脂肪酶

脂肪酶
脂肪酶

脂肪酶催化药物合成

院系:化工学院

班级: 2009级制药工程2班学号: 20009650818

姓名:李红霞

脂肪酶催化药物合成

摘要:将脂肪酶固定化可提高酶的选择性、稳定性等,已广泛应用于手性拆分

等研究。常用的高分子固定化载体有聚丙烯酸多孔树脂及带功能基团的共聚物等。从脂肪酶结构的角度介绍其手性拆分机理,并具体讨论了一些商品化固定化脂肪酶在手性拆分中的应用及固定化载体材料对手性拆分的影响。

关键词:脂肪酶;酶催化;手性拆分;药物合成;应用

一、综述

脂肪酶(Triacylglycerol lipase E C3.1.1.3)是广泛存在的一种酶,在脂质代谢中发挥重要的作用。在油水界面上,脂肪酶催化三酰甘油的酯键水解,释放更少酯键的甘油酯或甘油及脂肪酸。脂肪酶结构有2个特点:(1) 脂肪酶都包括同源区段:His-X-Y-Gly-Z-Ser- W-Gly或Y-Gly-His-Ser-W-Gly (X、Y、W、Z是可变的氨基酸残基);(2) 活性中心是丝氨酸残基,正常情况下受1个α-螺旋盖保护。脂肪酶的特性脂肪酶底物专一性酶的底物专一性取决于酶分子结构,脂肪酶分子由亲水、疏水两部分组成。活性中心靠近分子疏水端。不同来源的脂肪酶存在着结构上的差异,使得不同的来源的脂肪酶有不同的底物专一性。

1.1来源

脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。在动物体内,各类脂肪酶控制着消化、吸收、脂肪重建和脂蛋白代谢等过程;细菌、真菌和酵母中的脂肪酶含量更为丰富(Pandey等)。由于微生物种类多、繁殖快、易发生遗传变异,具有比动植物更广的作用p H、作用温度范围以及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,适合于工业化大生产和获得高纯度样品,因此微生物脂肪酶是工业用脂肪酶的重要来源,并且在理论研究方面也具有重要的意义。

1.2性质

脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。

脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda 和Desnnelv 就发现了这一现象。溶于水的酶作用于不溶于水的底物,反应是在

2个彼此分离的完全不同的相的界面上进行。这是脂肪酶区别于酯酶的一个特征。酯酶(E C3.1.1.1)作用的底物是水溶性的,并且其最适底物是由短链脂肪酸(≤C8)形成的酯。

1.3生产

脂肪酶的制备方法有提取法、化学合成法和微生物发酵法。提取法资源有限、工艺复杂、产量低;化学合成法成本太高;微生物发酵法的应用前景要远远大于提取法和化学合成法,它不受环境影响,资源丰富,产酶周期短,产物较单纯且成本低,生产上易于管理。商品化脂肪酶主要来源于各种细菌、酵母和真菌等微生物的发酵,有些霉菌可通过固态发酵及液体深层发酵两种方法进行发酵。通过传统诱变育种以及优化发酵条件提高了脂肪酶的产量,使得许多脂肪酶实现了产业化生产,尤其是基因工程的引入,大大提高了脂肪酶的产量。由于提取材料来源和酶含量的因素,动植物脂肪酶主要应用于科学研究。

二、脂肪酶催化药物合成

目前,临床上超过60%的常用药物为手性药物。通常的化学工艺对手性分子的合成并不理想,存在反应路径长、重金属催化剂残留和收率低等缺点;而脂肪酶对底物具有高度的立体选择性,只需单步反应就可以高效率地制备出手性产物,这使得其在光学纯化物制备和药物手性转换中具有独特的优势。同时,脂肪酶作为生物催化剂具有高度的区域选择性,特别适合于一般化学方法难以实现的多功能化合物的合成,能很好的避免多取代产物等副作用的产生。脂肪酶催化反应除具有高度的立体选择性和区域选择性、副反应少等特点外,还具有催化反应条件温和、无环境污染等优越性,可以保证产物的光学纯度和收率。脂肪酶作为生物催化剂,为化学过程提供了更为清洁和高效的途径。

2.1脂肪酶催化合成抗炎镇痛药物

非甾体类抗炎镇痛药物(Nonsteroidal antiinflam- matory drugs,NSAIDs)是一类具有解热、镇痛、抗炎、抗风湿和血小板聚集作用的药物,主要用于治疗多种疾病引起的持续性发炎、疼痛和发烧。此类药物大多因手性中心的存在而具有对映

体,比如萘普生、酮洛芬、布洛芬和氟比洛芬等。通过利用脂肪酶在手性药物拆分中具有的优势,对合成这四种药物的工艺进行了优化,获得了较好的结果。2.1.1脂肪酶催化合成(s)-萘普生

萘普生[(+)口一甲基一6一甲氧基一2一萘乙酸]是世界上应用最多的非甾体类抗炎镇痛药物。临床研究表明,(s)一萘普生的生理活性是其对映体的28倍,并作为单一对映体药物用于人体。在有机溶剂中水解(R,S)一萘普生甲酯是合成(S)一萘普生的理想途径(图1)。

用皱褶假丝酵母脂肪酶(CRL)在超临界二氧化碳存在下的含水缓冲溶液/异辛烷反应体系中立体选择性水解消旋萘普生甲酯。结果发现,对映体比率随着反应时间的延长而升高,对映体选择率(E)为236,转化率(z)为41.6%,产物对映体过剩值(ee。)为98.2%,底物对映体过剩值(ee。)为70.0%。在超临界二氧化碳中选择合适的反应体系和实验条件,产物对映体过剩值、对映体比率、转化率、酶活性和稳定性均能达到较好的水平。加入氨基杯[4,6]芳烃和羧基杯[6]芳烃添加剂的包裹脂肪酶与不加添加剂的包裹脂肪酶相比具有更高的转化率和立体选择性。因此,选择适宜的添加剂对脂肪酶的立体选择性具有重要的影响。CALB-(S)一萘普生复合物的氢键比CALB- (R)一萘普生复合物的氢键更加稳定,此外,与普通条件下相比,在超临界条件下可在更短的反应时间里具有最小能量值,得到更高的产率。

