石墨烯等离激元模拟仿真方法

石墨烯等离激元模拟仿真方法
石墨烯等离激元模拟仿真方法

石墨烯等离激元有限元模拟采用comsol 二维模拟仿真,基本模型为石墨烯的条带阵列,主要参数为条带宽度w (100nm ),条带周期p (2w ),和条带厚度t (1nm )。绘制一个宽度为P ,高度为h (600nm )的矩形区为空气区,绘制长度为w 的线段代表石墨烯条带。矩形区上方设置端口1(波激励:开 磁场模式0(001)H =),下方设置端口2(波激励:关 磁场模式0(001)H =)。两边设置周期边界条件代表两边无线延伸的条带阵列。石墨烯条带由过渡边界条件定义,相对介电常数为ε,厚度为t 。

模型示意图

石墨烯的电导率由式计算得到

int int ra er σσσ=+

2int 212ln exp 1()B F F ra

B B e k T E E i i k T k T σπωτ-??????=+-+?? ? ? ?+???????? 12int 12()ln 42()F er

F E i e i E i ωτσπωτ--??-+=??++??

式中:T ——温度,300T K =

ω——入射波角频率 τ——弛豫时间,12/()F F ev E τμ-=

F v ——费米速度,61110F v m s -=?

μ——

载流子迁移率,21110000()cm V s μ--=

F E ——石墨烯费米能级,0.53F E eV =

石墨烯的相对介电常数由式14/()i tw επσ=+计算得到。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

石墨烯的制备方法有哪些

石墨烯的制备方法有哪些 石墨烯的制备方法有哪些?石墨烯是近年来兴起的一种新型高科技材料,应用广泛,价值巨大,不过也存在一些缺点,那就是以目前的技术和设备来说,生产和制备不是一件容易的事,技术门槛相当高,且产率较低,成本不菲。下面就让我们一起来看看石墨烯的制备方法有哪些吧。 微机械剥离法 2004年,Geim等初次用微机械剥离法,成功地从高定向热裂解石墨(highly oriented pyrolytic graphite)上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,只能作为实验室小规模制备。 溶剂剥离法

溶剂剥离法的原理是把少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯转移综述

黄曼1,郭云龙2*,武斌2,刘云圻2,付朝阳1*,王帅1* 1. 华中科技大学化学与化工学院,湖北武汉 430074 2. 中国科学院化学研究所有机固体重点实验室,北京100190 摘要目前化学气相沉积(CVD)法合成石墨烯得到了人们的广泛研究。其中如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。文章通过总结与分析目前CVD法石墨烯的几种主要转移技术,从方法、特点和结果等方面综述了转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法;石墨烯;转移 Research Progress in transfer techniques of graphene by chemical vapor deposition Huang Man1, Guo Yunlong2*, Wu Bin2, Liu Yunqi2, Fu Chaoyang1*, Wang Shuai1* 1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of CVD-grown graphene onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene are analyzed. Also, the recent advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene are discussed. Finally, the future of transfer techniques is briefly introduced. Keywords:Chemical vapor deposition; Graphene; transfer _______________________________________ 作者:黄曼(1988-),女,硕士,从事石墨烯的制备、表征及性能研究;*通讯作者:付朝阳(1968-),男,副教授,博士,电话-704,(电子信箱);王帅(1974-),男,教授,博士,(手机),(电子信箱),国家自然科学基金项目(),跨世纪优秀人才和国家青年千人项目资助;郭云龙(1982-),男,助研,博士,(手机),(电子信箱).

