建筑工程施工-转子动力学基本理论

结构力学课程设计

一、 课程设计题目 一)矩阵方程 1. 利用全选主元的高斯约当(Gauss-Joadan )消去法求解如下方程组,并给出详细的程序注解和说明: ??? ?????? ? ????????=?????????????????????? ???????? ?? ???1536353424543214019753910862781071567554321x x x x x 2. 利用追赶法求解如下方程组,并给出详细的程序注解和说明。 ?? ? ?? ?? ?? ? ????????-=???????????????????????????????????862031234567891011121354321x x x x x 3. 利用全选主元的高斯约当(Gauss-Joadan )消去法如下求解大型稀疏矩阵的大型方程 组,并给出详细注解及说明。 ???? ?? ??????? ?????????????----=????????????????????????????? ??? ?????????????????????4292728642-0 1 -0 1 00001-0402003-0001050006000102-00034-000200000 6-00060020001-0087654321x x x x x x x x 二) 结构力学 1. 试求解图示平面桁架各杆之轴力图,已知各材料性能及截面面积相同, 27.90,210cm A Gpa E ==。(注:在有限元分析中,桁架杆的模拟只能选择Ansys 的Link 单元)。 2. 试求解图示平面刚架内力图(轴力图、剪力图和弯矩图),已知各材料性能及截面面

结构动力学 论文

《结构动力学》 课程论文

结构动力学在道路桥梁方面的应用 摘要:随着大跨径桥梁结构在工程中的应用日趋广泛,施工控制问题也越来越受重视。结构动力学在各方面都有极为重要的作用,其特性也被广泛应用于桥梁结构技术状态评估中。结构动力学在道路桥梁方面应用十分广泛,比如有限元模型、模态挠度法、桥梁结构(强度、稳定性等)、状态评估、结构模态、结构自由衰减响应及其在结构阻尼识别中的应用、结构无阻尼固有频率与有阻尼固有频率的关系及其应用等,尤其是结合桥梁的检测、桥梁荷载试验与状态评价。本文就其部分内容进行介绍。 关键词:结构动力学道路桥梁应用 如今,科学技术越发先进,结构动力特性越来越广泛地应用于桥梁结构抗震设计、桥梁结构故障诊断和桥梁结构健康状态监测等工程技术领域,由此应用而涉及到的一些动力学基本概念理解的问题应运而生。对于此类知识,我了解的甚少,上课期间,老师虽有讲过这相关内容,但无奈我学到的只是皮毛。我记忆最深的是老师给我们放的相关视频,有汶川地震的,有桥梁施工过程的,还有很多因强度或是稳定性收到破坏而倒塌的桥梁照片。老师还告诉了我们修建建筑物的原则:需做到小震不坏,中震可修,大震不倒。还有强剪弱弯,强柱弱梁,强结点强锚固。桥梁在静止不受外力扰动时是不会破坏的,大多时候在静止的荷载作用下也不会发生破坏,但当桥梁受到动力荷载时就很容易发生破坏了,所以我们在修建桥梁是必须事先计算好最佳强度等等需要考虑的量。下面简单介绍一下结构固有频率及其应用和弹性模量动态测试。 1.结构固有频率及其应用 随着对结构动力特性的深入研究,其被越来越广泛地应用于结构有限元模型修正、结构损伤识别、结构健康状态监测等研究领域.一般情况下,由于结构阻尼较小,因此在结构动力特性的计算分析中,往往不计及结构阻尼以得到结构的振型和无阻尼的固有频率fnj(j=1,2,∧∧);而在结构的动态特性的试验中,识别的却是结构有阻尼的固有频率fdj.理论上有[1,2]fdj