2.1.2肪酶催化合成(s)-酮洛芬

酮洛芬(口一甲基-3-苯甲酰基一苯乙酸)的羧基口一碳是手性中心,存在(R)一和(S)一对映体。然而,(S)一酮洛芬和(R)一酮洛芬却显示了不同的药理活性。(S)一对映体可用于减缓炎症和减轻疼痛,而(R)一对映体活性很低,甚至在有些情况下,还有不必要的生理副作用和毒性。

最近,研究人员克隆了粘质沙雷菌ECUl010的一种脂肪酶,并在大肠杆菌中表达,这种重组脂肪酶能立体选择性水解(R,S)一酮洛芬酯合成(S)一酮洛芬(图2),ee。达到91.6%,E达到63,z高达48.2%。重组脂肪酶也表现了很高的

立体选择性,这为得到具有更高活性的脂肪酶提供了另外一条途径。

将CALB于酶膜反应器中固定,与游离CALB相比,固定化CALB降低了对映分离(R,S)一酮洛芬的酶量,ee。和E分别提高到87.8%和27。

2.1.3脂肪酶催化合成(s)-布洛芬

布洛芬[2一(4一异丁基苯基)丙酸]是常用的非甾体类抗炎镇痛药物,广泛用于治疗头痛和轻微的疼痛。消旋布洛芬的两个对映体只有(S)一对映体具有抗炎的特性[1 0|。有报道称(S)-布洛芬酸的镇痛作用是(R)一对映体的160多倍,(R)一布洛芬不仅没有活性并且还可能引起副作用。

为了合成光学纯的(S)一布洛芬,很多研究者对脂肪酶催化消旋布洛芬的酯交换反应进行了研究。Wang等‘123在亲水醋酸纤维素/疏水聚四氟乙烯薄膜复合材料中设计了一种特殊的微结构作为脂肪酶的载体,手性拆分消旋布洛芬,产物对映体过剩值和对映体选择率均比自由脂肪酶催化体系显著提高,这种固定化载体改善了脂肪酶的立体选择性和稳定性。Gotte—mukkala等[13]研究了溶剂十八烷烃的侧链甲基位置和水活度对CRL催化布洛芬酯交换的对映选择性的影响(图3)。结果显示,CRL在40。C下水活度为0.73的异辛烷中,催化反应达到最好的效果,起始反应速率和对映选择性均较好。

Foresti等[14]利用商业脂肪酶Novozym 435,在无其它溶剂存在条件下催化(R,S)一布洛芬和乙醇的酯交换反应,并将实验数据作为分子模型进行深入的计算分析。在最佳反应条件下,产物对映体过剩值达到54%,布洛芬转化率达到63%。Liu等[153在0.1 mol·L-1磷酸缓冲溶液(pH值8)中,用来自子囊菌酵母的胞外脂肪酶LIP催化水解(S)-布洛芬酯,得到了高纯度的(s)一布洛芬,ee达到98%。

2.2脂肪酶合成抗抑郁药物及其中间体

达泊西汀、氟西汀、度洛西汀和西酚普兰是治疗抑郁症的临床常用药,它们均因具有手性中心而存在(S)-对映体和(R)-对映体,进而具有不同药理和生理学活性,其结构式见图5.

用南极假丝酵母脂肪酶A(CALA)拆分3一氨基一3一苯基-1-丙醇(化合物I),得到了合成(S)一达泊西汀的重要中间体N-(0-3一丁基二甲硅烷基一3一羟基一1一

苯丙基)甲氧基乙酰胺(图6),合成的(S)一达泊西汀有较高的产率(72%)和ee(93%)。

Chaubey等‘201研究证实固定化的节杆菌属螺菌脂肪酶(ABL)在动力学拆分氟西汀中间体时具有极好的特性。在固定化酶催化反应中,转化率、对映体过剩值和对映选择性等均显著提高。Kamal等[213研究了固定化洋葱假单胞杆菌脂肪酶催化r叠氮醇类乙酸盐的水解和醇解反应,动力学拆分得到的对映纯y-叠氮醇类,可以用于抗抑郁药(S)一氟西汀和(S)一度洛西汀的合成。Wang等[22’2朝在以乙酰乙烯酯为酰基供体的无溶剂体系中,研究了固定化南极假丝酵母脂肪酶B催化拆分S-4-[(4一二甲氨基)一1一(4一氟苯)一1一羟基一卜丁基]-3一羟甲基一苯基腈(西酞普兰中间体)的动力学模型,(S)一二醇的纯度达到99.5%,产率达到86.2%(图7)。

2.3脂肪酶催化合成抗菌药物及其中间体

甲霜林IN-(2,6一二甲苯基)一N一2一(甲氧乙酰基)丙氨酸甲酯]是丙氨酰胺的一种,体内实验表明其具有很好的杀菌活性,并且没有毒副作用[2引。然而只有(R)一甲霜林具有杀菌活性[2引。Park等[z61用固定在丁基纤维素上的洋葱假单胞杆菌脂肪酶高效合成了杀菌剂(R)一甲霜林的重要中间体2一甲氧乙基一(R)一N一(2,6-一--甲苯基)丙氨酸[(R)一2],获得了较高的产率(34%)和ee(96%)(图8)。

穿心莲内酯是草药穿心莲的主要活性成分,具有抗菌活性[30|,多年来被广泛用于治疗多种疾病,比如细菌和病毒感染。Chen等口¨将洋葱伯霍尔德杆菌脂肪酶固定化后在丙酮中催化穿心莲内酯制备14一乙酰基穿心莲内酯,产率达到95%(图11)。为在非水介质体系中脂肪酶催化穿心莲内酯获得更多的穿心莲内酯类似物提供了良好的启示。

2.4脂肪酶催化合成维生素类药物

维生素是一类具有生物活性的低分子有机物,是人体进行正常物质代谢、维持正常生理功能所必不可少的类活性药物。如果长期缺乏某种维生素,就会引起人体生理机能障碍。

在酯交换反应中,不同的酰基供体不仅影响着反应的转化率,而且也影响到区域选择性。Zhang等对影响反应的参数进行了研究。结果显示,在乙腈中,醋酸乙烯酯作为酰基供体,南极假丝酵母脂肪酶B(No—vozyme 435)催化合成5一。乙酰吡哆醇(5一AcPN)的最大转化率达到99%,区域选择性达到93%。Bai等[43] 也对该反应的影响参数进行了研究,得到了与Zhang等类似的结果。维生素E