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

仿真方法

仿真方法 仿真方法是一种求解问题的方法。它可以运用各种模型和技术,对实际问题进行建模,通过模型采用人工试验的手段,来理解需要解决的实际问题。通过仿真,可以评价各种替代方案,证实哪些措施对解决实际问题有效。 仿真方法的一个突出优点是能够解决用解析方法难以解决的十分复杂的问题。有些问题不仅难以求解,甚至难以建立数学模型,当然也就无法得到分析解。仿真可以用于动态过程。可以通过反复试验(Trial-and-error)求优。与实体试验相比,仿真的费用是比较低的,而且可以在较短的时间内得到结果。 仿真方法是建立系统的数学模型并将它转换为适合在计算机上编程的 仿真模型,然后对模型进行仿真试验的方法。由于连续系统和离散事件系统的数学模型有很大差别,所以仿真方法基本上分为两大类:连续系统仿真方法和离散事件系统仿真方法。 连续系统的数学模型一般是用微分方程来描述的,模型中的变量随时间连续变化。根据仿真时所采用的计算机不同,可分为模拟仿真法、数字仿真法和混合仿真法三类。①模拟仿真法:采用模拟计算机对连续系统进行仿真的方法,主要包括建立模拟电路图,确定仿真的幅度比例尺和时间比例尺,并根据这些比例尺修改仿真模型中的参数。②数字仿真法:采用数字计算机对连续系统进行仿真的方法,主要是将连续系统的数学模型转换为适合在数字计算机上处理的递推计算形式。③混合仿真法:采用混合计算机对连续系统进行仿真的方法,还包括采用混合模拟计算机的仿真方法。除上述仿真方法的内容外,还需要解决仿真任务的分配、采样周期的选择和误差的补偿等特殊问题。 离散事件系统仿真方法 离散事件系统的状态只在离散时刻发生变化,通常用“离散事件”这一术语来表示这样的变化。离散事件系统中的实体依其在系统中存在的时间特性可分为临时实体(或称顾客)和永久实体(或称服务台)。临时实体的到达和永久实体为临时实体服务完毕,都构成离散事件。描述这类系统的数学模型一般不是一组数学表达式,而是一幅表示数量关系和逻辑关系的流程图,可分为三部分:到达模型,服务模型和排队模型。前两者一般用一组不同概率分布的随机数来描述,而包括排队模型在内的系统活动则由一个运行程序来描述。对这类系统,主要使用数字计算机进行仿真。仿真方法解决的问题是:产生不同概率分布的随机数和设计描述系统活动的程序。

石墨烯的制备方法

石墨烯的制备方法 来源:厦门烯成 目前,石墨烯材料的制备方法主要有四种:微机械剥离法、外延生长法、氧化石墨还原法和气相沉积法。 2004年英国Manchester大学的Geim和Novoselov等人利用微机械剥离法,也就是用胶带撕石墨[1]获得了单层石墨烯,并验证了二维晶体的独立存在。他们利用氧等离子束在1mm厚的高定向热解石墨(HOPG)表面刻蚀出20微米见方、深5微米的微槽,并将其用光刻胶压制在SiO2/Si衬底上,然后用透明胶带反复撕揭,剥离出多余的石墨片。随后将粘有剩余微片的SiO2/Si衬底浸入丙酮溶液中,超声去除样品表面残余的胶和大多数较厚的片层。所得到的厚度小于10nm片层主要依靠范德华力吸附在硅片上。最后通过光学显微镜和原子力显微镜挑选出单层石墨烯薄片。利用该方法可以获得高质量的石墨烯,但缺点是所获得石墨烯尺寸太小,仅几十或者上百微米。且制备过程不易控制,产率低,不适合大规模的生产和应用。 同年美国佐治亚理工学院W.A. de Heer等人通过加热单晶6H-SiC脱除Si,在单晶SiC (0001) 面上外延生长石墨烯[2]。具体过程是:将经氧气或氢气刻蚀处理得到的SiC在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后保持1分钟到20分钟,以形成极薄的石墨层。相比微机械剥离法,外延生长法可以实现较大尺寸,高质量石墨烯制备,是一种对实现石墨烯器件的实际应用非常重要的制备方法,然而石墨烯的厚度由加热温度决定,大面积制备单一厚度的样品比较困难,且SiC过于昂贵,得到的石墨烯难以转移到其它衬底上。

