液质联用原理及应用

液质联用原理及应用
液质联用原理及应用

液相色谱—质谱联用的原理及应用

简介

1977年,LC/MS开始投放市场

1978年,LC/MS首次用于生物样品分析

1989年,LC/MS/MS取得成功

1991年,API LC/MS用于药物开发

1997年,LC/MS/MS用于药物动力学高通量筛选

2002年美国质谱协会统计的药物色谱分析各种不同方法所占的比例。1990年,HPLC高达85%,而2000年下降到15%,相反,LC/MS所占的份额从3%提高到大约80%。我们国家目前在这方面可能相当于美国1990年的水平。为此我们还有很长的一段路要走色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。而且也简化了样品的前处理过程,使样品分析更简便。

色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。

液质联用与气质联用的区别:

气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。

现代有机和生物质谱进展

在20世纪80及90年代,质谱法经历了两次飞跃。在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da的非挥发性化合物,但重复性差。20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。

随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质谱法(MALDI-MS)应运而生。

目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。前者常采用四极杆或离子阱质量分析器,统称API-MS。后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。

质谱原理简介:

质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强

度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。.

常见术语:

质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的

比值,写作m/Z.

峰: 质谱图中的离子信号通常称为离子峰或简称峰.

离子丰度: 检测器检测到的离子信号强度.

基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰.

总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图:

在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC 图.

质量色谱图

指定某一质量(或质荷比)的离子其强度对时间所作的图.

利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等其他扫描方式的测定时可作为参考。

指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常见的准分子离子峰是[M+H]+ 或[M-H]- .

在ESI中, 往往生成质量大于分子量的离子如M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+等碎片离子:

准分子离子经过一级或多级裂解生成的产物离子.

碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。Ephedrine, MW = 165

多电荷离子:

指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构-如共轭体系结构-才

会形成多电荷离子.它的存在说明样品是较稳定的.采用电喷雾的离子化技术, 可产生带很多电荷的离子,最后经计算机自动换算成单质/荷比离子。

同位素离子

由元素的重同位素构成的离子称为同位素离子.

各种元素的同位素,基本上按照其在自然界的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大方便, 还可利用稳定同位素合成标记化

合物,如:氘等标记化合物,再用质谱法检出这些化合物,在质谱图外貌上无变化,只是质量数的位移,从而说明化合物结构,反应历程等

如何看质谱图:

(1)确定分子离子,即确定分子量

氮规则:含偶数个氮原子的分子,其质量数是偶数,含奇数个氮原子的分子,其质量数是奇数。与高质量碎片离子有合理的质量差,凡质量差在3~8和10~13,21~25之间均不可能,则说明是碎片或杂质。

(2)确定元素组成,即确定分子式或碎片化学式

高分辨质谱可以由分子量直接计算出化合物的元素组成从而推出分子式

低分辨质谱利用元素的同位素丰度,例:

(3)峰强度与结构的关系

丰度大反映离子结构稳定

在元素周期表中自上而下,从右至左,杂原子外层未成键电子越易被电离,容纳正电荷能力越强,含支链的地方易断,这同有机化学基本一致,总是在分子最薄弱的地方断裂。

不同类型有机物有不同的裂解方式

相同类型有机物有相同的裂解方式,只是质量数的差异需要经验记忆。

质谱解析的一般步骤

(适于低分辨小分子谱图,若已经是高分辨质谱图得到元素组成更好)

(1)核对获得的谱图,扣除本底等因素引起的失真,考虑操作条件是否适当

(2)综合样品其他知识:例如熔点,沸点,溶解性等理化性质,样品来源,光谱,波谱数据等.

(3) 尽可能判断出分子离子。

(4) 假设和排列可能的结构归属:高质量离子所显示的,在裂解中失去的中性碎片,如M-1,M-15,M-18,M-20,M-31......意味着失H,CH3,H2O,HF,OCH3......

(5)假设一个分子结构,与已知参考谱图对照,或取类似的化合物,并作出它的质谱进行对比。

有机质谱的特点

优点:

(1)定分子量准确,其它技术无法比。

(2)灵敏度高,常规10-7—10-8g,单离子检测可达10-12g。

(3)快速,几分甚至几秒。

(4)便于混合物分析,LC/MS,MS/MS对于难分离的混合物特别有效, 其它技术无法胜任。

(5)多功能,广泛适用于各类化合物。

局限性:

(1)异构体,立体化学方面区分能力差。

(2)重复性稍差,要严格控制操作条件。所以不能象低场NMR,IR等自己动手,须专人操作。

(3)有离子源产生的记忆效应,污染等问题。

(4)价格稍显昂贵,操作有点复杂。

质谱仪器:

质谱仪由以下几部分组成

数据及供电系统

┏━━━━┳━━━━━╋━━━━━━┓

进样系统离子源质量分析器检测接收器

┗━━━━━╋━━━━━━┛

真空系统

真空系统

质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的离子-分子反应。所以质谱反应属于单分子分解反应。

利用这个特点,我们用液质联用的软电离方式可以得到化合物的准分子离子,从而得到分子量。.