经酯化修饰转化成其衍生物形态,可改善其稳定性、水溶性和表面活性等。Torres 等首次用酶催化维生素E的酰化反应。在2一甲基一2一丁烯(2M2B)中,分别用吸附于离子交换树脂、生物可降解聚合物聚乙交酯和聚丙烯上的南极假丝酵母脂肪酶B,催化醋酸乙烯酯与维生素E进行酯交换反应,结果显示吸附于离子交换树脂的南极假丝酵母脂肪酶(Novozym 435)催化效果最好。

三、脂肪酶法制备生物柴油

3.1 游离脂肪酶法制备生物柴油

游离脂肪酶通过催化双相体系油水界面的转酯化反应制备生物柴油。基于油水界面活化效应的特点,脂肪酶催化制备生物柴油的反应速率较快,不受底物和产物的扩散限制,产物与副产物分离简单。苏敏光等利用游离中性脂肪酶催化泔水油与甲醇反应制备生物柴油,通过正交实验获得最佳反应条件:油与醇的摩

尔比1:3 ,油与酶的质量比 1:1,温度45℃,油与溶剂的质量比1:0.6.在

此条件下反应10h。生物柴油收率可达89.7 %以上。吴良彪利用游离脂肪酶催化食用废油与甲醇反应制备生物柴油,得到最佳反应条件:温度50℃,脂肪酶

催化剂用量为原料质量的3%,甲醇与食用废油的体积比为3:1,共溶剂丁酮与甲醇的体积比为 1;6,pH= 7,反应时间4h 。在此条件下,生物柴油收率达 7 8 %,产品的各项指标均与 0石化柴油相接近。游离脂肪酶在反应体系中分散不均匀

且容易聚集结块,不利于回收和重复利用;并且甲醇对脂肪酶具有失活效应,限制了脂肪酶在工业规模生物柴油生产中的应用。通过固定化技术和全细胞催化剂的采用、甲醇流加方式的改进等手段,可改善脂肪酶的催化活性和稳定性,从而降低生产成本加快生物柴油工业化进程。

3.2固定化脂肪酶法制备生物柴油

固定化酶技术克服了游离酶的不足。固定化细胞技术是指用物理或化学方法将游离细胞固定于限定的空间区域,并使固定后的细胞拥有良好的催化活性和

重复使用性的一种方法。近年来在生物柴油的制备研究中固定化酶有所应用,有望成为一种新型、高效、无污染、低成本的生物柴油工业化生产方法。Yagiz

等以人工合成水滑石为载体固定化lipomz TLIM脂肪酶,考察了温度p H、粒径、时间对固定化效率的影响,并用该固定化脂肪酶催化废油脂的转酯化反应,室温( 2 4℃) 下反应105h后转化率达92.8 %,重复使用7次后,残余酶活为36%。高阳等以非极性大孔树脂N KA为载体,用物理吸附法固定化Candida sp.99-125脂肪酶,该法简便易行,在低水含量的庚烷体系中进行大豆油的转酯化反应,单

批转化率为97.3 %,连续反应19个批次,转化率为70.2 %,残余酶活为85.1%.

3.3 复合脂肪酶协同催化法制备生物柴油

复合脂肪酶协同转酯化作用可解决单一脂肪酶受酰基转移速率的影响而导致转化效率低的问题。对复合脂肪酶与单一脂肪酶的催化效果进行比较研究,可探索出能有效提高脂肪酶转化效率的生物酶法新工艺。周位报道,在无溶剂体系中,Novozym435脂肪酶分别与Lipozyme TLIM和Lipozyme RMIM脂肪酶以质量比7:3混合时,脂肪酸甲酯收率分别达到 94.52%和96.25%,比Novozym435脂肪酶单独使用时分别提高了9.52%和9.99 %。在叔丁醇体系中,当Novozym435

与Lipozyme TLIM脂肪酶分别以质量比6:4和 8:2 混合时,脂肪酸甲酯收率分别为85.06 %和81.5%,比Novozym435脂肪酶单独使用时分别提高了9.89 %和7.48%,优化叔丁醇体系中复合脂肪酶催化条件后,脂肪酸甲酯收率达9 2 %。

四、前景

近年来随着细胞工程、基因工程、固定化技术的兴起,脂肪酶的研究特别是对产脂肪酶的菌株诱变育种及基因克隆等方面也取得长足进展。目前,脂肪酶主要用于高价值的产品和具有热敏性的底物或产品,随着人们生活水平的提高,在食品、牛奶、香水、化妆品和医药中添加天然成分的产品越来越受消费者青睐。由天然底物生物合成的化合物被认定为天然产物,而同样的原料用化学法生产的产物则不受欢迎。因此,天然成分在今后将会具有很大的需求,这使生物催化剂极具吸引力,所以说,脂肪酶在油脂、食品、医药、化妆品等领域具有光明的应用前景。

五、参考文献

1、张无敌,尹芳,李建昌等.生物柴油的开发利用现状分析[ J中国建设动态:阳光能源,2 0 0 6, ( 2 ) : 5 9— 6 1 .

2、李宇扬,孙佩慧,胡基埂等脂肪酶催化制备生物柴油的研进展[ J ] .中国生物工程杂

志, 2 0 0 8 , 2 8( 1 0 ) : 1 3 6—1 4 0 .

3、李昌珠,蒋丽娟,程树棋.生物柴油——绿色能源[ M] .北京化学工业出版社,2 0 0

5 . 1

6 3—1 6 4 .

4、Tang LiangMa,Xia Liming。Purification and partial characterization of a@asefrom

Bacillus coagulans ZJU318.Applied BiOchemisⅡy and Biotechnology2005.125(2):139—146(SCI收录)

5、唐良华(参编).《酶工程》(第一版).2005.北京:科学出版社。

6、徐天闻,贾涛,许建和. 非水介质中脂肪酶催化的手性拆分研究进展[ J ] . 生物加工

过程,2 0 0 5 ,3 ( 4 ) . 1 - 8 .

7、Tang Lianghua,Xia Liming and et a1.Purification of a Lipase from

Peniciltium expansum PED一03 and Application of the Enzyme in Kinetic

Resolution of Racemic Ibuprofen: Applied Biochemistry and

Biotechnology,2007,acc印ted(SCI收录).