转子动力学知识

2转子动力学主要研究那些问题 答:转子动力学是研究所有不旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。这门学科研究的主要范围包括:转子系统的动力学建模与分析计算方法;转子系统的临界转速、振型不平衡响应;支承转子的各类轴承的动力学特性;转子系统的稳定性分析;转子平衡技术;转子系统的故障机理、动态特性、监测方法和诊断技术;密封动力学;转子系统的非线性振动、分叉与混沌;转子系统的电磁激励与机电耦联振动;转子系统动态响应测试与分析技术;转子系统振动与稳定性控制技术;转子系统的线性与非线性设计技术与方法。 3转子动力学发展过程中的主要转折是什么 答:第一篇有记载的有关转子动力学的文章是1869年Rankine发表的题为“论旋转轴的离心力”一文,这篇文章得出的“转轴只能在一阶临界转速以下稳定运转”的结论使转子的转速一直限制在一阶临界以下。最简单的转子模型是由一根两端刚支的无质量的轴和在其中部的圆盘组成的,这一今天仍在使用的被称作Jeffcott转子的模型最早是由Foppl在1895年提出的,之所以被称作“Jeffcott”转子是由于Jeffcott教授在1919年首先解释了这一模型的转子动力学特性。他指出在超临界运行时,转子会产生自动定心现象,因而可以稳定工作。这一结论使得旋转机械的功率和使用范围大大提高了,许多工作转速超过临界的涡轮机、压缩机和泵等对工业革命起了很大的作用。但是随之而来的一系列事故使人们发现转子在超临界运行达到某一转速时会出现强烈的自激振动并造成失稳。这种不稳定现象首先被Newkirk发现是油膜轴承造成的,仍而确定了稳定性在转子动力学分析中的重要地位。有关油膜轴承稳定性的两篇重要的总结是由Newkirk和Lund写出的,他们两人也是转子动力学研究的里程碑人物。 4石化企业主要有哪些旋转机械,其基本工作原理是什么 汽轮机:将蒸汽的热能转换成机械能的涡轮式机械。工作原理:在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。作用与功能:主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活的供热需要。 燃气轮机:是一种以空气及燃气为介质,靠连续燃烧做功的旋转式热力发动机。主要结构由三部分:压气机,燃烧室,透平(动力涡轮)。作用与功能:以

结构力学课程设计报告

一. 课程设计的目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要 功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2. 通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规 律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打 下坚实的基础 二. 课程设计的内容 (1).对图示两类桁架进行分析 在相同荷载作用下,比较各类桁架的受力特点; 讨论各种杆件(上弦杆,下弦杆,竖杆,斜杆)内力随 随高跨比变化的规律; 若增加杆件使其成为超静定桁架,内力有何变化。 (2).两种结构在静力等效荷载作用下,内力有哪些不同? 平行弦桁架 1/2 1 1 1 1 1 1/2 三角桁1/2 1 1 1 1 1 1/2

(3)、用求解器自动求解功能求a=2和a=1.0时的各杆内力。比较两种情况内力分布,试用试算法调整a 的大小,确定使弯矩变号的临界点a 0,当a=a 0时结构是否处于无弯矩状态? (4) 、图示为一个两跨连续梁,两跨有关参数相同(l =6m ,E =1.5*106kPa ,截面0.5*0.6m 2,线膨胀系数1.0*10-5)。第一跨底部温度升高60oC ,分析变形和内力图的特点。 (4) 、计算下支撑式五角形组合屋架的内力,并分析随跨高 比变化内力变化规律。当高度确定后内力随f 1,f 2的比例不同的变化规律(四个以上算例)。 1/4 11×(1/2) 1/4 1/2 1 1 1 1 1 1/2 a a a a 3 6m 6m

一. 课程设计的数据 1. 第(1)题数据 1) 平行弦桁架 a) 高跨比1:4(每小格比例2:3) 输出图形: 输出内力值: 内力计算 杆端内力值 ( 乘子 = 1) ----------------------------------------------------------------------------------------------- 3m 3m 3m 3m f 2 f 1 f =1.2m q =1kN/m

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构 抗震中的应用研究 摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。 关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载 一、综述 随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。 传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动 当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为: 式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。 体系的初始条件为: 该方程的解为: 解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为: 其中,为自振频率的振幅: 解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中:为激振频率振幅: 比较两部分振动的振幅得到: 由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1 θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1 θ>时,自振部分在结构反应中将占相当重要的部分。 三、单自由度有阻尼受迫振动 在简谐荷载作用下,单自由度体系的运动方程和初始条件为: 该方程解为:

转子动力学知识

转子动力学知识 2转子动力学主要研究那些问题? 答:转子动力学是研究所有不旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。这门学科研究的主要范围包括:转子系统的动力学建模与分析计算方法;转子系统的临界转速、振型不平衡响应;支承转子的各类轴承的动力学特性;转子系统的稳定性分析;转子平衡技术;转子系统的故障机理、动态特性、监测方法和诊断技术;密封动力学;转子系统的非线性振动、分叉与混沌;转子系统的电磁激励与机电耦联振动;转子系统动态响应测试与分析技术;转子系统振动与稳定性控制技术;转子系统的线性与非线性设计技术与方法。 3转子动力学发展过程中的主要转折是什么? 答:第一篇有记载的有关转子动力学的文章是1869年Rankine发表的题为“论旋转轴的离心力”一文,这篇文章得出的“转轴只能在一阶临界转速以下稳定运转”的结论使转子的转速一直限制在一阶临界以下。最简单的转子模型是由一根两端刚支的无质量的轴和在其中部的圆盘组成的,这一今天仍在使用的被称作Jeffcott转子的模型最早是由Foppl在1895年提出的,之所以被称作“Jeffcott”转子是由于Jeffcott教授在1919年首先解释了这一模型的转子动力学特性。他指出在超临界运行时,转子会产生自动定心现象,因而可以稳定工作。这一结论使得旋转机械的功率和使用范围大大提高了,许多工作转速超过临界的涡轮机、压缩机和泵等对工业革命起了很大的作用。但是随之而来的一系列事故使人们发现转子在超临界运行达到某一转速时会出现强烈的自激振动并造成失稳。这种不稳定现象首先被Newkirk发现是油膜轴承造成的,仍而确定了稳定性在转子动力学分析中的重要地位。有关油膜轴承稳定性的两篇重要的总结是由Newkirk和Lund写出的,他们两人也是转子动力学研究的里程碑人物。 4石化企业主要有哪些旋转机械,其基本工作原理是什么? 汽轮机:将蒸汽的热能转换成机械能的涡轮式机械。工作原理:在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。作用与功能:主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活的供热需要。

结构力学钢结构课程设计

华北水利水电学院 课程设计 任务书及计划书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

课程设计任务书 教研室

课程设计计划书 注:指导老师在课程设计期间每天指导时间不少于2小时。 教学院长、教学主任:_________________ 教研室主任:__________________填表人:____________________填表时间:2012 年12月20日

结构力学与钢结构课程设计 钢吊车梁设计分组及设计参数 2、吊车采用大连重工起重集团有限公司2003年DSQD系列产品。

华北水利水电学院 课程设计 指导书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

结构力学与钢结构课程设计指导书 钢吊车梁设计概述 一、吊车梁所承受的载荷 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载和沿吊车梁纵向的水平荷载。如图1所示。 图1 吊车梁承受荷载 纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。 吊车沿轨道运行、起吊、卸载、以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应诚意动力系数。对悬挂吊车(包裹电动葫芦)及工作级别A1--A5的软钩吊车,动力系数可取1.05:对工作级别A6--A8的软钩吊车、硬钩吊车和其他种吊车,动力系数可取1.1。 吊车的横向水平荷载由小车横行引起,其标准值赢取横行小车重量与额定起重之和的下列百分数,并乘以重力加速度: (1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16--50吨时,应取10%;当额定起重量不小于75吨时,应取8%。

结构力学论文

结构力学论文

————————————————————————————————作者: ————————————————————————————————日期:

成绩 土木工程与建筑学院 结构力学论文 (2016—2017 学年度第一学期) 课程名称:结构力学 论文题目: 浅谈位移法 任课教师: 姓名: 班级: 学号: 2017 年 1 月 1