由机械真空泵(前极低真空泵),扩散泵或分子泵(高真空泵)组成真空机组,抽取离子源和分析器部分的真空。

只有在足够高的真空下,离子才能从离子源到达接收器,真空度不够则灵敏度低。进样系统

把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。

离子源

使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机质谱中常用的有如下几种,其中EI,ESI最常用。

EI(Electron Impact Ionization):电子轰击电离—硬电离。

CI(Chemical Ionization):化学电离—核心是质子转移。

FD(Field Desorption):场解吸—目前基本被FAB取代。

FAB(Fast Atom Bombardment):快原子轰击—或者铯离子(LSIMS,液体二次离子质谱) 。

ESI(Electrospray Ionization):电喷雾电离—属最软的电离方式。适宜极性分子的分析,能分析小分子及大分子(如蛋白质分子多肽等)

APCI(Atmospheric Pressure Chemical Ionization):大气压化学电离—同上,更适宜做弱极性小分子。

APPI(Atmospheric Pressure PhotoSpray Ionization):大气压光喷雾电离—同上,更适宜做非极性分子。

MALDI(Matrix Assisted Laser Desorption):基体辅助激光解吸电离。通常用于飞行时间质谱和FT-MS,特别适合蛋白质,多肽等大分子.其中ESI,APCI,APPI统称大气压电离(API)

实验室现有的离子源:

ESI电喷雾电离源

APCI大气压化学电离源

电喷雾(ESI)的特点

通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子,由于质谱仪测定质/荷比,因此质量范围只有几千质量数的质谱仪可测定质量数十几万的生物大分子。

电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)测定化合物结构。

大气压化学电离(APCI)特点

大气压化学电离也是软电离技术,只产生单电荷峰,适合测定质量数小于2000Da 的弱极性的小分子化合物;适应高流量的梯度洗脱/高低水溶液变化的流动相;通过调节离子源电压控制离子的碎裂。

电喷雾与大气压化学电离的比较

电离机理:电喷雾采用离子蒸发,而APCI电离是高压放电发生了质子转移而生成[M+H]+或[M-H]-离子。

样品流速:APCI源可从到2 ml/min;而电喷雾源允许流量相对较小,一般为ml min. /

断裂程度;APCI源的探头处于高温,对热不稳定的化合物就足以使其分解.

灵敏度:通常认为电喷雾有利于分析极性大的小分子和生物大分子及其它分子量大的化合物,而APCI更适合于分析极性较小的化合物。

多电荷:APCI源不能生成一系列多电荷离子

NanoSpray 离子源

专门设计的NanoSpray 离子源特别适合于做微量的生化样品,其流速范围可从5nL/min到luL/min。一滴样品就可做数小时的分析。可在最小的样品消耗量下获得最大灵敏度。灵敏度可高达fmole。并可直接与微孔HPLC联用。

正负离子模式:

一般的商品仪器中,ESI和APCI接口都有正负离子测定模式可供选择。根据样品的性质选择,也可两种模式同时进行质量分析器: 是质谱仪中将离子按质荷比分开的部分,离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。

质量分析器的分类:

双聚焦扇形磁场-电场串联仪器(sector).

四极质谱仪(Q).

飞行时间质谱仪(TOF).

离子阱质谱仪(TRAP)

付利叶变换-离子回旋共振质谱仪(FT-ICRMS).

┏四极+TOF(Q-TOF)

串列式多级质谱仪┫三重四极(QqQ)

(MS/MS) ┗TOF+TOF

进行MS/MS的仪器从原理上可分为两类

第一类仪器利用质谱在空间中的顺序,是由两台质谱仪串联组装而成。即前面列出的串列式多级质谱仪。

第二类利用了一个质谱仪时间顺序上的离子储存能力,由具有存储离子的分析器组成,如离子回旋共振仪(ICR)和离子阱质谱仪。但不能进行母离子扫描或中性丢失。

实验室现有的质量分析器类型:

串联四极质谱仪(MS/MS) :

三重四极(QqQ)

离子源→第一分析器→碰撞室→第二分析器→接收器

MS1 MS2

Q1 q2 Q3

QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。(通过高分辨能得到化合物的分子式)

在液质联机中使用的碎片化手段,能量都是以碰撞的形式输送给分子离子,这个能量足以使得处在能量亚稳态分子中的某些化学键断裂并使一些特定的分子发生结构重排。

碰撞诱导解离CID质谱:

选择一定质量的离子作为母体离子,进入碰撞室,室内充有靶子反应气体(碰撞,

发生离子—分子碰撞反应,从而产生‘子) 等CH4、Xe 、Ar、He、N2 气体:

离子',再经MS2的分析器及接受器得到子离子质谱,一般称做CID

(collision-induced dissociation)谱

影响CID质谱的因素:

较大影响的因素有:所用碰撞气体的种类,压力,离子的能量,仪器的配置以及离子电荷状态

由于在不同的仪器上不可能在完全相同的条件下去分析样品,任何一个给定的化合物将在不同的条件下给出差别或大或小的质谱,尤其是各个离子峰的相对丰度的差别几乎是无法避免的。因而目前尚难以建立商品化的谱库供检索使用,只能进行人工解析或自己建库。

大气压电离技术中产生的离子为偶数电子离子,其主要的碎片应由化学键的诱导断裂和重排反应来产生,所以在EI质谱解析中总结出的偶数电子离子的开裂规

则一般可适用于CID质谱的解释。

检测接收器:

接收离子束流的装置,有:电子倍增器、光电倍增器、微通道板

数据及供电系统

将接收来的电信号放大、处理并给出分析结果及控制质谱仪个部分工作。

从几伏低压到几千伏高压。

LC-MS分析条件的选择和优化

1.接口的选择:

ESI适合于中等极性到强极性的化合物分子,特别是那些在溶液中

能预先形成离子的化合物和可以获得多个质子的大分子(如蛋白质)

APCI不适合可带多个电荷的大分子,其优势在于弱极性或中等极

性的小分子的分析。

2.正、负离子模式的选择:

选择的一般原则为:

正离子模式:适合于碱性样品,可用乙酸或甲酸对样品加以酸化。样品中含有仲氨或叔氨时可优先考虑使用正离子模式。

负离子模式:适合于酸性样品,可用氨水或三乙胺对样品进行碱化。样品中含有较多的强伏电性基团,如含氯、含溴和多个羟基时可尝试使用负离子模式。

3.流动相的选择

常用的流动相为甲醇、乙腈、水和它们不同比例的混合物以及一些易挥发盐的缓冲液,如甲酸铵、乙酸铵等,还可以加入易挥发酸碱如甲酸、乙酸和氨水等调节pH值。

LC/MS接口避免进入不挥发的缓冲液,避免含磷和氯的缓冲液,含钠和钾的成分必须<lmmol/l。(盐分太高会抑制离子源的信号和堵塞喷雾针及污染仪器)含甲酸(或乙酸)<2%。含三氟乙酸≤%。含三乙胺<l%。含醋酸铵<10一5 mmol/l。送样前一定要摸好LC条件,能够基本分离,缓冲体系符合MS要求。

4.流量和色谱柱的选择

不加热ESI的最佳流速是1—50ul/min,应用mm内径LC柱时要求柱后分流,目前大多采用l—mm内径的微柱,TIS源最高允许lml/min,建议使用200—400ul/min

,常规的直径柱最合适。min/lml的最佳流速~APCI.