脂肪酶的概述及应用

脂肪酶的概述与应用 一脂肪酶概述、 脂肪酶(Lipase,甘油酯水解酶)隶属于羧基酯水解酶类,能够逐步的将甘油三酯水解成甘油和脂肪酸。脂肪酶存在于含有脂肪的动、植物和微生物(如霉菌、细菌等)组织中。包括磷酸酯酶、固醇酶和羧酸酯酶。脂肪酸广泛的应用于食品、药品、皮革、日用化工等方面脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。 脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。 脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(Veeraragavan等)。总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度范围,高稳定性和活性,对底物有特异性(Schmid等;Kazlauskas等)。 脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda和Desnnelv 就发现了这一现象。溶于水的酶作用于不溶于水的底物,反应是在2个彼此分离的完全不同的相的界面上进行。这是脂肪酶区别于酯酶的一个特征。酯酶(E C3.1.1.1)作用的底物是水溶性的,并且其最适底物是由短链脂肪酸(≤C8)形成的酯。 脂肪酶是重要的工业酶制剂品种之一,可以催化解脂、酯交换、酯合成等反应,广泛应用于油脂加工、食品、医药、日化等工业。不同来源的脂肪酶具有不同的催化特点和催化活力。其中用于有机相合成的具有转酯化或酯化功能的脂肪酶的规模化生产对于酶催化合成精细化学品和手性化合物有重要意义。 脂肪酶是一种特殊的酯键水解酶,它可作用于甘油三酯的酯键,使甘油三酯降解为甘油二酯、单甘油酯、甘油和脂肪酸。 酶是一种活性蛋白质。因此,一切对蛋白质活性有影响的因素都影响酶的活性。酶与底物作用的活性,受温度、pH值、酶液浓度、底物浓度、酶的激活剂或抑制剂等许多因素的影响。

脂肪酶拆分外消旋_苯乙胺的研究进展

the formation of flavour components in cider[J].J I Brewing,1988,94 (6):391-395. [26]MANGAS J J,GONZALEZ M P,RODRIGUZE R,et al.Solid-phase extraction and determination of trace aroma and flavour components in cider by GC-MS[J].Chromatographia,1996,42:101-105. [27]WILLIAMS A A,MAY H V.Examination of an extract of cider volatiles using both electron impact and chemical ionization gas chro-matography-mass spectrometry[J].J I Brewing,1981,87:372-375. [28]POLLARD A,KIESER M E,STEVENS P M,et al.Fusel oils in ciders and perries[J].J Sci Food Agr,1965,16:384-389. [29]龙明华.以浓缩苹果汁酿造的苹果酒挥发性香气成分分析[J].酿酒 科技,2006(6):94-95. [30]彭帮柱,岳田利,袁亚宏,等.气相色谱-质谱联用法分析苹果酒香气 成分的研究[J].西北农林科技大学学报,2006,31(1):71-74. [31]岳田利,彭帮柱,袁亚宏.基于主成分分析法的苹果酒香气质量评价 模型的构建[J].农业工程学报,2007,23(6):223-227. [32]林巧,杨永美,孙小波,等.苹果酒发酵条件的控制与研究[J].中国 酿造,2008(10):60-63. 手性是自然界化合物的普遍特征。构成自然界物质的一些手性分子虽然从化学式组成来看是一模一样,但其空间结构完全不同,其性质也是不同的[1]。如DL-(±)-合霉素的治疗效果仅为D-(-)-氯霉素的一半;20世纪50年代欧洲发生的“海豹儿”出生的灾难性事故,正是由于“反应停”是一种外消旋的手性药物,其(R)型异构体具有镇静作用,而(S)型却具有致畸作用。因此,如何将物质纯化为光学纯级别是目前化学工业的重要研究目标。α-苯乙胺(DL-α-Phenylethylamine)是一种有着良好应用前景的化工中间体原料,由于α-苯乙胺分子中含有一个手性中心,可分为(R)和(S)2种对映异构体及外消旋α-苯乙胺,其中(R)、(S)这2种单一对映体既可以作为某些外消旋有机酸或醇类物质的手性拆分试剂,又可以作为不对称合成的手性原料,因此是一种重要的手性中间体[2]。目前光学纯级别化合物的获得方法主要有手性合成和外消旋体拆分2种。本文主要阐述利用脂肪酶对外消旋α-苯乙胺的拆分研究进展。 1脂肪酶拆分机理 分子模拟研究表明,对映体在Candida Antarctica脂肪酶B活性中心以不同的方式定向[3]。手性底物的对映体以不同方式定向和结合到酶活性中心,这一事实可以作为改变对映体选择性的依据。目前被普遍接受的是“立体特异性口袋”理论:在酶的立体结构中存在着一个氧负离子空洞,称为“活性口袋”,这个活性口袋是由几个氢键供体构成的,主要为酶骨架及其侧链中酰胺的质子。而决定脂肪酶底物选择性的最重要因素正是活性口袋的空间限制和疏水性质以及四面体中间体的稳定性。JENSEN R G等[4]通过研究Candida Antarctica脂肪酶B与2-己酸辛酯的过度态结构对该脂肪酶的立体选择性进行了分析,从结构来看,酶活性部位是由一个丝氨酸、一个组氨酸和一个天冬氨酸的残基(Ser-His-Asp)组成的“催化三联体”,并且活性部位呈“手性”构象,具有高度选择的特征。脂肪酶在催化过程中将这种特征传递给手性底物,使反应具有内在的选择性,即优先催化底物中的某些组分,客观上表现为不同竞争性底物反应速度的差异[5]。 2脂肪酶的选择 酶法拆分手性物质主要是利用酶的立体选择性,整个反应过程就是外消旋底物的2个对映体竞争酶的活性 脂肪酶拆分外消旋α-苯乙胺的研究进展 吴华昌,由耀辉,邓静,马钦远 (四川理工学院生物工程学院,四川自贡643000) 摘要:利用脂肪酶拆分外消旋α-苯乙胺是目前生产光学纯α-苯乙胺的重要方法之一,文中主要从脂肪酶拆分机理、脂肪酶的选择、酰化剂的选择及反应体系溶剂的确定等方面,阐述近年来国内外研究状况。 关键词:脂肪酶;光学纯;酰化剂;溶剂 中图分类号:Q556文献标识码:A文章编号:0254-5071(2010)05-0023-03 Chiral resolution of racemicα-phenylethylamine by lipase WU Huachang,YOU Yaohui,DENG Jing,MA Qinyuan (Department of Bioengineering,Sichuan University of Science&Engineering,Zigong643000,China) Abstract:Chiral resolution by lipase is an important way for production of optically pureα-Phenylethylamine.Mechanism of chiral resolution by lipase,choice of lipases and acylation agents,and selection of reaction solvent was reviewed in the paper. Key words:lipase;optical purity;acylation agent;solvent 收稿日期:2009-12-11 作者简介:吴华昌(1970-),男,四川隆昌人,副教授,主要从事非水相酶催化应用研究工作。 ααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααα

脂类代谢关键酶

1.胆固醇合成 乙酰乙酰CoA硫解酶 (1)2×乙酰CoA——————————→乙酰乙酰CoA HMG CoA合成酶 (2)乙酰乙酰CoA——————————→HMG CoA HMG CoA还原酶 (3)HMG CoA—————→MV A—→鲨烯(30C)—→胆固醇(27C) 关键酶 2. HMG CoA还原酶的调节 3.脂肪动员过程

HSL甘油二酯酶甘油一酯酶甘油激酶 甘油三酯——→甘油二酯———→甘油一酯———→甘油———→3—磷酸甘油↓↓↓(肝、肠、肾)↓游离脂酸游离脂酸游离脂酸糖代谢或异生4.脂肪动员关键酶 HSL(激素敏感性甘油三酯脂酶) (1)HSL活性增加:肾上腺素、胰高血糖素、ACTH、TSH (脂解激素) (2)HSL活性降低:胰岛素、前列腺素E2 (抗脂解激素) 5.脂酸的分解 (1)脂酸的活化—————→脂酰CoA生成(线粒体外进行),消耗2个高能磷酸键 脂酰CoA合成酶、A TP 脂酸+ CoA-SH——————————→脂酰~SCoA + PPi(迅速水解) (2)脂酰CoA进入线粒体 肉碱脂酰转移酶Ⅰ(限速酶)

(3)β-氧化 (4)能量产生 2n碳原子的脂酸————(n-1)次β-氧化 (n-1)分子FADH2 (n-1)分子NADH + H+ n分子乙酰CoA 共产生 1.5×(n-1)+ 2.5×(n-1)+10×n-2=(14n-6)分子ATP 脂酸的合成(胞液)————关键酶:乙酰CoA羧化酶 主料———乙酰CoA 辅料———ATP、NADPH、HCO3-(CO2)、Mn2+、生物素(辅基) 乙酰CoA羧化酶、生物素、Mn2+ 乙酰CoA + ATP + HCO3-————————————→丙二酰CoA +ATP+Pi

脂肪酶活检测原理及方法

脂肪酶活检测原理及实际方法:一、 原理以及标准曲线做法 1. 对硝基苯酚酯( 4-Nitrophenyl ester )是 脂肪酶水解活力测定中运用最为广泛的一种底物,脂肪酶水解其产生pNP(对硝基苯酚)在碱性条件下显黄色,在410nm 下有吸光值,且灵敏度很高。 2. 所需试剂有: CAS 碳链长度出货号价格名称830-03- 5C2N8130-1G ¥462 对硝基苯乙酸酯2635-54-9 C4 N9876-1G¥570 对硝基苯丁 酸酯 1956-10-1 C821742-1G-F ¥487 对硝基苯辛酸酯 1956-11-2 C12 61716-1G ¥435 对硝基苯月桂酸酯 1492-30-4 C16 N2752-1G ¥379 对硝基苯棕榈酸酯 14617-86-8C18 N3627-1G¥对硝基苯硬酸脂 全部为色谱纯试剂,购于sigma 公司 3. 标准曲线绘制: a. 标准对硝基苯酚母液(2mM ,2mmol / L): 称取的对硝基苯酚(p-NP)溶于100ml 的溶液B(即不同pH 的缓冲液) ,置于棕色试剂瓶内,4℃冰箱保存。 方法一: b. 标准曲线绘制:分别取,,,,,的对硝基苯酚母液(2mM) ,用溶液B(即不同pH 的缓冲液)稀释至4ml ,分别测定在410nm 处的吸收值。以对硝基苯酚浓度x(对应浓度分别是,,,,,,单位:mM ) 为横坐标,吸光值y 为纵坐标,绘制标准曲线。方法二:全部对硝基苯酚经过与测酶活相同的处理,获得吸光度。 b.标准曲线的绘制: 分别取0、、、、15、、30、45μL的对硝基苯酚分别加入、、、55、、40、、μL的异丙醇和 (全部都是)的溶液B,40℃15min,95%乙醇,10000r / min ,3min ,测出标准曲线。

脂肪酶

第一章概述 脂肪酶(Lipase,E C.3.1.1.3)是指分解或合成高级脂肪酸与丙三醇形成甘油三酸酯酯键的酶。198年,Klibanov A M 等用脂肪酶粉或其固定化酶在有机溶剂体系中成功地催化合成了一系列有机物, 开始了脂肪酶非水相酶学的研究[1]。随着研究的深入, 发现脂肪酶具有良好的醇解、胺解、酯化和转酯等特性, 可被广泛地应用于有机合成、精细化工、药物中间体合成、手性化合物拆分以及生物能源等诸多领域。近年来,通过对界面酶学和非水相酶学的研究,从而进一步拓展了脂肪酶的应用领域,利用脂肪酶在有机相催化的各种反应可以合成大量高价值的产物,此外,脂肪酶在食品、医药、皮革和洗涤剂等许多工业领域中也有广泛的应用,充分显示了其巨大的应用潜力。 产脂肪酶的微生物种类很多,大约65个属微生物可产脂肪酶,其中细菌28个属、放线菌4个属、酵母菌10个属、其它真菌23个属,而实际上可能更多。脂肪酶产生菌中得到深入研究的主要集中在根霉、曲霉、青霉、毛霉、假单胞菌等具有工业应用价值的菌种以及与医学相关的金黄色葡萄球菌、钩端螺旋体、粉刺状杆菌等。脂肪酶的筛选方法着眼于快速、简捷、准确、选择性强及易于自动化。脂肪酶产生菌主要从自然界中寻找,而脂肪酶高产菌的筛选通常采用含甘油三酯的琼脂平板法,并通过在培养基中添加指示剂如罗丹明B、溴甲酚紫、维多利亚蓝等作为筛选标记,然后采用不同的方法对培养条件进行优化。其筛选的一般过程是:样品分离→富集培养→平板初筛→摇瓶复筛。不同微生物合成脂肪酶的能力不同,因此,要达到工业用脂肪酶生产微生物的要求,首先要筛选和诱导出与所需酶学性质相符的高产菌株,或者构建高表达量的重组基因工程株。