日 浅谈位移法 摘要位移法是超静定结构分析的基本方法之一,也称变位法或刚度法,通常以结点位移作为基本未知数。位移法有两种计算方式,一种是应用基本结构列出典型方程进行计算,另一种是直接应用转角位移方程建立原结构上某结点或截面的静力平衡方程进行计算。 关键词基本原理典型方程超静定结构 一、简介 位移法以广义位移(线位移和角位移)为未知量,求解固体力学问题的一种方法。位移法的思想是法国的C.-L.-M.-H.纳维于1826年提出的。 位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。 二、计算种类 1.典型方程法 位移法可按两种思路求解结点位移和杆端弯矩:典型方程法和平衡方程法。下面给出典型方程法的解题思路和解题步骤。 1.1位移法典型方程的建立: 欲用位移法求解图a所示结构,先选图b为基本体系。然后,使基本体系发生与原结构相同的结点位移,受相同的荷载,又因原结构中无附加约束,故基本体系的附加约束中的约束反力(矩)必须为零,即:R1=0,R2=0。 而Ri是基本体系在结点位移Z1,Z2和荷载共同作用下产生的第i个附加约束中的反力(矩),按叠加原理Ri也等于各个因素分别作用时(如图c,d,e所示)产生的第i个附加约束中的反力(矩)之和。于是得到位移法典型方程:

心理动力学基本概念

心理动力学基本概念 psychodynamic perspective 心理动力学的历史根源源于十九世纪末弗洛伊德的精神分析理论。 弗洛伊德认为人类行为是由无意识和本能所决定的,这样的因素贯穿于心理社会发展的不同阶段。人类本能包括生的本能和死的本能。所有这些构成了人类行为的决定因素。在这里,人的精神健康是可以被了解的,人的行为经常会被无意识的因素控制,童年的成长经验对成年人的性格有深远的影响。 本我:生物成分,人格的原始系统,基于本能,由无意识所决定,遵循快乐原则。 本我遵循“快乐原则”,它完全不懂什么是价值,什么是善恶和什么是道德,只知道为了满足自己的需要不惜付出一切代价。 自我:心理成分,负责与现实世界协调,是本我和外界环境的调节者,它奉行现实原则,它既要满足本我的需要,又要制止违反社会规范、道德准则和法律的行为。 超我:遵循道德原则,象征的是理想,是一种内化。它包括两个层面: 一是良心,即界定什么是不应该做的 二是自我的理想,即规定什么事应该做的。 对社会典范的效仿,是接受文化传统、价值观念、社会理想的影响而逐渐形成的。 如果三者之间的关系出现障碍,人格就会失调。本我,自我,超我构成了人的完整的人格。人的一切心理活动都可以从他们之间的联系中得到合理的解释,自我是永久存在的,而超我和本我又几乎是永久对立的,为了协调本我和超我之间的矛盾,自我需要进行调节。若个人承受的来自本我、超我和外界压力过大而产生焦虑时,自我就会帮助启动防御机制。 精神分析的主要目标是加强自我的功能,使自我独立于超我的严格考虑,增强它处理本我所压抑或隐藏的问题。 弗洛伊德认为,人格结构不是一种静态的能量系统,而是一种动态的能量系统,它一旦形成,便处于不断的运动、变化与发展之中。人格的形成和发展的根本动力来自心理能量,心理能量来自本能,即人的欲望与冲动。本我是心理能量的储藏库。它通过反射活动和愿望满足来释放能量。在本我释放能量的过程中会遇到自我和超我的阻力,如果本能冲破阻力,自我的理性活动过程便遭受破坏,如果冲破受挫,本我的能量就转化为自我和超我活动的原动力。 弗洛伊德认为,无论是个体的成长发育,还是整个人类认识的发展,都是自我逐渐征服本我、打破本我“自恋”状态的过程。正是由于自我对心理能量的充分而有效的约束和控制,形成新的对象性发泄作用,使人们能够将满足本能之外的能量用来发展人的心理过程,使能量从本我的非理性心理过程转化为理性心理过程。超我的自我理想和良心具有奖励和奖励机制,它把能量投入到对理想的能量发泄作用上。概括地说,心理能量通过求同机制由本我进入自我、再进入超我,心理能量同样遵循能量守恒与转换定律,它在人格中的不同分布状态决定着一个人行为活动的本质。 弗洛伊德认为,人的心理包括意识、前意识和潜意识三个部分。前意识和潜意识又可合称为无意识。 意识(conscious),就是和直接感知有关的心理部分,即人在任何时候都可以觉察到的想

