图的最小生成树

图的最小生成树
图的最小生成树

#ifndef _ _MY_KRUSKAL_H_ _

#define _ _MY_KRUSKAL_H_ _

#include"adj_list_undir_network.h"

#include"equivalence.h"

#include"min_priority_lk_queue.h"

template

struct KruskalEdge

{

int vertex1,vertex2;

WeightType weight;

KruskalEdge(int v1=-1,int v2=-1,int w=0):vertex1(v1),vertex2(v2),weight(w){};

};

template

bool operator<=(const KruskalEdge &first,const KruskalEdge &second) {

return first.weight<=second.weight;

}

template

void MiniSpanTreeKruskal(const AdjListUndirNetwork &net)

{

int vexNum=net.GetVexNum();

Equivalence equival(vexNum);

MinPriorityLinkQueue< KruskalEdge >prioQ;

for (int v=0;v

{

for(int u=net.FirstAdjVex(v);u>=0;u=net.NextAdjVex(v,u))

{

if(v

{

KruskalEdgekEdge(v,u,net.GetWeight(v,u));

prioQ.InQueue(kEdge);

}

}

}

for(int count=0;count

{

KruskalEdgekEdge;

prioQ.OutQueue(kEdge);

int v1=kEdge.vertex1,v2=kEdge.vertex2;

if(equival.Differ(v1,v2))

{

cout<<"edge:("<

<

count++;

equival.Union(v1,v2);

}

}

}

#endif

#include "stdafx.h"

#include"Kruskal.h"

#include"utility.h"

int _tmain(int argc, _TCHAR* argv[])

{

try

{

int infity=DEFAULT_INFINITY;

char vexs[]={'A','B','C','D'};

int m[4][4]={

{infity,2,3,4},

{2,infity,5,6},

{3,5,infity,7},

{4,6,7,infity}

};

int n=4;

AdjListUndirNetwork net(vexs,n);

for(int u=0;u

{

for(int v=0;v

{if(m[u][v]!=infity) net.InsertEdge(u,v,m[u][v]);

}

}

cout<<"原网"<

Display(net);

cout<

system("PAUSE");

cout<<"Kruskal算法产生最小生成树的边:"<

MiniSpanTreeKruskal(net);

cout<

}

catch(Error err)

{ err.Show();

}

system("PAUSE");

return 0;

}

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题 院(系):计算机工程学院 学生姓名: 班级:学号: 起迄日期: 指导教师: 2011—2012年度第 2 学期 一、需求分析 1.问题描述:

在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 2.基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 3.输入输出 以文本形式输出最小生成树,同时输出它们的权值。通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。 二、概要设计 1.设计思路: 因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。 2.数据结构设计: 图状结构: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R:R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作: CreateGraph( &G, V, VR ) 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGraph( &G )

初始条件:图G存在。 操作结果:销毁图G。 LocateVex( G, u ) 初始条件:图G存在,u和G中顶点有相同特征。 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返 回其它信息。 GetVex( G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 PutVex( &G, v, value ) 初始条件:图G存在,v是G中某个顶点。 操作结果:对v赋值value。 FirstAdjVex( G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的第一个邻接顶点。若顶点在G中没有邻接顶点, 则返回“空”。 NextAdjVex( G, v, w ) 初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。 操作结果:返回v的(相对于w的)下一个邻接顶点。若w是v的 最后一个邻接点,则返回“空”。 InsertVex( &G, v ) 初始条件:图G存在,v和图中顶点有相同特征。 操作结果:在图G中增添新顶点v。 DeleteVex( &G, v ) 初始条件:图G存在,v是G中某个顶点。 操作结果:删除G中顶点v及其相关的弧。 InsertArc( &G, v, w )

数据结构课程设计-图的遍历和生成树的求解实现说明书

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2012年春季学期 算法与数据结构课程设计 题目:图的遍历和生成树的求解实现 专业班级:计算机科学与技术 姓名:*** 学号:1234567 指导教师:**** 成绩:

目录 摘要 (3) 前言 (4) 正文 (5) 1.问题描述: (5) 2.采用类C语言定义相关的数据类型 (5) 3.各模块流程图及伪码算法 (6) 4.函数的调用关系图 (8) 5.调试分析 (9) 1.调试中遇到的问题及对问题的解决方法 (9) 2.算法的时间复杂度和空间复杂度 (9) 6.测试结果 (10) 参考文献 (14)

