可以求得定积分。

2.问:积分中值定理与微分中值定理有何区别?

答:积分中值定理:如果函数)(x f 在闭区间],[b a 上连续,则在积分区间],[b a 上至少存在一点ξ,使下式成立:?-?=b

a a

b f dx x f )()()(ξ。 积分中值定理中的ξ在整个闭区间],[b a 上取值,且结论中含有的是函数)(x f 在ξ处的函数值)(ξf ,而不是函数)(x f 在ξ处的导数)(ξf '。而微分中值定理中的ξ在开区间),(b a 内取值,且结论中含有的是函数)(x f 在ξ处的导数)(ξf '。

第七章 偶然中蕴含必然的问题-概率统计初步

1.问:随机现象有规律性吗?

答: 有。

例如:在相同条件下,多次重复地抛一枚质地均匀的硬币,正面朝上的次数大致占总抛掷次数的一半,再如:从婴儿出生的调查来看,男、女婴孩的可能性各占一半。这种规律性称为统计规律性。在大量试验中才显示出来,不是个别试验或某个对象显示的特性。

2.问: "频率"与"概率"之间有何关系?

答:随机事件的频率,指此事件发生的次数与试验总次数的比值,它具有一定的稳定性,即稳定在某一常数附近,而偏离的可能性很小。为了说明这种规律,我们把这个常数称为这个随机事件的概率,即频率的稳定值就是时间的概率。它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率。例如,一根棒在一定条件下具有"长度"这一特性,而我们通常用某次测量的结果作为其长度。

3.问:"互斥"与"等可能"的区别是什么?

答:"互斥事件"和"等可能事件"是迥然不同的两个概念。在一次试验中,由于某种对称性条件使得若干个随机事件中每一事件发生的可能性是完全相同的,则称这些事件为等可能事件。在数目上它可为2个或多个。而互斥事件仅指不可能同时发生的两个事件。

例如:掷一个均匀骰子,"出现1或2"与"出现2或3"这两个事件是等可能的,但它们不是互斥事件。

4.问:"事件互斥"和"事件对立"的关系如何?

答:互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的事件。因此,对立事件必须是互斥事件,但互斥事件不一定是对立事件,也就是说,"互斥"是"对立"的必要但不充分的条件。

例如:掷一个均匀骰子,"出现1点"和"出现2点"是互斥的,但不是对立的,因为有可能1点和2点都不出现。

又如:掷一个硬币,"出现正面"和"出现反面"是对立的。

5.问:如何理解“两个事件相互独立”这一概念,如何判断两个事件是否相互独立?

答:在实际生活中,我们常常注意到事件之间的联系。例如:“昨天晚上没休息好”和“今天考试成绩差”是有联系的。虽然没休息好不一定导致成绩不好,

但增大了成绩不好的可能性。

“两个事件互不影响”抽象为数学模型,就得到“独立事件”的数学概念,但我们还要注意两者之间的差别。前一句话,是日常生活用语,是不准确的,如果用它来代替“独立事件”的概念,就会产生错误。

例如:“广州下雨”和“北京在同一天下雨”这两个事件,看来是互不相关的,但是它们并不是互相独立的事件。

又如掷一个均匀的骰子,“出现偶数点”和“出现1或2”这两个事件是互相独立的,但如果骰子不是均匀的,那么这两个事件就不一定互相独立的。

所以,判定两个事件A,B 是否相互独立,一般要按定义,即根据条件)()()(B P A P AB P =是否成立来决定。在实际问题中,判断两个事件的独立性常常可凭经验,只要一个事件发生与否不影响另一个事件发生的概率,或者两个事件之间没有关联或关联很微弱,就可以认为这两个事件相互独立。

6.问: 如何求“至少...”或“至多...” 等事件发生的概率?

答: 求某个事件的概率时,常遇到求“至少...”或“至多...” 等事件概率的问题。若从正面考察这些事件,它们往往是诸多事件的和或积,求解时很繁琐。但“至少...”、“至多...”这些事件的对立事件却又比较简单,且其概率也很容易求出。此时,采用先求其对立事件的概率,然后再求原来事件的概率。

7.问: 如何正确看待"小概率事件"?