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

结构力学课程设计

结构力学课程设计报告 系别:() 专业:() 班级:() 姓名:() 指导教师:()

一、绪言 1、课程设计目的或意义: 1、通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2、通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础 2、结构的工程应用背景简介: 此次设计的结构是桥梁结构,在生活中桥梁在交通运输中起着重要的作用,比如架在江湖、峡谷之间的桥梁起着连接两地的纽带作用。桥梁之上可以过行人、汽车、火车。极大的缩短了两地之间的距离,方便又快捷。 3、课程设计的主要内容: 一:了解明确课程设计的目的,查找工程实际中的桥梁结构 二:参考实际结构设计自己的桥梁结构。 三:估计轴力,初步选择桥梁的钢材。 四:做出内力图。 五:校核,再择钢材。 六:总结优化。

二、结构设计与荷载简化 1、结构简介 此结构形状主要由三角形组成的的下承式组合结构 2、结构参数: 本次设计的桥梁结构跨度为四十米,高二十米。结构中杆件间主要以铰接连接。根据桥梁及承载要求,材料为Q235刚,极限压应力为300MPa,E=210GPa 选择20b号工字型刚,截面面积为46.5平方厘米 3、荷载简化与分析: 设计的结构为火车通道,主要承受火车的质量。将火车看作质量分布均匀的,所受均布荷载为50KN/m

三、结构内力和变形分析 1、结构计算简图 2、内力分析 结构轴力图 结构剪力图 1 11

结构动力学论文

浅议“动力有限元法” 摘要:有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数。该方法在工程中有着广泛的应用,比如:桥梁,建筑上部和建筑基础等。 关键词:有限元;动力;位移 Abstract: Finite element method is currently the most widely used as a discrete numerical method. Its basic idea is going to artificially continuum structure which is divided into a finite number of units. Each unit provids common to a group of deformed form, which is known as an unit displacement mode or interpolation function. This method works with a wide range of applications. Example: bridges, buildings and construction base and so on. Key words: Finite element; Force;Displacement 1 动力有限元法基本过程 有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数[1]。动力学的有限元法同静力学问题, 是把物体离散为有限个单元体, 考虑单元的惯性力和阻尼力等动力因素的特性。在运动物体单位体积上作用的体力可以用下式表达: {}{}δδδνδρt t a -=22a - } Ps { P} { (1-1) 式中 {Ps}——静力; {δ}——位移; {}δρ22 a t a ——惯性力; {}δδδνt ——阻尼力。 用有限单元法求解动力问题的位移模式: {}e δ ] [N f} {= (1-2) 式中 [N]——形函数矩阵; {}e δ——单元节点位移矩阵。