为了提高分析效率,常采用<100 mm的短柱(此时UV图上并不能获得完全分

离,由于质谱定量分析时使用MRM的功能,所以不要求各组分没有完全分离)。这对于大批量定量分析可以节省大量的时间。

5.辅助气体流量和温度的选择

雾化气对流出液形成喷雾有影响,干燥气影响喷雾去溶剂效果,碰撞气影响二级质谱的产生。

操作中温度的选择和优化主要是指接口的干燥气体而言,一般情况下选择干燥气温度高于分析物的沸点20℃左右即可。对热不稳定性化合物,要选用更低的温度以避免显着的分解。

选用干燥气温度和流量大小时还要考虑流动相的组成,有机溶剂比例高时可采用适当低的温度和流量小一点的。

样品的预处理:

为什么要进行样品的预处理:

从保护仪器角度出发,防止固体小颗粒堵塞进样管道和喷嘴,防止污染仪器,降低分析背景,排除对分析结果的干扰。要求获得最佳的分析结果,从ESI电离

的过程分析:ESI电荷是在液滴的表面,样品与杂质在液滴表面存在竞争,不挥

发物(如磷酸盐等)防碍带电液滴表面挥发,大量杂质防碍带电样品离子进入气相状态,增加电荷中和的可能。

样品的预处理常用方法

a)超滤

b)溶剂萃取/去盐

c)固相萃取

d)灌注(Perfusion)净化/去盐

e)色谱分离

反相色谱分离

亲和技术分离

f)甲醇或乙腈沉淀蛋白

g)酸水解,酶解

h)衍生化

化合物鉴别

全扫描方式(Q1扫描)

全扫描数据采集可以得到化合物的准分子离子,从而可判断出化合物的分子量,用于鉴别是否有未知物,并确认一些判断不清的化合物,如合成化合物的质量及结构。

子离子分析(MS/MS )

子离子,用于结构判断(得到化合物的二级谱图即碎片离子)和选择离子对作多种反应监测(MRM)。

子离子谱图与锥体电压断裂谱图(源内CID)可能十分相似,所不同的是子离子质谱图已知只有一种质量通过MS1,因此也已知所有碎片离子都是由我们所选定的母离子所产生的,所以我们更相信由MS/MS产生的谱图的纯度。

用大气压电离质谱仪可以得到分子量信息

正离子方式常出现如下离子:

-Na 22 Da. higher than M+H

-K 38 Da. higher than M+H

-Li 6 Da. higher than M+H

液质联用原理及应用

液相色谱—质谱联用的原理及应用 液质联用与气质联用的区别: 气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。 目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。前者常采用四极杆或离子阱质量分析器,统称API-MS。后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。 质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。

常见术语: 质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z. 峰: 质谱图中的离子信号通常称为离子峰或简称峰. 离子丰度: 检测器检测到的离子信号强度. 基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰. 总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子 总离子流图: 在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图. 质量色谱图 指定某一质量(或质荷比)的离子其强度对时间所作的图. 利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等其他扫描方式的测定时可作为参考。 1.0 指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常见的准分子离子峰是[M+H]+ 或[M-H]- .

液质联用

实验名称:液相色谱-质谱联用技术(LC-MS)的各种模式探索 一、实验目的 1、了解LC-MS的主要构造和基本原理; 2、学习LC-MS的基本操作方法; 3、掌握LC-MS的六种操作模式的特点及应用。 二、实验原理 1、液质基本原理及模式介绍 液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。 但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。 质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。 (一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。主要用于目标化合物检测和复杂混合物中杂质的定量分析。实例:(Q1 = 259m/z) 本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:

液质联用分析实验报告

液质联用分析实验报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

液质联用分析 一、实验目的 1.了解液相色谱仪和质谱仪的原理、基本构造。 2.学会运用液质联用仪检测样品,会选择合适的质谱电离源检测样品,会运用色谱对混合物中的目标物分离和定量。 3.了解、熟悉质谱基本操作技术及质谱检测器的基本组成及功能原理。 二、实验原理 色谱分析是运用物种在固定相和流动相两相间的分配系数不同而达到分离的效果的一种分离技术,主要目的是对混合物中目标产物进行分离和定量的一种分析技术。质谱是通过测定样品的质荷比来进行分析的一种方法。通过液-质谱联用(LC-MS)技术可实现样品的分离和定量分析,达到快速灵敏的效果。 (1)液质联用系统的常见部件 HPLC(色谱分离)→接口(样品引入)→离子源(离子化)→分析器→检测器(离子检测)→数据处理(数据采集及控制)→色谱图; 质谱仪器构成:包括真空系统、电喷雾离子源、质量分析器及检测器。 三、仪器与试剂 Waters ZQ液质联用仪(LC/MS) 甲醇溶液、苯甲酸、十六烷基三甲基溴化铵 四、实验内容