图是一种复杂的非线性数据结构,一个图G(Grah)由两个集合V和E 构成,图存在两种遍历方式,深度优先遍历和广度优先遍历,广度优先遍历基本思路是假设从图中某顶点U出发,在访问了顶点U之后依次访问U的各个未访问的领接点,然后分别从这些领接点出发依次访问他们的领接点,并使先访问的顶点的领接点先于后访问的顶点被访问。直至所有领接点被访问到。深度优先的基本思路是从某个顶点出发,访问此顶点,然后依次从V的未被访问的领接点出发深度优先检索土。直至图中所有顶点都被访问到。PRIM算法—KRUSKAL算法;可以对图形进行最小生成树的求解。 主要问题是: (1)当给出一个表达式时,如何创建图所表达的树,即相应的逻辑结构和存储结构? (2)表达式建立好以后,如何求出其遍历?深度优先和广度优先遍历。 (3)计算它的最小生成树?主要是prim算法和kruscal算法两种形式。

最小生成树模型与实验

第155页 第六章 最小生成树模型与实验 树是图论中的一个重要概念,由于树的模型简单而实用,它在企业管理、线路设计等方面都有很重要的应用。 §6.1树与树的性质 上章已讨论了图和树的简单基本性质。为使更清楚明了,现在使用实例来说明。 例6.1 已知有五个城市,要在它们之间架设电话线,要求任何两个城市都可以互相通话(允许通过其它城市),并且电话线的根数最少。 用五个点54321,,,,v v v v v 代表五个城市,如果 在某两个城市之间架设电话线,则在相应的两个点之间联一条边,这样一个电话线网就可以用一个图来表示。为了任何两个城市都可以通话,这样的图必须是连通的。其次,若图中有圈的话,从圈上任意去掉一条边,余下的图仍是连通的,这样可以省去一根电话线。因而,满足要求的电话线网所对应的图必定是不含圈的连通图。图6.1的表达式满足要求的一个电话线网。 定义6.1 一个无圈的连通图称为树. 例6.2 某大学的组织机构如下所示: v 5v 4 v 图 6.1

第 页 156 教务处 研究处 校行政办公室 研究生院 财务科 行政科 理工学院 人事学院 外语学院 …… 如果用图表示,该工厂的组织机构图就是一个树。上章给出了一些树的性质,为使能进一步研究这部分知识,先再列出常用一些树和生成树的性质。 树的性质: (1) 树必连通,但无回路(圈); (2) n 个顶点的树必有1-n 条边; (3) 树中任意两点间,恰有一条初等链; (4) 树连通,但去掉任一条边,必变为不连通; (5) 树无回路(圈),但不相邻顶点连一条边,恰得一回路(圈)。 生成树与最小树 定义6.2 设图),(11E V G =是图},{E V G =的生成子图,如果1G 是一棵树,记),(1E V T =,则称T 是G 的一棵生成树。 定理6.1 图G 有生成树的充分必要条件是图G 的连通的。 证:必要性是显然的 充分性:设G 是连通图。 (i )如果G 不含圈,由定义6.1可知,G 本身就是一棵树,从而G 是它自身的生成树。 (i i )如果G 含圈,任取一圈,从圈中任意去掉一条边,得到图G 的 数学系 物理系 文科办公 理科办校教学办公室 校长

分别利用prim算法和kruskal算法实现求图的最小生成树

/*分别利用prim算法和kruskal算法实现求图的最小生成树*/ #include #include #define MaxVertexNum 12 #define MaxEdgeNum 20 #define MaxValue 1000 typedef int Vertextype; typedef int adjmatrix[MaxVertexNum][MaxVertexNum]; typedef Vertextype vexlist[MaxVertexNum]; int visited[MaxVertexNum]={0}; struct edgeElem {int fromvex; int endvex; int weight; }; typedef struct edgeElem edgeset[MaxVertexNum]; void Creat_adjmatrix(vexlist GV,adjmatrix GA,int n,int e) {int i,j,k,w; printf("输入%d个顶点数据",n); for(i=0;i