石墨烯的制备

石墨烯的制备 摘要: 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势. 关键词: 石墨烯; 石墨烯氧化物; 制备; 功能化石墨烯。 背景摘要 2004年, 英国曼彻斯特大学的Geim研究小组首次制备出稳定的石墨烯, 推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论, 震撼了整个物理界[1], 引发了石墨烯的研究热潮[2]. 理想的石墨烯结构可以看作被剥离的单原子层石墨, 基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料, 这是目前世界上最薄的材料—单原子厚度的材料. 这种特殊结构蕴含了丰富而新奇的物理现象, 使石墨烯表现出许多优异性质[3-6], 石墨烯不仅有优异的电学性能(室温下电子迁移率可达 2×105cm2/(V·s))[7-8], 突出的导热性能

(5000 W/(m·K))[9-10], 超常的比表面积(2630 m2/g)[11], 其杨氏模量(1100 GPa)和断裂强度(125 GPa)[12-13]也可与碳纳米管媲美, 而且还具有一些独特的性能, 如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质[14]等. 与碳纳米管相比, 石墨烯的主要性能均与之相当, 甚至更好, 避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题, 而且制备石墨烯的原料价格便宜. 正是由于石墨烯材料具有如此众多奇特的性质, 引起了物理、化学、材料等不同领域科学家的极大研究兴趣, 也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。 一.石墨烯的制备方法概述 目前有关石墨烯的制备方法, 国内外有较多的文献综述,石墨烯的制备主要有物理方法和化学方法. 物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产. 目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[20]. 2006年Stankovich等[21]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称GO)的含氧基团从而恢复单层石墨的有序结构(氧化?还原法), 在此基础上人们

深度解读直接溶剂剥离法制备石墨烯

2.2 直接溶剂剥离法制备石墨烯流程图 石墨烯自发现以来,其优异的物理化学性质赋予了其广泛应用前景。要实现石墨烯的应用,必须寻找一种合适的是石墨烯制备方法。目前,石墨烯的制备方 法主要有机械剥离法,化学气相沉积法,还原氧化石墨烯法以及直接溶剂剥离法

等。微机械剥离法和化学气相沉积法虽然能得到高质量的石墨烯,但是产率低,难以满足石墨烯在复合材料等领域的应用。还原氧化石墨烯法实现了石墨烯的低成本大规模制备,但是所得到的石墨烯含有大量的缺陷。采用直接溶剂剥离法,既保持了石墨烯结构的完整性,又能够实现石墨烯的大规模制备,引起了研究者广泛关注,且听“材料+”小编为你慢慢道来。 直接溶剂剥离法在大规模、低成本制备高质量石墨烯方面展示出了极大的优越性,且所得到的石墨烯分散在不同的溶液中,不仅有利于对石墨烯的进一步修饰,而且利于石墨烯的加工应用,如溶液混合制备高性能复合材料,旋涂制备石墨烯薄膜等。因此,发展直接溶剂剥离法制备石墨烯具有重大意义。 何为液相或气相直接剥离法?文献中的定义是这样的:通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液,【材料+】微信平台将会为大家持续带来石墨烯的详细制备方法。 2.1.1 原料的选择 如果要制备片状石墨烯,最好选用鳞片石墨。当然,从石墨制备石墨烯产量相当低。例如,将石墨分散在有机溶剂中进行超声处理,得到石墨烯的产量不足1%。相对于石墨来说,膨胀石墨和石墨层间化合物具有更大的层间距,层与层之间的范德华力相对较小,得到单层石墨烯的产量更高。 2.1.2剥离溶剂的选择 Coleman小组研究表明;当溶剂的表面能与石墨烯相匹配时,溶剂与石墨

