动平衡机实验测量方法

动平衡机实验测量方法
动平衡机实验测量方法

动平衡机检测方法(一)

摘要:随着动平衡和科学技术的飞速发展,各种旋转机械的转速越来越高,转子动平衡问题在生产实践中显得越来越重要,动平衡机是进行动平衡试验和校正的设备。测量系统是平衡机的重要环节,随着数字信号技术和计算机技术等的高速发展,平衡机测量系统得到了迅速发展。而国产动平衡机测量系统水平落后。本课题研究了新型高精度测量系统。本文首先分析了转子动平衡机振动信号产生的原理,主要研究了基于C8051F020的振动信号测量系统。采用压电传感器作为振动测量元件,设计了电荷放大器、由两个程控增益放大器AD603组成的可调增益放大电路、自动跟踪带通虑波器、C8051F020主控制器接口电路等硬件电路。采用光电传感器作为获取基准信号的测量元件,设计了整形放大电路、锁相倍频电路等硬件电路

—、动平衡术语及关系

1、R1、R2------去重(或加重)半径,单位:毫米(mm)。

2、M-----工件重量,单位:千克(kg)。

3、e-------工件许用偏心量,单位:微米(μm)。

4、U e-----工件允许剩余不平衡量,单位:克毫米(g mm)

5、Ue=M e/2单位:克毫米(g mm)

6、m e1m e2-----工件左右面允许剩余不平衡量,单位克。

8、m e2 =U e/R2= M e /2R

说明:e或Ue是工件的设计要求,

m e1 m e2为动平衡操作者所用动平衡合格值,

应由技术人员准确计算给定。工件左右加重

半径不同时,左、右面的允许剩余不平衡量m e1 m e2不同。

二、日常性检测方法

1、计算出左侧许用不平衡量m e1和右侧许用不平衡量m e2。

2、按正常的动平衡方法,将工件平衡到合格,既不平衡量小于许用不平衡量,并记录最后一次测量的不平衡量的重量和角度(加重状态)。

3、用天平精确称取试重2 m e1,2 m e2,并根据上步测量结果加在动平衡的轻点上。

4、开机测量动平衡量,并记录结果。

5、如果两侧的测量角度都发生了约180度(160度~200度)翻转则证明最后测量结果可靠,转子达到了合格的标准。

动平衡检测记录表(一)

操作员:检定员:校核员:

检定日期:年月日

动平衡检测记录表(一)实例

操作员:检定员:校核员:检定日期:年月日

动平衡机检测方法(二)

一、动平衡术语及关系

1、m o初始测试的不平衡量,单位:克(g)

2、m1一次平衡校正后的剩余不平衡量,单位:克(g)

3、U RR不平衡量减少率,单位:%百分比

4、U RR=100(m o- m1)/ m o(%)

5、m4最后剩余不平衡量,单位:克(g)

6、R加(去)重半径,单位:克(g)

7、M工件重量,单位:千克(kg)

8、e动平衡精度(偏心距),单位:微米(μm)

9、e=2m4 R/M

二、动平衡机性能指标U RR和e的测试

1、选择一中等型号的工件做试件,允许工件的存在初始不平衡

量;

2、重新对工件进行标定。

3、测量工件的不平衡量并且进行记录;停机后用天平准确秤取配

重,并加于测量的轻点角度。反复进行四次测量和加重,结果填入表格。

4、利用初始测试结果和第一次加重后测试结果,依公式计算不平

衡量减少率U RR;

5、利用第四次加重后测试结果计算动平衡精度(偏心距)e.

见下表。

动平衡检测记录表(二)

操作员:检定员:校核员:检定日期:年月日

动平衡检测记录表(二)

操作员:检定员:校核员:检定日期:年月日

动平衡实验报告

硬支承动平衡实验报告 实验目的: 1.了解硬支承动平衡机的结构、控制面板、性能及操作方法。 2.验证、巩固和加深对基本理论的理解,培养实验动手能力。 3.掌握基本的机械实验方法、测量技能及用实验法以及培养学生踏实细致、严肃认真的科学作风。 实验设备: 1、硬支承动平衡机 2、台式钻孔机、钳工工作台 3、线切割滚丝筒 4、标定加重螺栓。 实验原理: 根据《机械原理》所述的回转体动平衡原理知:一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡重和(它们的质心位置分别为和;半径大小可根据数值、的不同变化)所产生的离心力。动平衡的任务就是在这两个任选的平面(称ω为平衡基面)内的适当位置(和)加上两个适当大小的平衡重和,使它们产生的平衡力与当量不平衡重产生的不平衡力大小相等,而方向相反,即:

2 b 2b 22 222b 1b 1211ω r ωr ωr ωr G G G G =-=- 半径 越大,则所需的就越小。 通过平衡补偿回转体达到力和矩平衡,从而达到动平衡。 硬支承动平衡机工作原理简图如下所示: 实验步骤: 1)将两平衡平面处于原始位置,系统处于静平衡但动不平衡状态,在两支承处加润滑油。 2)按D 参数键,选定转子号,回车; 3)进入D1页,输入平衡转速540转,平衡配重的半径R ,回车; 4)进入D2页,输入A,B,C 参数,可测量,A 为第一平衡面距第一支承中心的距离,B 为两平衡面间距离,C 为第二平衡面和第二支承点的距离;输入支承方式HE-1,按存储键; 5)进入显示,测量页面;

大型汽轮机发电机转子高速动平衡\超速试验室

大型汽轮机发电机转子高速动平衡\超速试验室 【摘要】汽轮发电机是当今发电企业采用最多的设备之一,其振动、安全运行主要取决于机组的设计、制造、安装以及运行维护等方面。转子不平衡作为引发大型汽轮机发电机工作效率的主要原因,因此实现高速动平衡、超速实验室试验已成为保持转子平衡精度的主要环节。本文就我国大型汽轮机发电机转子高速动平衡、超速实验室做了简单的分析,旨在为同行工作提供参考。 【关键词】汽轮发电机;发电企业;高速动平衡;超速实验室;转子 目前,国内外发电设备生产厂家都非常重视转子高速动平衡和超速试验,并将其列为常规工艺检查的重要内容,是降低机组振动水平、保证机组运行安全、改善机组运行性能以及优化机组条件的主要手段。作为汽轮机质量的主要保证体系,在进行高速平衡、超速试验的时候还需要确保承上启下、瞻前顾后的要求,为后续工作的开展提供技术和理论指导。 1.动平衡技术性能测试 随着我国国民经济的飞速发展,对电力结构的调整和环保要求的提高,大力发展大容量、高参数超临界/超临界火电机组是我国电力行业发展的重要方向。为提高效率,汽轮机低压转子的长径比越来越大,转子朝着越来越“柔”的方向发展,柔性转子振动过大将直接影响到机组的安全稳定运行,因此这类大型汽轮机低压转子在出厂时都必须经过严格的高速动平衡。柔性转子平衡不同于刚性转子平衡,它不仅要平衡某一转速下转子传给轴承的不平衡力(轴承动反力),而且还要平衡该转速下转子的挠曲变形,才能保证转子在一定转速范围内平稳的运转。柔性转子平衡方法主要有模态平衡法和影响系数法。 (1)在动平衡技术性能测试之中,测试标准完全按照国际标准开展,是以ISO2953-1984平衡机描述及评价标准为主的,该标准明确规定校验转子为刚性转子,测得平衡机最小可达剩余不平衡值为0.5um,不平衡量在每一次减少干扰之后干扰率不得超过原来的80%。 (2)按国际标准ISO5343-1963评价,在柔性转子的平衡度测量中,其中明确的规定校验的转子为柔性转子的时候,高速平衡实验结果基本上能够满足预计运行标准,达到业界满意程度要求。 2.驱动用汽轮机的调速精确度测试 一般来说,驱动用汽轮机的调速范围主要为0~3000~36000r/min,在这个环节测试的时候通常都是在汽轮机驱动系统运行一分钟之后进行调速。近年来,随着国民经济的飞速发展和电力结构调整需求的提高,大力发展大容量、高参数、超临界的发电机组已成为我国电力行业发展的主要方向。在这种时代背景下,为了有效提高汽轮机发展进度,汽轮机的调速精确度控制要求更为严格,其驱动用

转子现场动平衡实验

实验一 转子现场动平衡实验 实验目的 通过本实验了解动平衡实验的基本方法 1. 实验原理 在实际工作过程中人们通常用单面加重三元作图法进行叶轮、转子等设备的现场动平衡,以消除过大的振动超差。这一方法的优点是设备简单——只需一块测振表。但缺点是作图分析的过程复杂,不易被掌握,而且容易出现错误。为此,我们在这里提出了一种简单易行的方法——单面现场动平衡的三点加重法。 假设在假设转子上有一不平衡量m ,所处角度为α,用分量m x 、m y 表示不平衡量。 m x =mcos α m y =msin α 为了确定不平衡量m 的大小和位置α,启动转子在工作转速下旋转,用测振设备在一固定点测试振动振速,设振速为V 0,则存在下列关系 式中K为比例系数 图42.1 三点加重法示意图 在P 1(α=0 )点加试重M ,启动转子到工作转速,测得振动振速V 1,有如下关系: 用同样的方式分别在P 2(α=120o )和P 3(α=240 o )点加试重M ,并测得振动值V 2 ,V 3, 有如下关系: 2 2V m m K y x =+ x ) (3P 1 2 2)(V m M m K y x =++222)2 3 ()21(V M m M m K y x =++- 322)2 3()21(V M m M m K y x =-+-