if(i==j) GA[i][j]=0; else GA[i][j]=MaxValue; printf("输入%d条无向带权边",e); for(k=0;k

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

,图的遍历及最小生成树实验报告

实验三最小生成树问题 班级:计科1101班 学号:0909101605 姓名:杜茂鹏 2013年5月23日

一、实验目的 掌握图的存储表示和以及图的最小生成树算法。 二、实验内容 1.实现图的存储,并且读入图的内容。 2.利用普里姆算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计、 首先采用图的邻接矩阵存储结构,然后从终端输入图的顶点名称、弧以及弧的权值建立邻接矩阵,并将图存储在文件Graph.txt中。 然后利用已经建好的图,分别对其进行深度、广度优先遍历,一次输出遍历的顶点 最后建立此图的最小生成树,并将对应的边及权值写入文件graph_prim.txt 中。 六、详细设计 实验内容(原理、操作步骤、程序代码) #include #include #include #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 int visited[MAX_VERTEX_NUM]; typedef struct ArcCell{ int adj; int *info; //该弧相关信息的指针 }ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct close { char adjvex; int lowcost; }closedge[MAX_VERTEX_NUM];

求出下图的最小生成树

求出下图的最小生成树 解:MATLAB程序: % 求图的最小生成树的prim算法。 % result的第一、二、三行分别表示生成树边的起点、终点、权集合 % p——记录生成树的的顶点,tb=V\p clc;clear; % a(1,2)=50; a(1,3)=60; % a(2,4)=65; a(2,5)=40; % a(3,4)=52;a(3,7)=45; % a(4,5)=50; a(4,6)=30;a(4,7)=42; % a(5,6)=70; % a=[a;zeros(2,7)]; e=[1 2 20;1 4 7;2 3 18;2 13 8;3 5 14;3 14 14;4 7 10;5 6 30;5 9 25;5 10 9;6 10 30;6 11 30;7 8 2;7 13 5;8 9 4;8 14 2;9 10 6;9 14 3;10 11 11;11 12 30]; n=max([e(:,1);e(:,2)]); % 顶点数 m=size(e,1); % 边数 M=sum(e(:,3)); % 代表无穷大 a=zeros(n,n); for k=1:m a(e(k,1),e(k,2))=e(k,3); end a=a+a';

a(find(a==0))=M; % 形成图的邻接矩阵 result=[];p=1; % 设置生成树的起始顶点 tb=2:length(a); % 设置生成树以外顶点 while length(result)~=length(a)-1 % 边数不足顶点数-1 temp=a(p,tb);temp=temp(:); % 取出与p关联的所有边 d=min(temp); % 取上述边中的最小边 [jb,kb]=find(a(p,tb)==d); % 寻找最小边的两个端点(可能不止一个) j=p(jb(1));k=tb(kb(1)); % 确定最小边的两个端点 result=[result,[j;k;d]]; % 记录最小生成树的新边 p=[p,k]; % 扩展生成树的顶点 tb(find(tb==k))=[]; % 缩减生成树以外顶点 end result % 显示生成树(点、点、边长) weight=sum(result(3,:)) % 计算生成树的权 程序结果: result = 1 4 7 8 14 7 9 13 10 10 14 10 11 4 7 8 14 9 13 10 2 5 11 3 6 12 7 10 2 2 3 5 6 8 9 11 1 4 30 30 weight = 137 附图 最小生成树的权是137

离散数学--最小生成树实验报告

一、实验目的:掌握图的存储表示和以及图的最小生成树算法。 二、实验内容: 1.实现图的存储,并且读入图的内容。 2.利用克鲁斯卡尔算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求: 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 需求分析: 1、利用克鲁斯卡尔算法求网的最小生成树; 2、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列; 3、输入为存在边的顶点对,以及它们之间的权值;输出为所得到的邻接矩 阵以及按权排序后的边和最后得到的最小生成树; 克鲁斯卡尔算法:假设WN=(V,{E}) 是一个含有n 个顶点的连通网,按照构造最小生成树的过程为:先构造一个只含n 个顶点,而边集为空的子图,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至只有一棵树,也即子图中含有n-1条边为止。 测试数据: 自行指定图进行运算

四、详细设计 源程序 #include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *); void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G) {