答:"小概率事件"通常指发生的概率小于5%的事件。对于这类事件来说,在大量重复试验中,平均每试验20次才发生1次,所以认为小概率事件在一次试验中是几乎不可能发生的,这就是人们在长期的实践中总结出来的小概率原理。

不过应注意两点:一是这里的"几乎不可能发生",是针对"一次试验"来说的,因为如果试验次数多了,该事件当然是很可能发生的;二是当我们运用小概率原理进行推断时,也有5%的犯错误的可能。

8.问:对两个事件A,B ,P ( A ) > P ( A | B )是否一定成立?

答:P ( A ) > P ( A | B ) 不一定成立。可以举一例子,P ( A ) = 0.1 , P ( B ) = 0.12 , P ( AB ) = 0.1 显然, P ( A | B )=)(1.012

.01.0)()(A P B P AB P =>=.

第九章 含变化率的方程问题-微分方程浅说

1.问:微分方程与我们学过的代数方程有何区别?

答:最大的区别就是微分方程的解一般是一元函数,而代数方程的解是数值。

2.问:什么是微分方程的通解和特解?它们有何区别?

答:若解中所含独立的任意常数的个数与方程的阶数相同,则称该解为微分方程的通解;不含任意常数的解称为微分方程的特解。二者的区别就在于通解含有任意常数,而特解不含有任意常数,是满足一定初始条件的解。

3.问:微分方程的通解中所含的任意常数是相互独立的,如何理解?

答:任意常数相互独立是指它们不能合并成一个任意常数而导致通解中任意常数的个数减少,如在x C C y 21+=中21,C C 就是相互独立的,无法合并成一个任意常数,而在x C C y )(21+=中21,C C 就不是相互独立的,因为它们可以合并成一个任意常数。再如x e C y C )(21+=中的21,C C 也不相互独立。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

大学高等数学微积分教案

第一章:函数与极限 1.1 初等函数图象及性质 1.1.1 幂函数 函数(m 是常数)叫做幂函数。幂函数的定义域,要看m 是什么数而定。例如,当m = 3时,y=x3 的定义域是(-∞ ,+∞);当m = 1/2时,y=x1/2的定义域是[0,+∞ );当m = -1/2时,y=x-1/2的定义域是(0,+∞ )。但不论m 取什么值,幂函数在(0,+∞)内总有定义。 1.1.2 指数函数与对数函数 1.指数函数 函数y=a x(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(-∞ ,+∞)。 因为对于任何实数值x,总有a x >0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。 若a>1,指数函数a x是单调增加的。若00,a≠1),叫做对数函数。 它的定义域是区间(0,+∞)。对数函数的图形与指数函数的图形关于直线y = x对称。 y=log a x的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数log a x是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正。 若0N时都有,我们就称a是数列{}的极限,或者称数列{}收敛,且收敛于a,记为,a即为的极限。 数列极限的几何解释:以a为极限就是对任意给定的开区间,第N项以后的一切数全 部落在这个区间内。 1.3 函数极限的概念 设函数f(x)在点附近(但可能除掉点本身)有定义,设A为一个定数,如果对任意各定,一定存在,使得当时,总有,我们就称A是函数f(x)在点的极限,记作,这时称f(x)在点极限存在,这里我们不要求f(x)在点有定义,所以才有。例如:,当x=1时,函数是没有定义的,但在x=1点函数的极限存在,为2。

大一微积分公式

有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2x x π→∞= (6)lim tan 2 x arc x π →-∞=- (7)lim arc cot 0x x →∞ = (8)lim arc cot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x a r c s i n x x arctan x x 2 11c o s 2 x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1 x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '=

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

最新大学各种微积分公式

大学各种微积分公式 考务论坛-考巴精修版 关于高等数学计算中涉及的数学公式(集) 一、 (如果系数不是0) 二、重要公式(1) (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)3 、以下常见等价无穷小关系() 四、导数的四种算法 五、基本导数公式 (1)(2)(4)(5)(6)(7)(9)(10)(11)(13)(14)(16)(18)(6 、高阶导数算法) (1) (2) (3) (4)七的N阶导数公式、基本初等函数 (1) (2) (3) (4) (5) (6) (7) 8 、微分公式和微分算法 (1)(2)(4)(5)(6)(7)(9)(10)(11)(13)(14)(9 、微分算法) (1) (2) (3) (4)十、基本积分公式 (1) (2) (3) (5) (6) (7) (9) (10) (11 、下列常用的微分方程 积分变换公式12 、补充了以下积分公式 十三、零件公式积分 (1)形式,秩序,形式,秩序,(2)形式,秩序,形式,秩序,(3)形式,秩序。第二代换积分法中的14 、三角代换公式 (1) (2) (3) 特殊角度的[三角函数值] (1)(2) (3)(4)(5) (1)(2)(3)(4)(5)(1)(2)(3)(4)不存在(5)(1)不存在