运用液相色谱-质谱联用仪测定苯甲酸和十六烷基溴化铵(CTAB)的质荷比,熟悉仪器的操作流程,并能从所得的质谱图中指认出相应物质对应的质荷比,能对谱图做定性的描述。 五、实验步骤 1.打开仪器开关和计算机电源。 2.待仪器运转正常,打开测试软件,先用甲醇清洗柱子(在Load 状态下进样,分析时在Inject 状态下); 3.选择分析模式(正、负离子模式),输入分析的样品名; 4.利用软件进行数据分析。 五、实验结果与分析 (1)CTAB (正离子模式) CTAB : 正离子模式时在284/=z m 处有强的信号峰,为+CTAB 。 (2) CTAB (负离子模式) CTAB :负离子模式时在79/=z m 和81/=z m 处有强的信号峰,且强度为 1:1,可以判断为-Br 。 说明十六烷基三甲基溴化胺用两种模式都可以。 (3) 苯甲酸(负离子模式) 苯甲酸:负离子模式时在()() 1211-/==氢苯甲酸m m z m 处有强信号峰,为苯甲酸 根离子;正离子模式时有很多杂质峰,说明苯甲酸适用负离子模 式。

液质联用分析实验报告

液质联用分析 一、实验目的 1.了解液相色谱仪和质谱仪的原理、基本构造。 2.学会运用液质联用仪检测样品,会选择合适的质谱电离源检测样品,会运用色谱对混合物中的目标物分离和定量。 3.了解、熟悉质谱基本操作技术及质谱检测器的基本组成及功能原理。 二、实验原理 色谱分析是运用物种在固定相和流动相两相间的分配系数不同而达到分离的效果的一种分离技术,主要目的是对混合物中目标产物进行分离和定量的一种分析技术。质谱是通过测定样品的质荷比来进行分析的一种方法。通过液-质谱联用(LC-MS)技术可实现样品的分离和定量分析,达到快速灵敏的效果。 (1)液质联用系统的常见部件 HPLC(色谱分离)→接口(样品引入)→离子源(离子化)→分析器→检测器(离子检测)→数据处理(数据采集及控制)→色谱图; 质谱仪器构成:包括真空系统、电喷雾离子源、质量分析器及检测器。 三、仪器与试剂 Waters ZQ液质联用仪(LC/MS)

甲醇溶液、苯甲酸、十六烷基三甲基溴化铵 四、实验容 运用液相色谱-质谱联用仪测定苯甲酸和十六烷基溴化铵(CTAB)的质荷比,熟悉仪器的操作流程,并能从所得的质谱图中指认出相应物质对应的质荷比,能对谱图做定性的描述。 五、实验步骤 1.打开仪器开关和计算机电源。 2.待仪器运转正常,打开测试软件,先用甲醇清洗柱子(在Load状态下进样,分析时在Inject状态下); 3.选择分析模式(正、负离子模式),输入分析的样品名; 4.利用软件进行数据分析。

五、实验结果与分析 (1)CTAB(正离子模式) CTAB:正离子模式时在284 CTAB。 m处有强的信号峰,为+ z /=

液质联用(LCMS)原理简析.

液质联用(LCMS)原理简析 1.质谱法 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。 2.质谱仪 质谱仪由以下几部分组成 数据及供电系统 ┏━━━━┳━━━━━╋━━━━━━┓ 进样系统离子源质量分析器检测接收器 ┗━━━━━╋━━━━━━┛ 真空系统 质谱仪一般由进样系统、离子源、分析器、检测器组成。还包括真空系统、电气系统和数据处理系统等辅助设备。 (1)离子源:使样品产生离子的装置叫离子源。液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。

电喷雾(ESI)的特点 通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。 电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。 (2)质量分析器: 由它将离子源产生的离子按m/z分开。离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。 质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。实验室目前液质的质量分析器类型:三重四极杆(QqQ): 离子源→第一分析器→碰撞室→第二分析器→接收器 MS1 MS2 Q1 q2 Q3 QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。 在液质联机中使用的碎片化手段,能量都是以碰撞的形式输送

液质联用解析

液相色谱-质谱联用 一、液质发展史 1.质谱发展简史 质谱作为检测器,具有灵敏度高、专属性好的特点,与其他色谱技术相连接,已广泛的应用于各个研究领域。欲学习液质,我们先了解一下质谱发展的过程—— 19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备; 1912年,英国物理学家Joseph John Thomson研制出世界上第一台质谱仪(1906年诺贝尔物理学奖获得者、英国剑桥大学教授); 1917年,电喷雾物理现象被发现(并非为了质谱); 1918年,Dempster 180°磁扇面方向聚焦质谱仪; 1935年,马陶赫(Marttauch)和赫佐格(R. Herzog)根据他们的双聚焦理论,研制出双聚焦质谱仪; 1940年,尼尔(Nier)设计出单聚焦磁质谱仪,又于1960年设计并制成了一台小型的双聚焦质谱仪; 1942年,第一台商品质谱仪; 1953年,由鲍尔(Paul)和斯坦威德尔(Steinwedel)提出四极滤质器;同年,由威雷(Wiley)和麦克劳伦斯(Mclarens)设计出飞行时间质谱仪原型; 1954年,英格拉姆(Inghram)和海登(Hayden)报道的Tandem系统,即串联的质谱系统(MS /MS); 1955年,Wiley & Mclarens 飞行时间质谱仪; 1960's,开发GC/MS; 1974年,回旋共振质谱仪; 1979年,传送带式LC/MS接口成为商业产品;

1982年,离子束LC/MS接口出现; 1984年,第一台电喷雾质谱仪宣告诞生; 1988年,电喷雾质谱仪首次应用于蛋白质分析; 1989年,Hens G. Dohmelt和W. Paul,因离子阱(Ion trap)的应用获诺贝尔物理奖;2002年,J. B. Penn 和田中耕一因电喷雾电离(electron spray ionization, ESI)质谱和基质辅助激光解吸电离(matrix-assisted laser desorption ionization, MALDI)质谱获诺贝尔化学奖。 2.“接口”技术发展简史