从以上三式推导可得: 从而可以进一步推得: 即由m x ,m y 计算不平衡质量m 和位置α。 2. 实验仪器和设备 1. 计算机 n 台 2. DRVI 快速可重组虚拟仪器平台 1套 3. 速度传感器(CD-21) 1套 4. 蓝津数据采集仪(DRDAQ-EPP2) 1台 5. 开关电源(DRDY-A ) 1套 6. 5芯-BNC 转接线 1条 7. 转子实验台(DRZZS-A ) 1 套 3. 实验步骤及内容 1. 转子动平衡实验结构如图4 2.2所示,将速度传感器通过配套的磁座吸附在转子实 验台底座上,然后通过一根带五芯航空插头-BNC 转接电缆和对应通道连接。图42.5是本实验的信号处理流程框图。 图42.2 转子动平衡实验结构示意图 2. 启动服务器,运行DRVI 主程序,点击DRVI 快捷工具条上的“联机注册”图标, 选择其中的“DRVI 采集仪主卡检测”进行服务器和数据采集仪之间的注册。在实验目录中选择“转子现场动平衡”实验。将参考的实验脚本文件读入DRVI 软件平台,如图42.3所示 3. 在转子实验台的配重盘上选取一个位置(比如贴反光纸的位置)作为初始位置(即 P 1点),然后用转子实验台附件中的螺钉,任意选取一个位置加上,作为不平衡重。 4. 启动转子/振动实验台到稳定转速,点击“数据采集开始”按钮,再点击“获取初 始振动数据”按钮,获取初始振动数据,然后停止运行转子实验台。 ) (3212 12/)(3/)3(23222 220212202322212V V MK m M MK V V m M V V V V K y x -= --=-++=) /(12 2x y y x m m tg a m m m -=+ =

发电机找动平衡

发电机转子现场动平衡查找 边科初久龙 本钢维检中心发电作业区 摘要:发电机轴瓦振动有很多是因为转子动平衡不好而引起的,以往我们多是将转子抽出,送到专业的试验机上进行动平衡查找。这样需要8到10个工作日,既耽误了生产又为检修带来了很大的工作量。采用现场找动平衡仅需要1个工作日就可以完成,无论是对生产还是检修都有很大的好处。 关键词:发电机振动动平衡 一.前言 质量不平衡是引起旋转机械振动大的最常见原因。理想的平衡状态是转子各断面惯性主轴与转动轴线重合,但由于种种因素,在实际汽轮发电机组轴系中不可能存在这种理想的平衡状态。不平衡离心力和力矩必然始终存在并作用在转子及支撑系统上。过大的不平衡量将造成转子、轴承和基础的大幅值振动,严重时会造成支撑部件的损坏、甚至轴系断裂的灾难性事故。为降低质量不平衡引起的振动,现场最有效的办法是进行转子(轴系)高速动平衡查找。 二.转子中不平衡的来源: 一个转子在设计上一般都使它相对于旋转轴线是轴对称的。但是由于工艺上的一系列因素影响,最后装配完毕的转子总是不能做到动力上的完全轴对称,存在一定的部平衡量。 这种不平衡通常称之为原始不平衡量。造成原始不平衡量的因素主要有: 1、转子材质的不均匀性: 2、联轴器的不平衡: 3、键槽不对称引起的不平衡。 4、转子加工中总会产生一些圆度偏差和偏心等; 5、叶轮的不平衡量影响; 这些因素造成的不平衡量都属于随机性质的,无法计算得到,因此总要通过重力试验(静平衡)和旋转试验(动平衡)来测定和校正,使其降低到允许的程度。 图一一个圆片的不平衡量 如果把一个转子分割成厚度为Δz的原片,则每个圆片(如图一所示)都存在一个不平衡量。鉴定大小为G的不平衡质量存在于半径为r、圆周参考角度为α的地方,那么其所产生的离心力为:

1-实验一 车轮动平衡检测

实验一车轮动平衡检测 一、实验目的 1、掌握车轮动平衡检测的原理 2、掌握轮胎动平衡的检测方法。 3、掌握平衡块的拆装方法。 二、实验设备 GD-80车轮动平衡测试仪1台,车轮一个,平衡块若干,工具若干。 三、实验原理及实验步骤 车轮不平衡(包括静态不平衡和动态不平衡)会使汽车在行驶中产生摇摆和跳动,车速超过60km/h时更加明显。汽车摇摆和跳动将导致油耗增加,轮胎不正常磨损,对车上其它部件也有损害。 车轮动平衡的检测按照下列步骤进行: 1) 清除被测车轮上的泥土、石子和旧平衡块。 2) 检查轮胎气压,视必要充至规定值。 3) 根据轮辋中心孔的大小选择锥体,仔细地装上车轮,用大螺距螺母上紧。 4)打开电源开关,检查指示与控制装置的面板是否指示正确。 5)用卡尺测量轮辋宽度b、轮辋直径d(也可由胎侧读出),用平衡机上的标尺测量轮辋边缘至机箱距离a,用键入或选择器旋钮对准测量值的方法,将a、 b、d直接输入指示与控制装置中。 (6)放下车轮防护罩,按下起动键,车轮旋转,平衡测试开始,微机自动采集数据。 (7)车轮自动停转或听到“笛”声,按下停止键并操纵制动装置使车轮停转后,从指示装置读取车轮内、外不平衡量和不平衡位置。 (8)抬起车轮防护罩,用手慢慢转动车轮。当指示装置发出指示(音响、指示灯亮、制动、显示点阵或显示检测数据等)时停止转动。在轮辋的内侧或外侧的上部(时钟12点位置)加装指示装置显示的该侧平衡块质量。内、外侧要分别进行,平衡块装卡要牢固。

(9)安装平衡块后有可能产生新的不平衡,应重新进行平衡试验,直至不平衡量<5g(0.3oz),指示装置显示“00”或“OK”时才能满意。当不平衡量相差10g左右时,如能沿轮辋边缘左右移动平衡块一定角度,将可获得满意的效果。 四、实验注意事项 1. 实验过程中,学生必须严格遵守指导教师和实验室管理人员的要求,按操作程序进行实验; 2.未经允许,学生不得擅自操作该实验台。 3.实验过程中要注意安全。 五、实验数据、现象记录 1.轮辋宽度b(mm): 轮辋直径d(mm): 轮辋边缘至机箱距离a(mm): 2.检测到的车轮不平衡量是: 3.选择的平衡块质量是: 4.动平衡是否检测成功: 六、思考题或讨论题 车轮动平衡检测的原理是什么?

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

发电机现场动平衡过程及分析

发电机现场动平衡过程及分析 近年来,发电机转子两侧出现同相振动现象越来越多,其原因和机理也正在得到人们越来越多的重视。同相振动是由于发电机转子本体三阶不平衡或外伸端不平衡所引起的,在二阶临界转速下工作的发电机转子,外伸端不平衡会使主跨转子的二阶振型畸变,产生类似于主跨转子三阶不平衡的振动特征。实践表明,与其它形式振动相比,降低同相振动有时比较困难。本文针对某台汽轮发电机组运行中出现的发电机同相振动问题进行了深入分析,对其机理进行了分析,总结了这类振动高效治理方法。1、振动现象某台60MW汽轮发电机组轴系由汽轮机、发电机、励磁机组成,励磁机为悬臂结构,如图1所示。正常运行中发电机振动较大,表1给出了3瓦和4瓦空负荷和满负荷下的振动数据。工作转速下,各测点振动以工频为主。带负荷过程中。振动幅值增大,但相位稳定。初步分析认为,发电机转子存在不平衡。2、发电机转子动平衡过程由表1可知,满负荷下3x 和4x相位相差27。,3Y和4Y相位相差20。,两侧x与y 方向振动相位基本相同。用谐分量法将3瓦、4瓦工作转速下的振动分解为同相分量和反相分量,如表2所示。 从表2可以看出,两侧振动分量中同相分量远大于反相分量,其中x同相达到88um。由于同相分量较大,参照以往加重

经验,首先在发电机两端施加对称型式配重:P3=1.14kg∠24°,P4=1.05kg∠24°。加重后,满负荷下振动明显减小,但是临界转速下振动增大。在发电机两端加同相配重导致工作转速和临界转速下的振动出现矛盾,无法兼顾。去掉发电机加重,改在励磁机上加重pA=250g∠60°如图2所示。本次加重后,满负荷下振动明显降低而临界转速下振动变化不大,轴系振动达到优秀,动平衡工作至此结束。表3给出了机组动平衡过程。3、发电机同相振动的深入分析 本次动平衡,在发电机和励磁机上的两次加重均降低了工作转速下的振动。但是,发电机本体上的加重却使临界转速下振动明显增大,3x振动达136um,而励磁机上加重后I临界转速下振动变化不大。表4给出了两次加重求得的影响系数。