脂肪酶

脂肪酶的应用进展综述 09生物技术0902021040 陈莹莹 摘要:脂肪酶被认为是工业中很重要的一利酶。本文概述了当前研究中广泛使用的脂肪酶及其固定化产品的应用途径, 包括在食品加工、饲料、纺织、医药、生物柴油和传感器等领域中的应用。脂肪酶应用的主要障碍是其成本高。但技术进步尤其是基因技术的发展有望使成本降低, 脂肪酶在药物合成中的应用在本文中也作了展望。 关键词:脂肪酶;性质;生产;来源,应用 脂肪酶(Triacylglycerol lipase E C3.1.1.3)是广泛存在的一种酶,在脂质代谢中发挥重要的作用。在油水界面上,脂肪酶催化三酰甘油的酯键水解,释放更少酯键的甘油酯或甘油及脂肪酸。脂肪酶反应条件温和,具有优良的立体选择性,并且不会造成环境污染,因此,在食品、皮革、医药、饲料和洗涤剂等许多工业领域中均有广泛的应用。 一、脂肪酶的来源 脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。在动物体内,各类脂肪酶控制着消化、吸收、脂肪重建和脂蛋白代谢等过程;细菌、真菌和酵母中的脂肪酶含量更为丰富(Pandey等)。由于微生物种类多、繁殖快、易发生遗传变异,具有比动植物更广的作用p H、作用温度范围以及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,适合于工业化大生产和获得高纯度样品,因此微生物脂肪酶是工业用脂肪酶的重要来源,并且在理论研究方面也具有重要的意义。 二、脂肪酶的性质 脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。 脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(V eeraragavan等)。总

糖类代谢和脂肪代谢

第四章生命的物质变化和能量转换 第4节生物体内营养物质的转变 一、教学目标: 知识与技能:1、知道糖类、脂肪在生物体内的代谢过程。 2、知道糖类、脂肪之间的转变关系。 3、初步学会用所学知识解释日常生活中的营养物质转变实例。 过程与方法:通过分析日常生活中糖类、脂肪代谢及相互转变的实例,感受这两大类营养成分在体内的代谢过程。 情感态度与价值观:通过学习营养物质的相互转变,逐步养成科学合理的饮食习惯。 二、重点: 1、糖类的代谢 2、脂肪的代谢 三、难点: 糖类、脂肪之间的转变过程及途径 四、教学准备: 多媒体课件、学案 五、教学过程

附:生物体内营养物质的转变(学案) 学习目标: 1.知道糖类、脂肪在生物体内的代谢过程 2.知道糖类、脂肪之间的转变关系 3.通过学习营养物质转变,结合生活实际,养成健康的饮食与生活习惯 学习重点: 糖类、脂肪代谢过程 学习难点: 糖类、脂肪的相互转变 学习过程: 一.自主学习 1.知识回顾:人体消化系统组成、食物消化过程与消化酶;物质进出细胞的方式;生物体中能源物质的种类;细胞有氧呼吸的过程(三羧酸循环) (1)人体所需营养物质主要有_______________________________ _ ; 可以通过_____________途径获得。当我们吃了食物,实际上食物__________(是,不是)已经进入了人体,而是需要先经过___________________然后才能够被利用。 (2)三大主要营养物质分别是____________、______________、________________; 淀粉的消化过程是:___________________________________________________ _ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 蛋白质的消化过程是:_________________________________________________ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 脂肪的消化过程是:________________________________________ ____________;消化的最终产物是__________和_________,以______________方式被小肠上皮细胞吸收。2.阅读,思考,讨论: 糖类代谢 (1)生物体细胞主要以__________________方式利用葡萄糖获得能量。 (2)动物体内的___ 细胞和细胞可以以形式储存一定量的糖类物质。(3)北京填鸭在肥育期要填饲过量的糖类饲料,减少运动,从而使鸭在短期内变成肥鸭,这说明什么? () 脂类代谢 (1)为什么长期偏食高油、高脂食物的人更容易肥胖? (2)饮食中摄入脂肪就不能控制体重了吗?