液质联用原理及应用

液相色谱—质谱联用的原理及应用 简介 1977年,LC/MS开始投放市场 1978年,LC/MS首次用于生物样品分析 1989年,LC/MS/MS取得成功 1991年,API LC/MS用于药物开发 1997年,LC/MS/MS用于药物动力学高通量筛选 2002年美国质谱协会统计的药物色谱分析各种不同方法所占的比例。1990年,HPLC高达85%,而2000年下降到15%,相反,LC/MS所占的份额从3%提高到大约80%。我们国家目前在这方面可能相当于美国1990年的水平。为此我们还有很长的一段路要走色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。而且也简化了样品的前处理过程,使样品分析更简便。 色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。 液质联用与气质联用的区别: 气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。 现代有机和生物质谱进展 在20世纪80及90年代,质谱法经历了两次飞跃。在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da的非挥发性化合物,但重复性差。20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。 随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质谱法(MALDI-MS)应运而生。 目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。前者常采用四极杆或离子阱质量分析器,统称API-MS。后者常用飞行时间作为

液质联用仪使用经验

液质联用仪使用经验(教训)交流总结 点击次数:1528 发布日期:2008-3-26 来源:本站仅供参考,谢绝转载,否则责任自负 一、做液质,加离子诱导剂得是挥发性的,生物碱用甲酸或乙酸 二、我认为要维护好仪器 首先流速不能过大,液质是不能承载过大流速的; 其次电压不要加到极限,尤其是正负离子转换时要适当调整; 最后是做完样一定要及时冲洗和吹扫管路。 三、LC和MS的条件优化是成功的关键。 四、 1、由于液质的流速较小(ESI一般为0.2ml/min),所以配置样品的溶剂强度不能太大,尽量小于起始比例,否则,会出现保留时间偏移等问题。 2、如果在液相上摸好的条件,注意尤其是流动相的组成要转化成合适LCMS分析的。 3、磷酸盐及其他不挥发缓冲盐在离子源会沉淀并堵塞毛细管等,要更换成可挥发的有机缓冲盐。 4、缓冲盐会导致离子抑制,因此要控制缓冲液的强度,<10mM。 5、去污剂、表面活性剂会有离子抑制现象发生,表面活性剂产生的加合物和离子簇会干扰质谱数据,因此作液质联用仪时,不要使用洗涤剂清洗玻璃器皿等容器,如果一定要用,建议超声清洗多次。

五、 要做好质谱的维护工作,就得从小处着手。比如分析的样品必须要干净,这样既可以保护色谱柱,也可以防止污染质谱;分析了大量的生物样品后,冲洗系统时,先用高比例的水相冲洗,把源也给洗一下,然后再换用高比例的有机相,这时要把柱后管路从源上拿下来,避免柱中的杂质给冲进质谱……细节很多很多,大家在日常应用中尽量注意和避免就可以了。 六、 做液质三年了,岛津、waters、ABI和finigan的都摸过,经验谈不上,说点自己的注意点吧。 1.前处理:样品一定要干净,不管是为了质谱还是为了保护柱子,生物样品提取的好些,如果直接沉淀,一定要注意,尽量高转速12000rpm以上,低温离心,最好离2次(保险一点),转移样品也要仔细,从中间慢慢吸,有时会有漂浮物,岛津的质谱好像做直接沉淀的源比较容易堵,Waters的好些。 2.样品浓度:质谱是灵敏度很高的仪器,进样浓度一定不能太高,1-2ug/ml已经可以啦,太高的浓度对仪器来说比较容易造成残留,而且定量也会不准啦。 3.流动相:流动相中尽量加易挥发的盐,尽量不要加表面活性剂之类的,容易离子抑制,如果遇到离子抑制,可以试试把你的样品峰往后推推或者改变提取方法,也可以试试用APCI源。如果你的液相是低压混合的,尽量不要跑梯度,那样很费时间,如果没办法,一针又要走很长时间的话,可以考虑切换,只测样品出峰前后的那段时间,这样可以保护质谱。但是如果你用粗柱子,较高流速的也可以考虑跑梯度,如API4000,但要尽量减小死体积。 4.冲洗:冲柱子自然不用说了,低有机相和高有机相分别冲一定时间(各至少半个小时以上吧),柱子保存在高有机相中。做完试验,冲源也是很重要的,也是低有机相和高有机相冲,但是时间可以不用那么长,你可以先冲源再冲柱子,或者两者分开冲,个人觉得分开冲好些,这样柱子上的脏东西就不会进到源里面去啦。

液质联用操作规程完整

1.适用范围 本设备配备ACQUITY UPLC液相色谱仪、TQS MS/MS 质谱仪,适用于食品、药品中各种有机物的定性、定量分析,是一种具有高灵敏度的检测仪器,仪器由主机、计算机和数据处理软件等组成。 2. 职责 2.1操作人员按照本规程操作仪器,认真填写实验使用记录。 2.2保管人员负责对仪器进行定期维护和保养。 2.3科室负责人负责监督检查规程的执行。 3.操作程序 日常操作步骤: 准备UPLC —→设置样品表—→运行样品—→定量—→打印报告。 注:如果一个星期内不运行样品请不要关质谱仪,使其保持真空。 建立新方法和project的操作步骤: 准备UPLC —→建立新的project —→用标准品调谐—→编辑质谱方法—→编辑UPLC方法—→设置样品表—→运行样品—→定量—→打印报告。 3.1开机: 3.1.1 彻底开机顺序(仪器已关闭) 确定MS及其它仪器电源电缆已连接,开氮气发生器、开氩气,小表<0.1mpa。打开计算机电源> 等待windows正常启动>电脑界面右下角网络图标红叉。 打开UPLC自动进样器电源,等到电脑界面右下角网络图标出现感叹号!。 打开UPLC泵电源,等约30s或者是有响声。 打开质谱电源,等待5min,离子源透视镜里面亮。 打开Masslynx软件,masslynx主界面-----左侧instrument----Mass tune---界面菜单栏vacuum---pump 同样界面左侧偏上diagnostics---vacuum---analyser MS1 turbo speed[%]要在5分钟内升到80。至少抽真空4个小时> 查看真空状态主界面mass console---界面左侧xevo tq ms detector加号展开---ms display > 碰撞室真空度>达