第八章 动力学基本概念题1

1 第八章 动力学基本概念题 一、填空题。在题中“____”处填上答案。 1、 反应 2O 33O 2的动力学方程式可写成-d O d c t ()3=k (O 3)[c (O 3)]2[c (O 2)]-1或 d O d c t ()2=k (O 2)[c (O 3)]2[c (O 2)]-1。则k (O 3)/ k (O 2)=??????????。 E 1 Y 2、反应 A ,Y 为所需的产物,若反应的活化能E 1 > E 2 ,则 温度有 E 2 Z 利于Y 的生成。(选填升高或降低) 3、反应A P 是二级反应。当A 的初始浓度为0.200 mol ·dm -3时,半衰期为40 s ,则该 反应的速率系(常)数=???????????。 4、质量作用定律只适用于 反应。 5、催化剂只能改变 ,而不能改变 。 6、某反应的速率常数()23 4.010/k dm mol s -=??,反应物的初始浓度为2.53/mol dm -,反应物的半衰期1/2t = 。 7、基元反应322NO NO NO +=,用反应物质浓度随时间的变化率表示反应速率,各物质速率常数之间的关系为3NO k = 。 二、选择题。在题后括号内,填上正确答案代号。 1、某放射性同位素的半衰期为5天,则经15天后所剩的同位素的物质的量是原来同位素的物质的量的:( )。 (1)1/3; (2)1/4; (3)1/8; (4)1/16。 2、对于任意给定的化学反应A +B ?→?2Y ,则在动力学研究中: ( )。 (1)表明它为二级反应; (3)表明了反应物与产物分子间的计量关系; (2)表明了它是双分子反应; (4)表明它为元反应。 3、光气 COCl 2 热分解的总反应为: COCl 2 ?→?CO+Cl 2 该反应分以下三步完成: Cl 2 2Cl 快速平衡 Cl +COCl 2 ?→?CO +Cl 3 慢 Cl 3 Cl 2 +Cl 快速平衡 总反应的速率方程为: -d c (COCl 2) /d t == kc (COCl 2) ·{c (Cl 2)}1 2 此总反应为:( )。 (1) 1.5级反应,双分子反应; (2) 1.5级反应,不存在反应分子数; (3) 1.5级反应,单分子反应; (4) 不存在反应级数与反应分子数。 4、某反应的等容反应的摩尔热力学能变?U m = 100 kJ ·mol -1,则该反应的活化能:( )。

结构力学设计

科学技术学院 课程设计报告 2012----2013学年第二学期 学生姓名: 学号: 专业班级: 时间: 17周(6.17-6.21) 理工学科部

一、课程设计目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2.通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础。 二、课程设计内容 (一)对三类桁架进行受力分析 1、平行弦桁架分析 变量定义,h=1,l=6 变量定义,c=1/6,h=c*l 结点,1,0,0 结点,2,1/6l,0 结点,3,2/6l,0 结点,4,3/6l,0 结点,5,4/6l,0 结点,6,5/6l,0 结点,7,6/6l,0 结点,8,6/6l,h 结点,9,5/6l,h 结点,10,4/6l,h 结点,11,3/6l,h 结点,12,2/6l,h 结点,13,1/6l,h 结点,14,0/6l,h 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0 单元,4,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0 单元,6,7,1,1,0,1,1,0 单元,7,8,1,1,0,1,1,0 单元,8,9,1,1,0,1,1,0 单元,9,10,1,1,0,1,1,0 单元,10,11,1,1,0,1,1,0 单元,11,12,1,1,0,1,1,0 单元,12,13,1,1,0,1,1,0单元,13,14,1,1,0,1,1,0 单元,14,1,1,1,0,1,1,0 单元,14,2,1,1,0,1,1,0 单元,2,13,1,1,0,1,1,0 单元,13,3,1,1,0,1,1,0 单元,3,12,1,1,0,1,1,0单元,12,4,1,1,0,1,1,0 单元,4,11,1,1,0,1,1,0 单元,4,10,1,1,0,1,1,0 单元,10,5,1,1,0,1,1,0 单元,5,9,1,1,0,1,1,0 单元,9,6,1,1,0,1,1,0 单元,6,8,1,1,0,1,1,0结点支承,1,3,0,0,0结点支承,7,1,0,0结点荷载,14,1,0.5,-90结点荷载,13,1,1,-90结点荷载,12,1,1,-90结点荷载,11, 1,1,-90结点荷载,10,1,1,-90结点荷载,9,1,1,-90结点荷载,8,1,0.5,-90