车轮动平衡检测实验【方案】.doc

车轮动平衡检测实验 一、实验内容 测量实验车车轮最大不平衡量。如不平衡量超出该型车轮技术条件要求,则进行平衡调整。 二、实验目的 1、熟悉车轮动平衡仪的工作原理、结构及其特点。 2、掌握车轮动平衡仪的使用方法。 三、实验仪器设备 1、实验车轮4个。 2、车轮动平衡仪1台。 3、常用工具1套,调整专用工具1套。 四、实验准备工作 1、检查并按标准充足轮胎气压。 2、清除轮胎上的泥土及杂物等。 3、取掉车轮轮辋上的旧平衡块。 4、清洁动平衡仪的主轴和车轮总成锁紧锥套。 五、实验步骤 1)根据轮辋中心孔的大小选择锥体,仔细地装上车轮,用大螺距螺母上紧。 2)打开电源开关,检查指示与控制装置的面板是否指示正确。 3)用卡尺测量轮辋宽度b、轮辋直径 d(也可由胎侧读出),用平衡机上的标尺测量轮辋边缘至机箱的距离a,再用键入可选择器旋

钮对准测量值的方法,将a、b、c值输入到指示与控制装置中。 4)按下启动键,车轮旋转,平衡测试开始,微机自动采集数据。 5)车轮自动停转,从指示装置读取车轮内、外两侧不平衡量和不平衡位置。 6)用手慢慢转动车轮,当指示装置发出指示时停止转动。在轮辋的内侧或外侧的上部(时钟12点的位置)加装指示装置显示该侧平衡块质量。内、外侧要分别进行,平衡块装卡要牢固。 7)安装平衡块后有可能产生新的不平衡,应重新进行平衡试验,直至不平衡量<5g,指示装置显示“00”或“ok”时才行。 8)测试结束,关闭电源开关。 六、注意事项 1、主轴是动平衡仪的主要部件,因此检测时,无论是主轴还是动平衡仪本身都应避免强烈的振动或移动。 2、不能用铁锤敲击动平衡仪的任何部件。 七、结果整理与分析 1、将实验数据记入实验报告(请自行设计记录表格)。 2、试分析车轮动平衡产生的主要原因。