液质联用发展史+液质联用仪原理+应用

液相色谱-质谱联用 一、液质发展史(写不写都行) 1.质谱发展简史 质谱作为检测器,具有灵敏度高、专属性好的特点,与其他色谱技术相连接,已广泛的应用于各个研究领域。欲学习液质,我们先了解一下质谱发展的过程—— 19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备; 1912年,英国物理学家Joseph John Thomson研制出世界上第一台质谱仪(1906年诺贝尔物理学奖获得者、英国剑桥大学教授); 1917年,电喷雾物理现象被发现(并非为了质谱); 1918年,Dempster 180°磁扇面方向聚焦质谱仪; 1935年,马陶赫(Marttauch)和赫佐格(R. Herzog)根据他们的双聚焦理论,研制出双聚焦质谱仪; 1940年,尼尔(Nier)设计出单聚焦磁质谱仪,又于1960年设计并制成了一台小型的双聚焦质谱仪; 1942年,第一台商品质谱仪; 1953年,由鲍尔(Paul)和斯坦威德尔(Steinwedel)提出四极滤质器;同年,由威雷(Wiley)和麦克劳伦斯(Mclarens)设计出飞行时间质谱仪原型; 1954年,英格拉姆(Inghram)和海登(Hayden)报道的Tandem系统,即串联的质谱系统(MS /MS); 1955年,Wiley & Mclarens 飞行时间质谱仪; 1960's,开发GC/MS; 1974年,回旋共振质谱仪; 1979年,传送带式LC/MS接口成为商业产品;

1982年,离子束LC/MS接口出现; 1984年,第一台电喷雾质谱仪宣告诞生; 1988年,电喷雾质谱仪首次应用于蛋白质分析; 1989年,Hens G. Dohmelt和W. Paul,因离子阱(Ion trap)的应用获诺贝尔物理奖;2002年,J. B. Penn 和田中耕一因电喷雾电离(electron spray ionization, ESI)质谱和基质辅助激光解吸电离(matrix-assisted laser desorption ionization, MALDI)质谱获诺贝尔化学奖。 2.“接口”技术发展简史(写不写都行)

ZQ使用waters液质联用仪的使用

1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计 算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。 (具体根据液相色谱不同型号来执行,下面以2695为例)。 a. 打开脱气机(DegasserOn)。 b. 湿灌注(WetPrime)。 c. Purgeinjector 。 d. 平衡色谱柱。 3. 双击桌面上的MassLynx 4.0图标进入质谱软件。 I柱如:.円』 注:如果进入Masslynx软件时出现提示: Theembeddedsystemis no tresp ondin g,Thesystemwillr unin sta ndal on emode ”,贝U说

明质谱内置的CPU(EPC与电脑主机的通讯联系还未建立,此时无法控制质谱,请稍等后

再进入软件,如果打开软件仅为处理数据则没有关系(质谱主机电源未开时进入软件也会有同样提示) 4. 检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行 超过3000小时,请及时更换机械泵油。 5. 点击质谱调谐图标(MSTune 进入质谱调谐窗口 6. 选择菜单“ Options - Pump,这时机械泵将开始工作,同时分子涡轮泵会开始抽真 空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“ Vacuun”将变 绿。 7. 点击真空状态图标检查真空规的状态, 以确认真空达到要求。 8.确认氮气气源输出已经打开,气体输出压力为90psi 9.设置源温度(SourceTemp到目标温度 质谱调谐窗口各项参数设定 电喷雾电离源(ESI)

液质联用实验报告

液质联用技术在药物分析中的应用 一、实验目的 1、了解液质联用的原理及作用; 2、了解该液质联用仪器适用的样品种类及注意事项; 二、实验原理 液质联用(HPLC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。 电喷雾四级杆飞行时间质谱(ESI-Q-TOF-MS):质谱分析是一种测量离子荷质比的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定去质量。电喷雾电离(ESI)是质谱方法中的一种“软电离”方式,它的原理是:在强电场的作用,引发正、负离子的分离,从而生成带高电荷的液滴。在加热气体(干燥气体)的作用下,液滴中溶剂被汽化,随着液滴体积逐渐缩小,液滴的电荷密度超过表面张力极限时,引起液滴自发的分裂,即“库仑爆炸”。分裂的带电液滴随着溶剂的进一步变小,最终导致离子从带电液滴中蒸发出来,产生单电荷或多电荷离子,进入质谱仪。由于ESI的电离方式可以产生多电荷离子,大大拓宽了测定物质的分子量的范围。四级杆(Quadrupole)主要起选择离子的作用,其后的碰撞池可以将通过四级杆选择的母离子碎裂成子离子,从而获得更多的结构信息。气相离子能够被适当的电场或磁场在空间或时间上按照荷质比的大小进行分离有赖于质量分析器。与其他质量分析器相比,飞行时间质量分析器(TOF)具有结构简单、灵敏度高和质量范围宽等优点(因为大分子离子的速度慢,更易于测量),分辨率也可达到万分之一。 三、实验仪器 Aglient 6510 Quadrupole Time-of-Flight LC/MS 四、数据记录及结果处理 样品的LC-MS图如下图1所示,结合表1前可知,该物质为软骨藻酸。 表1 LC-MS数据

ZQ使用--waters液质联用仪的使用

开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机 主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具 体根据液相色谱不同型号来执行,下面以2695为例)。 a. 打开脱气机 (Degasser On)。 b. 湿灌注(Wet Prime)。 c. Purge Injector。 d. 平衡色谱柱。 3. 双击桌面上的 MassLynx 4.0图标进入质谱软件。 注:如果进入Masslynx软件时出现提示:“The embedded system is not responding, The system will run in standalone mode”,则说明质谱内置的CPU(EPC)与电脑主机的通讯联系还未建立,此时无法控制质谱,请稍等后再进入软件,如果打开软件仅为处理数据则没有关系(质谱主机电源未开时进入软件也会有同样提示)。