材料力学课程论文

问题一:许可载荷试验分析 在本学期材料力学的学习过程中,有幸继续在叶敏老师的班上学习,本学期中叶老师延续去年理论力学课通过设计试验来锻炼学生动手操作能力的教学方式,设计了“许可载荷试验”这样一个项目。 题目即用A4纸制作成如图形状 的,测试其许可载荷。并通过裁剪制 作出符合要求的纸形。 在制作过程中,为了使数据更有 规律性,同时制作起来更方便,我们 选取中间为正圆弧,并且两侧对称。 根据圣维南定理,可以推测中间 受力基本均匀,且中间最窄,应力最大,最先断。试验也得以验证。 数据分析,我认为误差20克是很难达到的。分析如下: 1.中间裁剪误差: 中间受力均匀,可假设中间的应力σ=m*g/S,S为中间的截面 面积,许可应力为固定值,S与宽度d成正比,所以所能承受 的质量m与d成正比。根据数据对应关系,d=2cm时,m至少 为4kg(实际值大概在7至8kg),根据正比关系,每毫米的 误差在200克以上,也就是说裁剪时误差超过一毫米,则误 差就会超过200克,相对于要扣除50分。而实际学生使用的 制图工具精确度为1毫米,所以可见,误差难以控制。

2.平行度误差 根据线性分析,所测质量为1Kg 时,纸条中间宽度在3毫米左右 (根据纸质不同),而两次受力 区域宽度为6cm,是中线宽度的 20倍。 及受力不是竖直方向,对于三毫 米的宽度,是非常容易出现撕裂 的现象,两侧不是同时断,即应力不均,使m偏小。纸质为 纤维,更容易出现内部结构变动,从而不满足材料力学连续 性、各项同性等的假设。 综上,容易出现误差的地方也是试验中必须控制的因素。为保证试验进行正常,需使两侧对称,尽量裁剪精细,同时两侧受力务必平行,否则影响会非常大。

土力学桩基础课程设计

桩基础课程设计题目:某机械加工车间桩基设计指导教师: 班级: 姓名: 学号: 建筑工程学院 2010年7月21日

某机械加工车间桩基设计 一、设计资料 1、某机械粗加工车间上部结构(柱子300×400mm2)传至基础顶面的最大荷载为:轴力F k=4500KN,弯矩M k=200KN.m,剪力H k=35KN。 2、工程地质勘察报告引致课程指导书 3、土层名称及厚度如下图所示,地下水位为-0.50m

附表: 土的物理力学性质指标表 二、设计过程 1、确定桩形、截面 根据结构类型和层数,荷载情况、地质条件和施工能力等,选择预制桩,其截面尺寸为400?400mm2。 2、选择桩长 暂取桩顶伸入承台的长度为50mm,承台埋深1.5m,承台高度1.0m,钢筋保护层厚度70mm 则承台有效高度为:h0=1.0-0.070=0.93m 桩中间段长:h1=15-1.50 =13.5m 桩端进入持力层厚度:4.875d=4.875?400=1950mm 桩长为:h=0.05+13.5+0.5+1.95=16.00m

3、初步设定承台的地面标高,承台底面面积,选择桩和承台的混凝土强度等级 初定承台标高为:-1.5m,假定承台底面面积为8m2 为便于施工,桩和承台的混凝土强度等级均取C30

4、确定单桩承载力 KN l q u A q R i sis p p ps .27402.45)3704.919.35.012.5 2.6019.21.00.4(2040.414502a =?+?+?+?+??+?=+=∑ 5、确定桩数 根 根,暂取88.57.2 740)1764500(2.1)(2.1176.012.44105.12.4420a k =+?=+≥=???-???=-=R G F n KN Ah Ad G k w w G K γγ 6、桩的平面布置 初选承台尺寸 桩距:取桩距S=1200m, 承台长边:a=2×(0.6+0.4+0.4+0.3+0.3)=4m 承台短边: b=2×(0.4+0.3+0.3)=2m 7、单桩承载力验算 取承台及其上土的平均重度γG =20KN/m 3 桩顶平均竖向力: KN R KN n G F Q a k k k 2.74084.558 1764500=<=+= +=22max max min 2.142.1).0135200(84.55)(???+±=+±=∑i K K k x x h H M Q Q