最小生成树(MATLAB)

prim算法 设置两个集合P和Q,其中P 用于存放G的最小生成树中的顶点,集合Q存放G的最小生成树中的边。令集合P的初值为P={V1}(假设构造最小生成树时,从顶点V1出发),集合Q的初值为 。Prime算法的思想是,从所有p ∈P,v∈V-P的边中,选取具有最小权值的边pv,将顶点v加入集合P中,将边pv 加入集合Q中,如此不断重复,直到P=V时,最小生成树构造完毕,这时集合Q中包含了最小生成的所有边。(找最小的权,不连成圈即可) ?clc;clear; ?M=1000; ?a(1,2)=50; a(1,3)=60; ?a(2,4)=65; a(2,5)=40; ?a(3,4)=52;a(3,7)=45; ?a(4,5)=50; a(4,6)=30;a(4,7)=42; ?a(5,6)=70; ?a=[a;zeros(2,7)]; ?a=a+a';a(find(a==0))=M; ?result=[];p=1;tb=2:length(a); ?while length(result)~=length(a)-1 ?temp=a(p,tb);temp=temp(:); ?d=min(temp); ?[jb,kb]=find(a(p,tb)==d); ?j=p(jb(1));k=tb(kb(1)); ?result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[]; ?end ?result ?例、一个乡有7个自然村,其间道路如图所示,要以村为中心建有线广播网络,如要求沿道路架设广播线,应如何架设?

Kruskal算法 每步从未选的边中选取边e,使它与已选边不构成圈,且e 是未选边中的最小权边,直到选够n-1条边为止。 ?clc;clear; ?M=1000; ?a(1,2)=50; a(1,3)=60; ?a(2,4)=65; a(2,5)=40; ?a(3,4)=52;a(3,7)=45; ?a(4,5)=50; a(4,6)=30;a(4,7)=42; ?a(5,6)=70; ?[i,j]=find((a~=0)&(a~=M)); ?b=a(find((a~=0)&(a~=M))); ?data=[i';j';b'];index=data(1:2,:); ?loop=max(size(a))-1; ?result=[]; ?while length(result)v2 ?index(find(index==v1))=v2;

图的遍历与最小生成树

图论1——图的遍历与图的最小生成树一、图的遍历 图的遍历:从图的某顶点出发,访问图中所有顶点,并且每个顶点仅访问一次。在图中,访问部分顶点后,可能又沿着其他边回到已被访问过的顶点。为保证每一个顶点只被访问一次,必须对顶点进行标记,一般用一个辅助数组visit[n]作为对顶点的标记,当顶点vi未被访问,visit[i]值为0;当vi已被访问,则visit[i]值为1。 有两种遍历方法(它们对无向图,有向图都适用) 深度优先遍历 广度优先遍历 1、深度优先遍历 从图中某顶点v出发: 1)访问顶点v; 2)依次从v的未被访问的邻接点出发,继续对图进行深度优先遍历; 对于给定的图G=(V,E),首先将V中每一个顶点都标记为未被访问,然后,选取一个源点v V,将v标记为已被访问,再递归地用深度优先搜索方法,依次搜索v的所有邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,如果从v出发有路的顶点都已被访问过,则从v的搜索过程结束。此时,如果图中还有未被访问过的顶点(该图有多个连通分量或强连通分量),则再任选一个未被访问过的顶点,并从这个顶点开始做新的搜索。上述过程一直进行到V中所有顶点都已被访问过为止。 例:在下图中,从V0开始进行一次深度遍历的过程如图所示: 深度优先遍历得到的遍历序列为:

序列1:V0,V1,V3,V7,V4,V2,V5,V6 序列2:V0,V1,V4,V7,V3,V2,V5,V6 由于没有规定访问邻接点的顺序,深度优先序列不是唯一的。 但是,当采用邻接表存储结构并且存储结构已确定的情况下,遍历的结果将是确定的。例如:对下图(a)的邻接表存储(图b)的遍历过程如图(c)。 图a 图b 图c DFS序列:c0 → c1→ c3→ c4→ c5→ c2 采用邻接表存储结构的深度优先遍历算法实现: Pascal语言: procedure dfs(g:adjgraph;i:integer); var p:edgenode; begin writeln('visit vertex:',g.adjlist[i]^.vertex); visited[i]:=true; p:=g.adjlist[i]^.firstedge; while p<>nil do begin if not visited[p^.adjvex]then dfs(g,p^.adjvex); p:=p^.next; end;