4. 检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过 3000小时,请及时更换机械泵油。 5. 点击质谱调谐图标(MS Tune)进入质谱调谐窗口。 6. 选择菜单“Options – Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真 空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7. 点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9. 设置源温度(Source Temp)到目标温度。

液质联用仪的应用

(三)质谱技术最新进展及其在中药领域的应用 液质联用分析方法的建立:检查已有的色谱条件是否可以离子化、考虑用何种源、决定用正离子还是负离子、改用挥发性流动相或分离模式、优化离子源参数提高灵敏度、质谱不能检测没有离子化的物质。 质谱提供的信息:(1)提供分子量,确定分子式:采用同位素丰度法或高分辨质谱求算分子式。(2)提供化合物的结构信息:根据分子离子峰及裂解碎片推断官能团、辨认化合物类型和推导骨架结构等。(3)复杂混合物的定性定量分析:GC-MS法分析挥发油的化学组成,化合物的裂解在一定的条件下遵循一定的规律,故比较试样与标准品的质谱图,可为鉴定是否为同一化合物提供依据。随着新的离子源不断出现,LC-MS法在结构研究方面发挥的作用越来越大,而且更加方便快捷。 质量分析器:静态仪器有单聚焦磁质谱、双聚焦磁质谱;动态仪器有四极杆质谱、离子阱质谱、飞行时间质谱等。(1)四极杆质谱:体积小,质量轻,价格低,最为广泛使用;扫描速度快,适合与色谱连用,定量方面有优势。但只能做到二级质谱(三重四极杆串联质谱)。(2)离子阱质量分析器:当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排除并被记录而获得质谱图。离子阱质谱可以很方便地进行多级质谱定性分析,性能好,在剖析物质结构、药物代谢物研究等方面具有最强大的功能。(3)飞行时间质量分析器:离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用

时间越短,根据这一原理把不同质量的离子按m/z值大小进行分离。可检测的分子量范围大,扫描速度快,仪器结构简单。(4)高分辨质谱:生物质谱要求质量分析器的测定范围高于普通的有机质谱,多用TOF。离子源常用ESI源和MALDI源(基质辅助激光解吸电离)。(5)静电轨道阱质谱:属于高分辨质谱。此外,分辨率即分开相邻离子的能力,分辨率越高,越能区分小的质量差。 扫描功能:(1)Full scan:全扫描,指质谱采集时扫描一段范围,可以自己设定一个范围,如100~1000 amu。可测定未知物的分子量。也可通过二级MS/MS或多级质谱MSn获得所有碎片离子。(2)SIM:选择离子监测,单离子监测,即只扫描一个离子。对于已知化合物,为了提高某个离子的灵敏度,并排除其它离子干扰,可以只扫描一个离子。(3)SRM:多级选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也选一个离子。两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度更高,尤其适用于基质复杂背景高的样品。(4)MRM:多反应监测,即多个化合物同时测定时,相当于多个SRM。其中定性鉴别可选Full Scan,可获得全貌及更多离子,定量测定可用SIM或SRM/MRM,可提高已知信号的强度。背景基质越复杂,SRM/MRM越优选。 液相色谱-质谱联用技术特点:(1)快速:不必过度依赖色谱分离效果,尤其适用于复杂基质样品的分析。(2)灵敏:ng,pg级,特别适合于微量、痕量毒性成分的检测分析。(3)简便:不需复杂的

液质联用仪

液质联用仪工作原理 高灵敏度和选择性,通常用于复杂基质中的化合物分析和鉴定 质谱仪可以进行有效的定性分析,但对混合物的检测毫无办法,而色谱法对混合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,将这两者有效结合起来就能提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气-质联用仪,而将液相色谱仪和质谱仪联合起来叫做液-质联用仪。气质联用是色谱联用技术中的首选方法,而液质联用则适用于极性、热不稳定、难气化和大分子的分离分析。

国标GB/T 20769-2008 中就是应用液相色谱- 串联质谱法测定水果和蔬菜中的农药残留量。 定性和定量:进行样品测定时,如色谱峰的保留时间与标样一致,并在扣除背景后的样品质谱图中,所选择的离子均出现,且丰度比标样的离子丰度比相一致,则可判断样品中存在这种农药。同时采用保留时间、选择离子的相对丰度比这两个定性指标可以避免假阳性的出现。因为当样品基质中含有较多干扰物时,产生的杂质峰会影响定性。因此只有当两者都满足要求时,才能认定该组分为所测化合物

质谱仪选用的离子源不同,采用的是电喷雾离子源(ESI)[3]。电喷雾电离法是利用高电场使质谱进样端的毛细管柱流出的液滴带电,在氮气流的作用下,液滴溶剂蒸发,表面积缩小,表面电荷密度不断增加,直至产生的库伦斥力与液滴表面张力达到雷利极限,液滴爆裂为带电的液滴,这一过程不断重复使最终的液滴非常细小呈喷雾状,这时液滴表面的电场非常强大,使分析物离子化并以带单电荷或多电荷的离子形式进入质量分析器。 另外该方法还采用了串联质谱法,原理是将被分析物电离产生碎片离子,得到一级质谱;从这个(复杂的)一级质谱中选择一个或多个特定的碎片离子作为母离子;再在适合的激发裂解电压下将母离子进行二次电离裂解,产生子离子; 对产生的子离子碎片进行检测得到二级质谱,并根据这些特征子离子对化合物进行定性定量分析。对所分析农药选择母离子,尽量选择质量数大、相对丰度高的离子作为母离子。一般是以全扫描质谱法中离子碎片丰度最大的碎片离子(基峰)作为母离子。