模拟仿真教学方法初探

模拟仿真教学方法初探 《山西导游讲解》这门课程是中等职业学校旅游服务与管 理专业的一门专业核心课程,是学生从事导游服务岗位工作所需掌握的必修课程。同时也是山西省旅游局导游资格证考试中口试必考科目,本课程还承担着山西省的技能大赛考核。本文重点探讨了模拟仿真教学法在这门课程中的应用,以激发学生学习的积极性。 标签:模拟仿真教学法山西导游讲解应用 1 模拟仿真教学法 模拟仿真教学法,是指在教师指导下,学生模拟扮演某一角色进行技能训练的一种教学方法。模拟教学能在很大程度上弥补客观条件的不足,为学生提供近似真实的训练环境,提高学生职业技能。 2 《山西导游讲解》课程分析 2.1 课程性质本课程是中等职业学校旅游服务与管理专业的一门专业核心课程,是学生从事导游服务岗位工作所需掌握的必修课程。其功能在于让学生在熟悉山西概况以及主要景区景点的基础上,掌握导游讲解的基本规范和技巧,具备从事导游服务工作相关的职业能力。 2.2 课程定位(教材三部曲)01年教材叫《山西导游》--学院派教材,本书介绍了山西的107个景点,虽较为全面、系统、翔实地反映了我省旅游景观的基本情况,但书中学术性过强。02年叫《走遍山西》——精英导游词。选取山西的22个景点,即山西著名景区景点导游词选萃,不足之处就是缺少沿途导游词、专题导游词,不能满足实际导游的需要。05年至今叫《情系山西·旅行社导游词选编》,按工作过程编写,将原来的景区景点导游词,改编扩展为基本旅游线路导游词。全书分四部分编撰:专题文化、沿途讲解、基本旅游线路上的主要旅游区(点)讲解、旅游者较为关注山西的其他讲解资料。选取两条线路讲授(古建宗教游、晋商文化游)。 3 模拟教学应用于山西导游教学中的优点 3.1 创设情境激发学生学习的兴趣,吸引学生主动参与教学活动的主体是学生,让学生动起来,积极参与到教学过程中。不仅有助于更好地理解知识,更主要的是激发学生的生命活力,促进学生成长的需要。因此,激发学生学习的动力,培养他们的好奇心、求知欲,就应根据学生的身心发展规律,创设学生感兴趣的情境,只有这样学生才会产生好奇心和求知欲,才能积极主动地投入到学习中去。情境的创设既要符合学生的身心特点,让学生有兴趣参与其中,又要落实课堂目标,并使二者有机统一起来,使学生通过情境探究活动,既激“兴趣”,更

一种简易模拟旋压的数值仿真方法

一种简易模拟旋压的数值仿真方法 旋压加工技术是一种节能优质的先进加工工艺,具有节能、环保等优点,但是由于加工工艺复杂,目前在工业制造中还没有普遍运用。特别是gf6输出支架壳体这类具有复杂的几何结构的旋压工艺技术,目前没有详细的资料,被欧美等一些企业所垄断,这对于我国自行研发该产品的系列具有一定的困难。因此有必要提出一种关于旋压加工虚拟仿真方法以减少该产品研发周期和成本。尽管有限元模拟仿真技术已经在冷加工成型方面得到了广泛的应用,但是与旋压有关的有限元模拟仿真报道很少,特别是本文所讨论的具有内花键的复杂几何结构的模拟仿真还未见报道。本文在旋压加工技术三维模拟仿真的基础上,提出一种简 易的数值仿真方法。 1 旋压加工的有限元模型 旋压加工过程是一个强非线性、大变形的金属塑性加工过程。笔者曾运用mar。软件进行该产品三维模型的强力旋压加工模拟,但是对于一个运用三维实体单元模拟旋压过程中的强非线性接触问题,划分单元数达到数万个以上,计算时间很长,每次计算要持续几十天时间。而且对计算机的配置要求非常高,可知数值模拟耗费的代价很高,因此有必要寻找一种较为简便的模拟方法。根据文献,采用平面应变的方法近似模拟旋压加工过程。再根据实际观察旋压加工过程和三维有限元模拟计算结果可知,旋转加工的过程,如果忽略加工毛坯旋转加工产生的偏斜率,那么观察毛坯件在沿纵向变形的情况,将是由旋轮对毛坯件产生的向下压力和沿纵向的推力。当用平面应变问题来近似模拟时,滚轮单纯对毛坯件沿纵向截面所产生的作用一面向下压,一面沿纵向推进的加工过程。具体建立有限元模型方法如下。 采用abaqus软件expcilit模块,由于只关心毛坯件旋压加工中变形情况,将下模和旋压的滚轮设定为刚体,毛坯为变形体,按照实际加工进给路线设计出刚体滚轮的前进路线。由于旋压零件关于上下对称,因此只考虑其上半部分具体模型,见图1所示。其中,节点总数1039,刚性线性单元280个,可变形平面单元918个。滚轮与毛坯、下模与毛坯的接触面根据实际情况进行定义。 加工的毛坯材料分别考虑两种材料,即所提供的冷轧钢材和经过热处理后的材料。由于模拟仿真需要用到