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

材料力学课程设计

目录 一、 关于材料力学课程设计 (2) 二、 设计题目 (2) 三、 设计内容 (3) 3.1 柴油机曲轴的受力分析 (3) 3.2 设计曲轴颈直径d ,主轴颈直径D (6) 3.3 设计h 和b,校核曲柄臂强度 (6) 3. 4 校核主轴颈H —H 截面处的疲劳强度,取疲劳安全系数n=2。键 槽为端铣加工,主轴颈表面为车削加工 (6) 3.5 用能量法计算A —A 截面的转角y θ,x θ (7) 3.6对计算过程的几点必要说明 (9) 3.7 改进方案 (10) 四、 计算机程序设计 (10) 4.1程序框图 (10) 4.2计算机程序 (11) 4.3输出结果 (12) 五、 设计体会 (12) 六、 参考书目 (12) 一、 关于材料力学课程设计 1.材料力学课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力

学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项: (1)使学生的材料力学知识系统化、完整化; (2)在系统全面复习的基础上.运用材料力学知识解决工程中的实际问题; (3)由于选题力求结合专业实际.因而课程设计可以把材料力学知识和专业需要结 合起来; (4)综合运用了以前所学的多门课程的知识(高数、制图、理力、算法语言、计算 机等等)使相关学科的知识有机地联系起来; (5)初步了解和掌握工程实践中的设计思想和设计方法; (6)为后继课程的教学打下基础 2.材料力学课程设计的任务和要求 参加设计者要系统地复习材料力学的全部基本理论和方法.独立分析、判断、设计题目的已知条件和所求问题.画出受力分析计算简图和内力图.列出理论依据和导出计算公式.独立编制计算程序.通过计算机给出计算结果.并完成设计计算说明书. 3.材料力学课程设计的一般过程 材料力学课程设计与工程中的一般设计过程相似.从分析设计方案开始到进行必要的计算并对结构的合理性进行分析.最后得出结论.材料力学设计过程可大致分为以下几个阶段: (1)设计准备阶段:认真阅读材料力学课程设计指导书.明确设计要求.结合设计题目复习材料力学课程设计的有关理论知识.制定设计步骤、方法以及时间分配方案等; (2)从外力变形分析入手,分析及算内力、应力及变形,绘制各种内力图及位移、转角曲线; (3)建立强度和刚度条件.并进行相应的设计计算及必要的公式推导; (4)编制计算机程序并调试; (5)上机计算,记录计算结果; (6)整理数据,按照要求制作出设计计算说明书; (7)分析讨论设计及计算的合理性和优缺点,以及相应的改进意见和措施; 二、设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450—5),弹性常数为E 、μ,许用应力[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4,3l =1.2r ,有关数据如下表:

结构动力学大作业(重庆大学)

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:结构动力学大作业教师: 姓名:学号: 专业:土木工程类别:学术上课时间: 2013 年 11 月至 2014 年 1 月考生成绩: 阅卷评语: 阅卷教师 (签名) 重庆大学研究生院制

土木工程学院2013级硕士研究生考试试题 科目名称:结构动力学考试日期:2014年1月总分:20分 1、按规定设计一个2跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。 要求给出: (1)框架结构图,并给出一致质量矩阵和一致刚度矩阵; (2)出两种方法名称及对应的频率和振型; (3)输入地震波的波形图,计算所得各楼层位移反应时程图。 第 1 页共1页

1框架概况 1.1框架截面尺寸 框架立面图如图 1.1所示,各跨跨度为14000L mm =,各层建筑层高均为 34100L mm =,对应的梁截面分别为2200400mm ?,柱截面均为2300300mm ?。 设楼层进深为24200L mm =,板厚为100mm 。 图1.1框架立面图 1.2动力自由度 框架结构可以理想化为在节点处相互连接的单元(梁和柱)的集合。设 梁、柱的轴向变形均忽略不计,只考虑横向平面位移,则该框架有3平动自由度和9角自由度,共12自由度。自由度编号及梁柱单元编号如图1.2所示。

相关文档
最新文档