液质联用技术在药物分析中的应用研究进展.doc

目录 摘要 (1) 前言 (2) 1 LC-MS分析原理 (2) 2 LC-MS仪的组成及其分析条件的选择 (3) 2.1 LC-MS联用仪的组成 (3) 2.2 LC-MS分析条件的选择和优化 (3) 2.2.1接口的选择 (3) 2.2.2正、负离子模式的选择 (3) 2.2.3流动相的选择 (3) 2.2.4流量和色谱柱的选择 (3) 2.2.5辅助气体流量和温度的选择 (4) 3 LC-MS在药物分析中的应用 (4) 3.1 LC-MS在药物筛选方面的应用 (4) 3.2 LC-MS在药物成分鉴定研究 (4) 3.2.1中药成分分析 (5) 3.2.2 抗生素药物成分分析 (5) 3.2.3中成药、保健品、食品中非法添加化学药物成分的鉴定分析 (5) 3.3 LC-MS在药物代谢分析的应用 (6) 3.4 LC-MS在残留药物分析的应用 (7) 4 展望 (7) 参考文献 (9)

液质联用技术在药物分析中的应用研究进展 摘要:液相色谱-质谱联用技术以其高分离能力,高灵敏度和专属性强的优势,在药物成分的鉴定分析、药物代谢研究、中成药和保健品中非法添加化学药物成分的鉴定分析以及药物残留分析等方面得到广泛的应用。本文简要综述了近年来液质联用技术在药物分析中的应用,阐述了LC-MS技术在药物筛选,药物成分鉴定研究,药物代谢分析以及残留药物分析方面的研究进展,并对其发展趋势进行了展望。 关键词:液质联用;药物分析;应用;进展 Recent Development in the Application of LC-MS in Pharmaceutical Analysis Chuanyang Su Abstract:Liquid chromatography-mass spectrometry is regarded as an important technology for many advantages such as high separating efficiency, good sensitivity and strong specifity. So it is widely used in analysis of drugs and metabolites, chemical medicine mixed illegally in Chinese medicine and drug residue. This paper briefly reviewed its application in pharmaceutical analysis, the application and development as drug screening, analysis of drugs and metabolites, drug residues were mainly introduced. Finally, the development trend of LC-MS is proposed. Key words: LC-MS;pharmaceutical analysis ; application; development 前言

气相色谱-质谱联用-原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

液质联用技术中基质效应的评价方法

液质联用技术中基质效应的评价方法 1. 前言 在人体生物等效性或临床药代动力学试验中,液质联用(LC/MS,LC/MSn)技术被广泛用于生物样品中药物及其代谢物浓度的检测。液质联用技术具有高灵敏度和高特异性的显著特点,研究者往往会认为采用该技术可以简化或者省去样品的前处理和色谱分离步骤。但由于质谱检测是基于化合物离子化并通过特定的核质比来检测和定量,因此任何干扰待测物离子化的物质都可能影响检测方法的灵敏度和选择性,即引入了基质效应(Matrix Effect,ME)的概念。基质效应是指在样品测试过程中,由待测物以外的其他物质的存在,直接或间接影响待测物响应的现象[1]。由于质谱检测的高选择性,基质效应的影响在色谱图上往往观察不到,即空白基质色谱图表现为一条直线,但这些共流出组分会改变待测物的离子化效率,引起对待测物检测信号的抑制或提高。这些基质成分包含了生物样品中的内源性成分和样品前处理过程中引入的外源性成分。内源性组分包括无机盐或者胆汁中的有机盐、各种有机化合物(糖类、胺类、尿素、类脂类、肽类)和分析目标物的同类物及其代谢物。外源性组分尽管在生物样品中不存在,但同样会产生基质效应,包括处理样品的塑料管中残留的聚合物、离子对试剂、有机酸、缓冲液、SPE柱材料、抗凝管中的抗凝剂如EDTA或肝素锂等[2]。FDA在生物分析方法建立的指导原则中明确提出对于基于LC/MSn的方法,在整个分析过程中需通过适当的方法减少基质效应的影响,从而保证方法的灵敏度和选择性[1];EMEA在《生物分析方法的验证指导原则(草案)》中更加细化了基质效应的评判标准[3]。 2. 评价方法 目前评价基质效应的方法主要有两种:(1)柱后灌注法(Post-column infusion method)和(2)提取后加入法(Post-extraction spiking method)[4,5]。其中柱后灌注法能直观的显示基质效应对被测物色谱保留时间的影响范围和影响程度,适合在色谱方法筛选过程中评估基质效应的影响情况,为色谱条件的优化提供信息。而提取后加入法不仅能量化绝对基质效应的程度,也能提供相对基质效应的数据,因此广泛运用于方法学验证过程。 2.1 柱后灌注法(Post-column infusion method)[4] 柱后灌注法属于动态分析基质效应的方法,将针泵及液相色谱系统通过T型进样阀与质谱仪相连。将空白样品按待测样品的处理方法提取后,利用待测样品的洗脱条件通过HPLC进行色谱洗脱,同时用针泵将特定浓度的被测物以恒定速度注入,两种溶液一并通过T型进样阀进入质谱仪,进行待测物离子信号强度检测。被测物信号响应的变化将直接反应生物基质对于被测物的影响,同时信号强度随时间的变化关系也有助于色谱条件的优化。2.2 提取后加入法(Post-extraction spiking method) 提取后加入法在评定LC-MSn基质效应中使用的最多,而且,此法还可用于评价绝对基质效应(absolute ME,基质效应影响分析的程度)和相对基质效应(relative ME,样品间基质效应大小的差异)。 2.2.1 绝对基质效应的评价[5] 利用下述方法制备两组待测样品。 Set 1:将被测物溶于非生物基质的空白溶液,如:配制成甲醇、乙腈等标准溶液。 Set 2:提取空白生物基质,浓缩复溶形成溶液,将被测物加入此溶液中。 将上述Set1和Set2样品引入LC/MSn系统进行分析,获得待测物和内标的信号强度,其中待测物或内标在Set2和Set1中信号强度的比值(Set2/Set1)为绝对基质效应,可以用基质效应因子(matrix factor,MF)来表示,待测物与内标MF的比值称为内标归一化基质效应因子(IS-normalized MF)[3]。绝对基质效应结果主要影响分析方法的准确度。 2.2.2 相对基质效应的评价[3]

相关文档
最新文档