(2)(3)(4)(5)不存在15 、三角函数公式 1. 2角求和公式 2.双角度公式 3.半角公式 4.和微分积公式 5.乘积和差公式 6.通用公式 7.平方关系 8.倒数关系 9.商关系 十六、几个常见的微分方程 1.可分离变量的微分方程; , 2.齐次微分方程: 3.一阶线性非齐次微分方程;解为:

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

大一上微积分试题(山东大学)

数学试题 热工二班 温馨提示:各位同学请认真答题,如果您看到有的题目有种 似曾相识的感觉,请不要激动也不要紧张,沉着冷静的面对,诚实作答,相信自己,你可以的。祝你成功! 一、填空题(共5小题,每题4分,共20分) 1、 求极限2 2lim (1)(1)......(1)n n x x x →∞ +++= (1x <) 2、 曲线y=(2x-1)e x 1 的斜渐近线方程是( ) 3、 计算I=dx e x e x x ? -+2 2 41sin π π =( ) 4、 设y=x e x 1si n 1t an ,则'y =( ) 5、 已知()()() 100 2 1000 ln 1212x y x t t t ??=++-+? ?? ? ?dt ,求( ) ()x y 1001 二、选择题(共5小题,每题4分,共20分) 6、设()0 ()ln 1sin 0,1,1lim x x f x x A a a a →? ?+ ? ? ?=>≠-求20 ()lim x f x x →=( ) A.ln a B.Aln a C2Aln a D.A 7、函数 1.01 ().12 x x x f x e e x -≤

( ) A.当()f x 是偶函数时,()F x 必是偶函数 B.当()f x 是奇函数时,()F x 必是偶函数 C.当()f x 是周期函数时,()F x 必是周期函数 D.当()f x 是单调增函数时,()F x 必是单调增函数 9、设函数()f x 连续,则下列函数中必为偶函数的是( ) A.2 0()x f t dt ? B.2 0()x f t dt ? C[]0 ()()x t f t f t - -?dt D.[]0 ()()x t f t f t + -?dt 10、设函数y=()f x 二阶导数,且 () f x 的一阶导数大于0, ()f x 二阶导数也大于0,x 为自变量x在0x 处得增量,y 与dy 分 别为()f x 在点0 x 处的增量与微分,若x >0,则( ) A.0<dy < y B.0<y <dy C.y <dy <0 D.dy < y <0 三、计算,证明题(共60分) 11、求下列极限和积分 (1)222 22 sin cos (1)ln(1tan ) lim x x x x x x e x →--+(5分) (2)3 5 sin sin x xdx π -? (5分) (3)lim (cos 1cos x x x →∞ +-)(5分) 12.设函数()f x 具有一阶连续导数,且 " (0)f (二阶)存在,(0) f

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

最新大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

大一微积分练习题及答案

《微积分(1)》练习题 一.单项选择题 1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000 lim x f x x f x x f x '=?-?-→? B .()()()0000lim x f x x f x x f x '-=?-?-→? C .()()()0000 2lim x f h x f h x f h '=-+→ D .()()()00002 1 2lim x f h x f h x f h '=-+→ 2.下列极限不存在的有( ) A .201 sin lim x x x → B .12lim 2+-+∞→x x x x C . x x e 1 lim → D .() x x x x +-∞ →63 2 21 3lim 3.设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A .x e 22-- B .x e 2- C .x e 24- D . x xe 22-- 4.函数?? ? ??>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。 A .跳跃间断点; B .无穷间断点; C .可去间断点; D .振荡间断点 5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

电子科技大学微积分试题及答案

电子科技大学期末微积分 一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求02lim x x →等于() A 、-1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、 __________ 2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα =∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin x y x =求函数 的导数 2、21 ()arctan ln(12 f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、 计算 6、2 1 lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润 最大的情况下,总税额最大(8分) 2、描绘函数21 y x x =+ 的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01 lim (),lim ()x x f x A f A x +→+∞→==则

相关文档
最新文档