石墨烯制备四种主要方法

石墨烯制备四种主要方法 石墨烯制备技术发展迅速。石墨烯优良的性能和广泛的应用前景,极大的促进了石墨烯制备技术的快速发展。自2004年Geim等首次用微机械剥离法制备出石墨烯以来,科研人员又开发出众多制备石墨烯的方法。其中比较主流的方法有外延生长法、化学气相沉淀CVD法和氧化石墨还原法等。 现有制法还不能满足石墨烯产业化的要求。包括微机械剥离法、外延生长法、化学气相沉淀CVD法和氧化石墨还原法在内的众多制备方法目前仍不能满足产业化的要求。特别是产业化要求石墨烯制备技术能稳定、低成本地生产大面积、纯度高的石墨烯,这一制备技术上的问题至今尚未解决。 微机械剥离法 石墨烯首先由微机械剥离法制得。微机械剥离法即是用透明胶带将高定向热解石墨片按压到其他表面上进行多次剥离,最终得到单层或数层的石墨烯。2004年,Geim,Novoselov 等就是通过此方法在世界上首次得到了单层石墨烯,证明了二维晶体结构在常温下是可以存在的。 微机械剥离方法操作简单、制作样本质量高,是当前制取单层高品质石墨烯的主要方法。但其可控性较差,制得的石墨烯尺寸较小且存在很大的不确定性,同时效率低,成本高,不适合大规模生产。 外延生长法 外延生长方法包括碳化硅外延生长法和金属催化外延生长法。碳化硅外延生长法是指在高温下加热SiC单晶体,使得SiC表面的Si原子被蒸发而脱离表面,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。 金属催化外延生长法是在超高真空条件下将碳氢化合物通入到具有催化活性的过渡金属基底如Pt、Ir、Ru、Cu等表面,通过加热使吸附气体催化脱氢从而制得石墨烯。气体在吸附过程中可以长满整个金属基底,并且其生长过程为一个自限过程,即基底吸附气体后不会重复吸收,因此,所制备出的石墨烯多为单层,且可以大面积地制备出均匀的石墨烯。 化学气相沉淀CVD法:最具潜力的大规模生产方法 CVD法被认为最有希望制备出高质量、大面积的石墨烯,是产业化生产石墨烯薄膜最具潜力的方法。化学气相沉淀CVD法具体过程是:将碳氢化合物甲烷、乙醇等通入到高温加热的金属基底Cu、Ni表面,反应持续一定时间后进行冷却,冷却过程中在基底表面便会形成数层或单层石墨烯,此过程中包含碳原子在基底上溶解及扩散生长两部分。该方法与金属催化外延生长法类似,其优点是可以在更低的温度下进行,从而可以降低制备过程中能量的消耗量,并且石墨烯与基底可以通过化学腐蚀金属方法容易地分离,有利于后续对石墨烯进行加工处理。 三星用这种方法获得了对角长度为30英寸的单层石墨烯,显示出这种方法作为产业化生产方法的巨大潜力。但该过程所制备出的石墨烯的厚度难以控制,在沉淀过程中只有小部分可用的碳转变成石墨烯,且石墨烯的转移过程复杂。 氧化石墨还原法 氧化石墨还原法也被认为是目前制备石墨烯的最佳方法之一。该方法操作简单、制备成本低,可以大规模地制备出石墨烯,已成为石墨烯制备的有效途径。另外该方法还有一个优点,就是可以先生产出同样具有广泛应用前景的功能化石墨烯--氧化石墨烯。 其具体操作过程是先用强氧化剂浓硫酸、浓硝酸、高锰酸钾等将石墨氧化成氧化石墨,氧化过程即在石墨层间穿插一些含氧官能团,从而加大了石墨层间距,然后经超声处理一段

相关文档
最新文档