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

水轮发电机转子动平衡试验

水轮发电机转子动平衡试验 发表时间:2018-02-01T15:56:24.000Z 来源:《防护工程》2017年第28期作者:许建强王铁军 [导读] 水轮发电机组的有些振动是由转子质量不平衡引起的,因此动平衡试验是解决水轮发电机组振动的重要环节。 甘肃电投河西水电开发有限责任公司甘肃张掖 734000 摘要:水轮发电机组的有些振动是由转子质量不平衡引起的,因此动平衡试验是解决水轮发电机组振动的重要环节。本文介绍的动平衡测试的技术,分析添加不同转子端重量平衡的影响时,提出了不同的速度和转子的动平衡测试不同尺寸重量计算。然后在宝瓶电站2号机组的动平衡试验,准确找到不平衡阶段,通过试验确定最终权重分配权重,有效提高了机组的振动和摆动问题。 关键词:水轮发电机组;动平衡试验;振动;摆度;相位 1引言 水轮发电机组的振动是机组运行中的一种非常不利的现象。它严重威胁着供电质量、机组的使用寿命和安全经济运行。造成振动的因素很多,包括机械振动、水力振动和电磁振动3种原因,其中包括机械振动引起的转动部分质量不平衡、轴调节不好、导轴承间隙不当。水轮发电机组的振动,很多都是由于发电机转子质量不平衡造成的,不平衡转子在支承上造成的动载荷,引起整个旋转机械的振动,产生噪音; 加速轴承磨损,造成转子部分高频疲劳破坏和支承部分的某些部件强迫振动损坏,降低旋转机械的寿命; 甚至使整个机器控制失灵,发生严重事故。 大中型水轮发电机组的转子直径和重量很大,在机组运行中很容易出现由于转子的高质量的不均匀分布不平衡力。目前,解决转子质量不平衡问题最有效的方法是对转子进行动平衡试验,通过配重消除转子质量不平衡造成的不平衡力。 本文介绍了水轮机转子动平衡试验的基本方法,通过有限元分析,比较了转子动平衡试验时配重块在转子上、下端面的区别,指出了不同转速、不同尺寸的转子适合的配重方案。然后在宝瓶电站2号机组的动平衡试验,结合动态振动信号和键号准确地找到不平衡转子相法和试验,最终大大减小了机组的振动和摆动,为机组的长期稳定运行打下了良好的基础。 2水轮发电机组转子动平衡试验方法 三元平衡法是一种通过作图找出不平衡点位置和质量的简单实用的动平衡试验方法。在发电机转子表面(或其他部位)均匀取三点,每点相差120°,作好标志,如1、2、3三点。根据转子振动测试方法,用振动测量仪读出记录原始状态下的振动值S0;后停机,任意取一定质量G平衡块,把平衡块置于转子表面上1点,开机达到额定转速后读出记录振动值S1;用同样的方法,依次把平衡块放在2、3点后,读出记录振动值S2和S3,然后进行作图。 以O点为圆心,S0为半径作圆,根据转子上划分的三点相应的在该圆上均分1、2、3三点,以1点为圆心,S1为半径作圆,以2点为圆心,S2为半径作圆,以3点为圆心,S3为半径作圆(S1、S2、S3的长度可进行适当的倍数放大,以便使三圆有共同区域)。找出三圆共同区域面积的中心M,连接OM,延长到S0圆上N点,测出OM长S′和θ角,那么N点就是需要加载的位置,加载量用下列公式计算: Gx=S0/S′×G 用天平称取出Gx重量的平衡块,置于N点,观察振动仪数值的情况,然后对Gx进行几次(一般只需经过2~3次)微量增减,直至振动仪数值为最小值,即为最后的加载量Gx。 3动平衡试验实例 宝瓶电站共有3台水轮发电机组,安装投运初期,发现振动较大,然后通过动平衡测试的方法给转子增加配重,解决了振动较大的问题。 3.1单元基本参数 1)发电机基本参数:SF-J50-18/5100(小机SF-J23-12/3840)额定功率:50MW(23MW)额定电压:10.5kV 额定电流:3234.5A (1487.8A)额定功率因数:0.85(滞后)额定频率:50Hz额定转速:333.3r/min(500 r/min)飞逸转速:576 r/min(945 r/min) 2)水轮机基本参数:HLY157??-LJ-245(小机HLY193-LJ-158)最大水头:153.99m最小水头:129.47m额定水头:139.6m额定出力:51.28MW(23.71MW)额定流量:39.234m3/s(18.187 m3/s)额定转速:333.3r/min(500 r/min)飞逸转速:576 r/min(945 r/min)接力器行程:180mm(155mm)接力器压紧行程:5mm 3.2测量设备及测点布置 1)振动测量点 振动测量点有3个,即:上导、上机架、下机架。测量用的传感器是一种能准确反映低频振动信号的速度传感器,通过积分将速度信号转化为振动位移。 2)单摆测量点 摆动测试4点,即:X、Y、-X、-Y ,测量用传感器采用的是一体化电涡流位移传感器。 3)键相点 涡流位移传感器安装在上架水平振动传感器的同一位置,上架上的水平振动传感器作为主分析传感器。 3.3转子不平衡检测 转子不平衡检测一般先进行变速试验,再进行励磁试验。变速试验的目的是测量机组质量不平衡的影响;变量励磁试验是测量机组磁力拉力的影响。在这个测试中,变速测试是以50%额定速度启动的,每10%个作为测量点,直到100%额定速度。变励磁试验从50%额定励磁电压开始,每10%点作为测量点,直到100%额定励磁电压。对框架的水平振动和摆动频率4.57hz,这仅仅是1倍频。主频在变速试验站在横向振动频率、振幅与转速的升高显著增加相应的频率,表明机组的振动信号来满足转子不平衡的故障特征。 3.4试验重量试验 相位的准确与否对转子动平衡测试是成功或失败的关键,通过点和上机架的水平振动的关键测点的时域波形,框架的水平振动信号高

1#机组动平衡试验

吉勒布拉克水电站1#机组动平衡试验 前言 水力机组运行的稳定性直接影响到电力系统的安全运行。机组的振动是造成机组不稳定运行的一个重要原因。克服此类不稳定的因素是水力机组检修中的一项重要任务。 一般来说,由于机组在制造、安装等机械方面的原因,在运转中都不可避免地存在着不同程度的振分理处,这是不可能完全避免和消除的现象。只要将振动限制在允许的范围之内,它对机组本身及其运行并不会造成危害,也就是说可以保证机组稳定运行。然而,当机组的振动超过允许的范围,或振动的频率同机组的某固有频率产生共振时,就会严重地影响到机组的安全运行。 水轮发电机组的振动大部分原因是因转动部件不平衡造成的。这种不平衡力主要来自于机械不平衡(水轮机质量不平衡、发电机转子质量不平衡、轴线曲折、导轴承间隙计整不当、推力轴承未调整好、推力头卡环配合松动)、电磁不平衡(转子圆度差、发电机空气间隙不均匀、匝间短路、三相不平衡)和水力不平衡(水轮机止漏环间隙不均匀、导叶开度不均、泄水锥脱落等)。其中发电机转子质量不平衡是造成机组振动的主要原因。如果机组振动确实是因发电机转子的质量分布不平衡而引起的,则必须作动平衡试验。对于部分由于电磁不平衡或水力不平衡引起的振动,也可以通过在发电机转子上配重来减少部分不平衡,降低振动。 新疆吉勒布拉克水电站1#机组在运行过程中,从机组振摆系统显示的数据来看,振动略有超标,而且上导摆度比水导摆度大,初步分析是由于机组转子动不平衡引起的,因此在现场对机组进行了动平衡试验。 1 动不平衡试验方法 动平衡试验,就是人为地改变转子的不平衡性,从面消除由不平衡所引起的转子质量不均匀造成机组振动。 动平衡试验的方法:采用三次加重法进行动平衡试验,使机组在额定转速下运转,首先测出其振动值μ 的大小;然后顺序地在机组转子的同一半径互成120°的三点逐次用同 一试重块加重,分别启动机组再次在额定转速下运转后,测出新的振动值(μ 1、μ 2 、μ 3 ), 根据不平衡力和振动值的关系,用作图法求出需加配重块的大小和方位,进行加重,利用配重块所产生的附加离心力去平衡原有的不平衡力,达到减小振动的目的。 动平衡试验的内容包括:

刚性转动零件的静平衡与动平衡试验的概述

刚性转动零件的静平衡与动平衡试验的概述1. 基本概念: 1.1不平衡离心力基本公式: 具有一定转速的刚性转动件(或称转子),由于材料组织不均匀、加工外形的误差、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算: 式中:G------转子的重量(公斤) e-------转子的重心对旋转轴线的偏心量(毫米) n-------转子的转速(转/分) ω------转子的角速度(弧度/秒) g-------重力加速度9800(毫米/秒2) 由上式可知,当重型或高转速的转子,即使具有很小的偏心量,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原由之一.所以零件在加工和装配时,转子必须进行平衡. 1.2转子不平衡类别: 1.2.1转子的惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴 线上,如图1a所示.当转子旋转时,将产生不平衡的离心力. 1.2.2转子的主惯性轴与旋转轴线主交错将产生不平衡的离心力,且相交于转 子的重心上,即转子重心在旋转轴线上,如图1b所示.这时转子虽处于平衡状态,但转子旋转时将产生一不平衡力矩. 1.2.3大多数情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静 动不平衡.即转子的主惯性轴与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点,如图1c所示.当转子旋转时,将产生一个不平衡的离心力和一个力矩. 1.2.4 转子静不平衡只须在一个平面上(即校正平面)安放一个平衡重量,就可以使转子达 到平衡,故又称单面平衡.平面的重量的数值和位置,在转子静力状态下确定,即将转 子的轴颈放置在水平刀刃支承上,加以观察,就可以看出其不平衡状态,较重部份会 向下转动,这种方法叫静平衡.

大型汽轮机发电机转子高速动平衡超速试验室-精选文档

大型汽轮机发电机转子高速动平衡超速试验室 目前,国内外发电设备生产厂家都非常重视转子高速动平衡和超速试验,并将其列为常规工艺检查的重要内容,是降低机组振动水平、保证机组运行安全、改善机组运行性能以及优化机组条件的主要手段。作为汽轮机质量的主要保证体系,在进行高速平衡、超速试验的时候还需要确保承上启下、瞻前顾后的要求,为后续工作的开展提供技术和理论指导。 1.动平衡技术性能测试 随着我国国民经济的飞速发展,对电力结构的调整和环保要求的提高,大力发展大容量、高参数超临界/ 超临界火电机组是我国电力行业发展的重要方向。为提高效率,汽轮机低压转子的长径比越来越大,转子朝着越来越“柔”的方向发展,柔性转子振动过大将直接影响到机组的安全稳定运行,因此这类大型汽轮机低压转子在出厂时都必须经过严格的高速动平衡。柔性转子平衡不同于刚性转子平衡,它不仅要平衡某一转速下转子传给轴承的不平衡力 (轴承动反力),而且还要平衡该转速下转子的挠曲变形,才能保证转子在一定转速范围内平稳的运转。柔性转子平衡方法主要有模态平衡法和影响系数法。 (1)在动平衡技术性能测试之中,测试标准完全按照国际标准开展,是以ISO2953-1984 平衡机描述及评价标准为主的,该标准明确规定校验转子为刚性转子,测得平衡机最小可达剩余不平衡值为