最小生成树-文献综述

毕业设计(论文)文献综述 题目:最小生成树算法及其应用 学院:数理与信息学院 学生姓名:许立 学号:070602137 专业:信息与计算科学 班级:A07信息 指导老师:陈丽燕 起止日期:2010. 07. 03-2010. 07. 07 2010年7月7日

最小生成树(minimum spanning tree,MST)是计算机学科中一重要内容, 其算法也是重 要的计算方法, 是现代科学中比较热门的研究方向. 一个有 n 个结点的连通图的生成树是原图的极小连通子图, 且包含原图中的所有 n 个结点, 并且有保持图联通的最少的边. 许多应用问题都是一个求五项连通图的最小生成树问题. 例如:要在n个城市之间铺 设光缆, 主要目标是要使这 n 个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, 且各个城市之间铺设光缆的费用不同; 另一个目标是要使铺设光缆的总费用最低. 这就需 要找到带权的最小生成树. MST性质: 最小生成树性质: 设G= ( V, E)是一个连通网络, U是顶点集V的一个真 子集. 若(u, v)是G中一条“一个端点在U中( 例如: u∈U),另一个端点不在U中的 边( 例如: v∈V-U) ,且( u, v) 具有最小权值, 则一定存在G的一棵最小生成树包括此 边( u, v) [1]. 求MST的一般算法可描述为: 针对图G, 从空树T开始, 往集合T中逐条选择并加入n-1 条安全边( u, v) , 最终生成一棵含n-1条边的MST. 当一条边( u, v) 加入T时, 必须保证T∪{( u, v) }仍是MST的子集, 我们将这样的 边称为T的安全边. 其中主要有两种算法: Prim算法和Kruskal算法. Prim算法: 该算法由Prim 提出, 但事实上Jarnik 于1930 年更早提出. 用于求无向 图的最小生成树. 设图G =(V,E),其生成树的顶点集合为U. ①、把v0放入U. ②、在所有u∈U, v∈V-U的边( u,v) ∈E中找一条最小权值的边, 加入生成树. ③、把②找到的边的v加入U集合. 如果U集合已有n个元素, 则结束,否则继续执行. 其算法的时间复杂度为O( n^2). Prim算法实现: (1)集合: 设置一个数组set( i=0,1,..,n-1 ) , 初始值为 0, 代表对应顶点不在集合中 (注意:顶点号与下标号差1)

求无向连通图的生成树

求无向连通图的生成树

————————————————————————————————作者:————————————————————————————————日期:

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { ?int flag=0; ?for(int i=0;i<VertexLen;i++) ?if(A[i].data.key==key){k=i;flag=1;break;}; return flag; }; int Graph::CreateGraph(int vertexnum,Edge *E,int edgenum) {//由边的集合E(E[0]~E[VertexNum-1]),生成该图的邻接表

表示 if(vertexnum<1)return(-1);//参数vertexnum非法int i,front,rear,k; ?Enode *q; ?//先生成不带边表的顶点表--即顶点为孤立顶点集 ?A=newVnode[vertexnum]; if(!A)return(0);//堆耗尽 ?for(i=0;ikey=front; q->Weight=E[i].weight; ??q->next=A[rear].first; ?A[rear].first=q; ?A[rear].data.OutDegree++; A[front].data.InDegree++; ?if(Type>2) { ??q=new Enode;

最小生成树问题,图形输出最小生成树

数据结构课程设计 系别电子信息系 专业计算机科学与技术 班级学号 姓名 指导教师 成绩 2012年7 月12日

目录 1 需求分析 (2) 2 概要设计 (2) 2. 1抽象数据类型定义 (2) 2 . 2模块划分 (3) 3 详细设计 (4) 3. 1数据类型的定义 (4) 3. 2主要模块的算法描述 (6) 4 调试分析 (10) 5 用户手册 (10) 6 测试结果 (11) 7 附录(源程序清单) (13) 参考文献 (20)