0.5um,不平衡量在每一次减少干扰之后干扰率不得超过原来的80%。 (2)按国际标准ISO5343-1963 评价,在柔性转子的平衡度测量中,其中明确的规定校验的转子为柔性转子的时候,高速平衡实验结果基本上能够满足预计运行标准,达到业界满意程度要求。 2.驱动用汽轮机的调速精确度测试一般来说,驱动用汽轮机的调速范围主要为0~3000~36000r/min ,在这个环节测试的时候通常都是在汽轮机驱动系统运行一分钟之后进行调速。近年来,随着国民经济的飞速发展和电力结构调整需求的提高,大力发展大容量、高参数、超临界的发电机组已成为我国电力行业发展的主要方向。在这种时代背景下,为了有效提高汽轮机发展进度,汽轮机的调速精确度控制要求更为严格,其驱动用汽轮机的控制策略从原来的刚性要求逐渐向着柔性迈进,这种工作方式必然会影响到汽轮机运行稳定性和调速精确度,因此就需要采用更加严格、科学的精确度测试技术进行研究和分析,从而满足当今的发展要求。在这个时候,驱动用汽轮机的调速精确度测试需要和传统的结合起来,其基本原理大致相同,最大区别在于调速范围发生了重大变化,只要我们及时的调整汽轮机驱动系统的检测结构,便可以得到有效的精确度测试结果。 3.防护筒体真空舱抽真空性能测试 在本次工作中所选用的防护筒体真空舱为敞篷式结构,真空舱容积为1400 立方,根据实际测量数据分析,其在三十分钟内所达到的臭气真空度完全符合设计标准要求。根据这些数据分析表明,该

电机转子动平衡实验

电機转子动平衡实验 1.不平衡度 2.不平衡量 计算允许的不平衡量值U per,其中,不平衡烈度S u根据GB/T9239 / ISO1940可查。 3.允许剩余平衡量的分配 允许不平衡量U per分配到两个矫正面U per1和U per2上的工作比较关键,分配转子允许不平衡量与转子的结构(形状,重心位置),支撑面和矫正面的设置有很大的关系。

分配原则:两个矫正面上的允许不平衡量U per1和U per2之和必须小于等于总的允许不平衡量U per。 转子为重心与两支承面不对称转子,所以左右两支承面的动载荷分别为: 为了保证两支承面的动载荷不超载,两校正面的允许不平衡量U per1和U per2还必须满足式(6) 和式(7) 的约束条件: 根据式(4) ~(7) 的约束方程,可得出两校正面的允许不平衡量U per1和U per2的取值不是惟一的。图解法可直观地反映这点,用图解法可求出两校正面分配的允许不平衡量U per1与U per2的取值范围。 位于OXGR四边形内的任意点均满足式(6) 和式(7) 的约束。因此,两校正面的U per1和U per2的解不惟一,如取G点,则左右两校正面U per1和U per2也可同时达到其允许不平衡量,但此时的U per1与U per2不相等,不利于大批量生产,同时左右两支承面U1与U2的动载荷也将出现在不利的相位上。根据实践经验,取直角坐标的平分线与OXGR四边形的交点G’,此时的U per1 = U per2。左右两支

承面U1与U2的动载荷与其允许值可能出现微小的差别。 针对图1所示的转子结构,按一定比例对两校正面的允许不平衡量进行分配,设U per1 / U per2 = D,则D可按式(14) 计算: 在实际操作过程中,为方便人员操作,将两校正面的允许不平衡量U per1与U per2进行变换,分别除以电动机转子两校正面上配重位置半径R,最终得到电动机转子两校正面的实际允许不平衡量U per1’ = U per1 / R;U per2’ = U per2 / R。 4.平衡校正 采用软支撑卧室双面动平衡机检测。每次检测结束后动平衡机自动分离显示两校正面的初始不平衡量或剩余不平衡量。如果两校正面的初始不平衡量或剩余不平衡量超过设定的允许不平衡量,动平衡机将报警。操作人员根据动平衡机显示的两校正面的初始不平衡量或剩余不平衡量与允许值间的差额和相位,将适量的平衡胶泥分别粘贴在两校正面的相应位置,然后重新检测、加重(包括减少上一次过多的加重量),直至转子平衡合格为止。 平衡胶泥对转子的校正面(粘贴胶泥的位置)有一定的要求,被粘面应干燥无油污,需要时可用酒精擦净。平衡胶泥混合制备时,取等体积的甲、乙组份胶泥混合均匀,在冬季气温较低的环境下,可将胶泥预热(25~30℃左右)变软后再使用。混合方法以重复“位伸→绞合→折叠”的重复绞麻花法最为简单有效。 5.注意事项 转子初始不平衡量不宜过大。对于初始不平衡量较大的转子,虽然可以通过校正将其平衡到允许不平衡量范围以内,但是转子的整个质量(重量)的增加量也相应较多,将影响电动机的运行精度(如复位的准确度等)。因此,应注意控

动平衡测量原理

动平衡测量原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。 在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法 活塞的速度为 活塞的加速度为 我的论文中的对应表达式与以上两个式子不同: 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。

相关文档
最新文档