一、需求分析 1.要在n个城市之间建设通信网络,只需要架设n-1条线路即可,而要以最低的经济代价建设这个通信网,就需要在这个网中求最小生成树。 (1)利用克鲁斯卡尔算法求网的最小生成树。 (2)实现教科书 6.5 节中定义的抽象数据类型 MFSet 。以此表示构造生成树过程中的连通分量。 (3)输入顶点个数,输入顶点序号(用整型数据[0,1,2,……,100]表示),输入定点之间的边的权值(整型数据)。系统构造无向图,并求解最小生成树。 (4)以图形和文本两种形式输出最小生成树。 2.程序执行的命令包括: (1)随机生成一个图; (2)输入图坐标信息; (3)以文本形式输出最小生成树; (4)以图形形式输出最小生成树; (5)以图形形式输出构造的图; (6)结束。 3.测试数据 (1)用户输入需要构造的图形顶点个数,假设顶点个数为4; (2)C语言函数随机生成的图形,顶点分别为a,b,c,d,权值分别为: ab=75,ac=99,ad=80,bc=33,bd=93,cd=19; (3)最小生成树边的权值分别为:ab=75,bc=33,cd=19; (4)结束。 二、概要设计 1. 图的抽象数据类型定义 ADT Gragh{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={| v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息 } 基本操作P: CreateGraph(&G,V,VR); 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGragh(&G); 初始条件:图G存在。 操作结果:销毁图G。 GetVex(G,v); 初始条件:图G存在,v是G中某个顶点。 操作结果:返回v的值。 FirstAdjvex(G,v); 初始条件:图G存在,v是G中某个顶点。

求无向连通图的生成树

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { int flag=0; for(int i=0;i

if(vertexnum<1)return(-1);//参数vertexnum非法 int i,front,rear,k; Enode *q; //先生成不带边表的顶点表--即顶点为孤立顶点集 A=new Vnode[vertexnum]; if(!A)return(0);//堆耗尽 for(i=0;ikey=front; q->Weight=E[i].weight; q->next=A[rear].first; A[rear].first=q; A[rear].data.OutDegree++; A[front].data.InDegree++; if(Type>2) { q=new Enode; if(!q)return(0); q->key=rear; q->next=A[front].first;

数学建模-最小生成树-kruskal算法及各种代码

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* kruskal算法及代码 ---含伪代码、c代码、matlab、pascal等代码 K r u s k a l算法每次选择n- 1条边,所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。K r u s k a l算法分e 步,其中e 是网络中边的数目。按耗费递增的顺序来考虑这e 条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。 目录 Kruskal算法 Kruskal算法的代码实现 Kruskal算法 Kruskal算法的代码实现 算法定义 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

举例描述 克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个。这里面充分体现了贪心算法的精髓。大致的流程可以用一个图来表示。这里的图的选择借用了Wikipedia上的那个。非常清晰且直观。 首先第一步,我们有一张图,有若干点和边 如下图所示: 第一步我们要做的事情就是将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择。 排序完成后,我们率先选择了边AD。这样我们的图就变成了 第二步,在剩下的变中寻找。我们找到了CE。这里边的权重也是5

无向图的生成两种遍历方法以及最小生成树的构建c++代码实现

无向图的遍历及其算法 #include #include #define max 50 int n,e; int visited1[max]; //访问标记 int visited2[max]; int visited3[max]; double quan[max][max]; //存取权值 int visited4[max]; double zh=0.0; //权值之和 struct link //结点定义 { int data; double cost; link *next; }; struct syz //存取路径的两个端点及其权值 { int h; int l; double z; }syz[max]; struct Adjlist //存取顶点 { int v; link *next; }Adjlist[max]; void c_cbs_graph (int n, int e ) //创建无向图 { int i,j,k ; double c; link *s ; for (i=1; i<=n; i++) { /*建立邻接表头结点*/ Adjlist[i].v=i ; Adjlist[i].next=NULL; } cout<

for (k=1; k<=e;k++) { cout<<"请输入第"<>i>>j>>c; cout<data=j ; s->cost=c; s->next=Adjlist[i].next ; Adjlist[i].next=s ; s=new link; s->data=i ; s->cost=c; s->next=Adjlist [j].next ; Adjlist[j].next=s ; } }; void DFS( int i ) //深度优先遍历 { // i是遍历起始点的在邻接表中的下标值,其下标从1开始 link *p; cout<'; visited1[i]=1; p = Adjlist[i].next; while(p!=NULL) { if (visited1[p->data]==0) DFS (p->data); p=p->next; } }; void BFS(int i) //广度优先遍历 { int q[max]; /*定义队列*/ int fro,rea; link *p ; /*P为搜索指针*/ fro=rea=0 ; cout<'; visited2[i]=1 ; rea++; q[rea]=i ; /*进队*/ while (fro

相关文档
最新文档