脂肪酶活力测定方法及其比较

万方数据

苯萃取后进行比色测定.酶的活力单位定义同平板法.酶活计算同铜皂法. 1.3.3对硝基苯酚法 对硝基苯酚法是以对硝基苯酚酯作为底物,脂肪酶水解底物产生具有颜色的对硝基苯酚,在420nm波长下测出其吸光光度值,再对照对硝基苯酚吸光度工作曲线得出脂肪酶活力.这样可以使操作更加简单同时可以避免金属离子的干扰[2.18|.酶的活力单位定义为检测条件下每分钟产生1btmol对硝基苯酚所需的脂肪酶量,其计算公式为:脂肪酶活力一VN(C(样)一C(空白))/丁/V(稀释酶液).式中。V反应总体积,N稀释倍数,C根据吸光度A求出的对硝基苯酚的浓度,t反应时间,y(稀释酶液)稀释酶液的体积. 23种方法的比较 2.1实验仪器和操作难易程度的比较 平板法所使用的主要仪器是超净工作台,微量注射器。培养皿,恒温培养箱,价格便宜,操作简单L2?13];滴定法仅需要酸碱滴定管、试管、恒温水浴锅、酸度计、高速组织捣碎机等一些比较常见,操作简单[”];比色法包括铜皂法、微乳液法和对硝基苯酚法.铜皂法使用的主要仪器是分光光度计。超声波装置,仪器较常见,但操作繁琐[15];微乳液法使用的仪器主要是分光光度计,操作简单。精确度高L16—17];对硝基苯酚法所使用的仪器主要是分光光度计。操作简单[2?18](表1). 2.2实验试剂及精确度的比较 平板法使用的试剂主要有维多利亚蓝、三丁酸甘油脂、罗丹明B等,该实验反应时间长且精确度差[11].滴定法所使用的主要试剂有氢氧化钠、酸碱指示剂、聚乙烯醇、橄榄油等[13|.滴定中酸碱指示剂不能很好地指示反应终点,即使用酸度计代替酸碱指示剂控制反应终点,产物中丙酮酸的干扰使实验的结果偏大[1l’19].铜皂法中的底物有3种:榄橄油,三油酸甘油脂和三丁酸甘油脂[15].其中榄橄油作为底物,精确度不高,当用三油酸甘油脂和三丁酸甘油脂作为底物检测脂肪酶的活性。精确度较高.微乳液法使用的试剂有三油酸甘油脂,吐温一80和正己烷,实验重复性好,精确度高L16。17|.对硝基苯酚法使用的试剂主要是对硝基苯酚,稳定性好且非常精确[2.18](表1). 2.3各种方法的适用范围 平板法所使用的仪器十分常见、所使用的试剂也比较便宜,但该种方法的误差较大同时需要的时间很长.因此该种方法主要应用于产脂肪酶菌种的筛选及批量酶样品的快速测定[11];滴定法所使用的仪器常见、操作简单,所使用的试剂比较便宜,精确度较高,适合于学生实验和具备简单仪器的实验室测定脂肪酶的活性[2];铜皂法所使用的仪器较常见、操作繁琐、稳定性不高。但实验精确度高且试剂较便宜,大部分实验室和生物技术公司用该种方法测定脂肪酶的活性[15];微乳液法所使用的仪器常见、操作简单,重复性好,但试剂价格偏高,主要适用于实验室和生物技术公司对酶活性的精确测定[16-17];对硝基苯酚法所使用的仪器常见,但试剂对硝基苯酚价格昂贵且有毒,主要适用于实验室对酶活性的精确测定[2.18](表1). 表I平板法、滴定法及比色法的比较 3结论 在脂肪酶活性检测时,可根据实验目的、实验设施及节约成本的原则选择适宜的方法和底物来检测脂肪酶活性.在活性检测过程中,酶活力单位的计算尽量在最适温度、最适pH、酶浓度以及适宜的底物浓度下进行。从而使测定的脂肪酶活性达到最大值,使结果更加准确和可信.另外,由于酶的活力单位可以根据计算和记录的方便而自行定义。给交流和工业生产造成麻烦,建议在测定脂肪酶的活力时,尽量使用国际单位来计算?44?酶活. 致谢本文受到贵州省教育厅重点扶持学科基金和凯里学院植物学重点学科基金资助. 参考文献: [1]GUPTAR,GuptaNRathiP.Bacteriallipases:ano’verviewofproduction,purificationandbiochemicalproperties[J].AppliedMicrobiologyandBiotechnolo—gY。2004,64(6):763—781. 万方数据

脂肪酶综述

脂肪酶综述 摘要:脂肪酶是一类能够催化酯的水解反应以及在非水相体系中催化脂肪酸和醇类发生酯化反应的酶类。随着酶学技术的快速发展,微生物脂肪酶也受到了越来越多的关注作为生物催化剂,脂肪酶一直以来都是生物技术领域中最重要的一类酶。 关键字:脂肪酶,酶活测定,非水相,食品工业应用。 简介:脂肪酶(三酰甘油酯水解酶,EC 3.1.1.3),是一类广泛存在于多种微生物中的生物催化剂。脂肪酶最早被发现可追溯至1901年,其天然作用底物为三脂酰甘油酯,能够将酯键水解,释放甘油二酯甘油一酯甘油以及游离脂肪酸随着非水酶学的发展,研究者发现,脂肪酶在非水相中能够催化酯化。酯交换以及转酯化反应,并且具有高度的选择性和专一性,已广泛应用于食品、医药、洗涤剂等行业。特别是在食品行业中得到了大量的应用,并逐渐成为食品领域中应用最为广泛的酶类之一。但是,由于目前脂肪酶相对于传统的化学催化剂的生产成本仍然偏高,这是制约脂肪酶工业化应用的主要问题,因此,在了解脂肪酶催化特性的基础上,通过筛选高产菌株,或者改变脂肪酶催化环境等方法提高脂肪酶的产率和利用率,降低利用脂肪酶进行工业化生产的成本是目前急需解决的主要问题。 1、脂肪酶的结构特点 研究表明, 来源不同的脂肪酶,其氨基酸组成数目从270~ 641不等,其分子量为29 000~ 100 000。迄今为止,人们已经对多种脂肪酶进行克隆和表达,并利用X -衍射等手段和定向修饰等技术测定了酶的氨基酸组成、晶体结构、等电点等参数, 确定了组成脂肪酶活性中心的三元组( triad)结构。多数脂肪酶都是单链蛋白, 比如CCL( A) 含有534个氨基酸残基, 其组成3 个小的和11个大的β-折叠及10个α-螺旋。其催化活性三元组由Ser-209、His-449和Glu341组成, Ser-209处于超二级结构折叠-螺旋[β-折叠( 202~208)-α -螺旋( 210~220) ]的转角处。多数成熟的天然蛋白还含有糖类组分, 如CCL( A) 含有4. 2%葡萄糖、甘露糖和木糖等,所以实际测得的分子量比理论分子量偏大[157 223(理论) , 60 000(实测)]。 脂肪酶通过与水/底物界面的相互作用来获得不同的构象状态。在关闭构象状态时“盖子”覆盖在酶的活性位点上。酶难以靠近底物分子而转变到开放构象状态时,催化通道入口打开. 近年来发现“盖子”的作用不仅仅是调节底物靠近活性位点的大门。“盖子”是两性分子结构在关闭状态酶的结构是亲水端面对溶剂,疏水端朝向蛋白质的内部,当酶转变到开放状态时疏水端会暴露出来隐藏亲水残基团,在丝氨酸残基周围形成亲电子域引起脂肪酶的构象改变增加了酶与脂类底物的亲和性,并稳定了催化过程中过渡态中间产物。酶分子周围通常保留一定量的水分,从而保证了脂肪酶在油/水界面和脂相中的自体激活。 2、脂肪酶的来源 脂肪酶是一种普遍存在于生物体的酶类,具有重要的生理学意义,同时也具有工业化应用的潜在可能性脂肪酶能够催化三酰甘油酯水解成为甘油和游离脂肪酸,而在有机相中,脂肪酶则催化酯化酯交换以及转酯化反应。在真核生物体内,脂肪酶参与许多类脂化合物的代谢过程,包括脂肪的消化、吸收、利用以及脂蛋白的代谢,在植物中,脂肪酶存在于储存能量的组织中。脂肪酶在微生物界分布很广,大约65 个属微生物可产脂肪酶,其中细菌有28个属、放线菌4个属、酵母菌10个属、其它真菌23个属,但实际上微生物脂肪酶分布远远超过这个数

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

脂肪酶活检测原理及实际方法:

脂肪酶活检测原理及实际方法: 一、原理以及标准曲线做法 1.对硝基苯酚酯(4-Nitrophenyl ester)是脂肪酶水解活力测定中运用最为广泛的一种 底物,脂肪酶水解其产生pNP(对硝基苯酚)在碱性条件下显黄色,在410nm下有吸光值,且灵敏度很高。 2.所需试剂有: CAS 碳链长度出货号价格名称 830-03-5 C2 N8130-1G ¥462 对硝基苯乙酸酯2635-54-9 C4 N9876-1G ¥570 对硝基苯丁酸酯1956-10-1 C8 21742-1G-F ¥487 对硝基苯辛酸酯1956-11-2 C12 61716-1G ¥435 对硝基苯月桂酸酯1492-30-4 C16 N2752-1G ¥379 对硝基苯棕榈酸酯14617-86-8 C18 N3627-1G ¥2621.97 对硝基苯硬酸脂 全部为色谱纯试剂,购于sigma公司 3.标准曲线绘制: a.标准对硝基苯酚母液(2mM,2mmol / L): 称取0.02789g的对硝基苯酚(p-NP)溶于100ml的溶液B(即不同pH的缓冲液),置于棕色试剂瓶内,4℃冰箱保存。 方法一: b.标准曲线绘制: 分别取0.02,0.04,0.06,0.08,0.12,0.16ml的对硝基苯酚母液(2mM),用溶液B(即不同pH的缓冲液)稀释至4ml,分别测定在410nm处的吸收值。以对硝基苯酚浓度x(对应浓度分别是0.01,0.02,0.03,0.04,0.06,0.08,单位:mM)为横坐标,吸光值y为纵坐标,绘制标准曲线。 方法二:全部对硝基苯酚经过与测酶活相同的处理,获得吸光度。 b.标准曲线的绘制: 分别取0、1.875、3.75、7.5、15、22.5、30、45μL的对硝基苯酚分别加入62.5、60.625、58.75、55、47.5、40、32.5、17.5μL的异丙醇和(全部都是)562.5的溶液B,40℃15min,95%乙醇,10000r / min,3min,测出标准曲线。

脂肪酶的微生物生产技术综述

脂肪酶的微生物生产技术综述 By 夏远川 脂肪酶是一种普遍存在于动植物和微生物体内的酶,也是最早研究的酶类之一,早在1834年就有关于兔胰腺脂肪酶活性的报道。[1] 脂肪酶是一类特殊酯键水解酶,一般用于催化水解和合成反应,在油水界面上,它催化三酰甘油的酯键的水解,生成甘油一酯、甘油二酯或直接生成甘油和脂肪酸。[2]脂肪酶还可催化酯类化合物的醇解、酯化、酯交换等反应,且不需要辅酶,在工业生产和研究工作中均有广泛应用。[3] 脂肪酶按作用时的适应温度可分为高温脂肪酶、中温脂肪酶、低温脂肪酶;按适宜pH可分为碱性脂肪酶、中性脂肪酶、酸性脂肪酶。 脂肪酶的主要工业应用方向: 1、洗涤工业:在洗涤剂中添加脂肪酶可使洗涤剂对脂质类污渍的去除效果大大提高,并可减少表面活性剂及无机助剂(尤其是三聚磷酸钠)的用量,大大减少洗涤剂带来的环境污染。用于洗涤剂的脂肪酶为碱性脂肪酶,在碱性范围内有活性、活性不受表面活性剂影响、对氧系漂白剂稳定、热稳定性好,并且由于大多数加酶洗涤剂都适当配有蛋白酶,因此用于洗涤剂的脂肪酶还应具抗蛋白酶降解的能力。[4] 1988年,丹麦NOVO公司将碱性脂肪酶应用于洗涤剂中并推向市场。1992

年,这家公司构建了商业上第一株产脂肪酶菌株。[1] 2、食品工业:油脂改性是食品加工过程中的一个重要环节,脂肪酶可通过催化酯交换、酯转移、水解等反应,改变油脂的的物理化学性质,使便宜的、营养价值低的油脂升级为昂贵的、营养价值高的油脂;此外脂肪酶还可用于合成广泛应用于食品工业的糖酯类产品、合成不带副产物或毒性物质的芳香味酯类化合物、合成抗坏血酸酯类抗氧化剂如异抗坏血酸等。[5] 3、造纸工业:使用脂肪酶处理纸浆可减少胶黏物(绝大多数胶黏物都含有大量酯键)对造纸毛毯网间空隙的堵塞,提高纸机的运行效率和成纸品质,并降低环境污染,减少废水处理的负荷。 此外脂肪酶脱墨技术在废纸利用方面也起到非常大的作用,与传统脱墨技术相比脱墨效果更好环境污染更低,具有很大的优势。[6] 4、皮革生产:脂肪酶应用于制革和毛皮加工过程中的脱脂,相对于传统的脱脂方法具有脱脂均匀、脱脂废液中的油脂更易分离回收、减少甚至不使用表面活性剂、降低生产成本、提高成品质量等诸多优点,将碱性脂肪酶与脱脂剂在碱性条件下进行毛革两用皮革的脱脂,可大大提高脱脂效果。[7] 此外脂肪酶在饲料工业、生物表面活性剂、化妆品、生物传感、聚合物合成、手性化合物拆分、生物柴油等方面都具有重要的应用前景。 由于微生物生长繁殖快、所产脂肪酶种类多、微生物脂肪酶具有比动植物来源的脂肪酶更广的作用条件范围,且多为胞外酶,更适合于工业规模生产和获得高纯度产品,因此成为工业用脂肪酶的主要来源。[7]上世纪初,微生物学家

脂肪酶、淀粉酶测定方法

脂肪酶测定——采用p-NPP法 取0.5g样品,加去离子水10mL,40℃水浴浸泡2h,过滤。取滤液1mL于试管中,加入pH8.0缓冲液3mL和1mmol/L p-NPP溶液0.1mL 于40℃下精确反应3min,迅速置于冰上终止反应。在波长405nm处测定吸光度值。对照管酶液用等体积去离子水代替,其余试剂相同。Npp标准曲线Y=0.287x+0.0861 (y:吸光度x:NPP浓度(umol/L)) 试剂配制: 1mmol/L p-NPP溶液:称取0.0378g pNPP,加入1mL曲拉通-100与5mL异丙醇,用Tris-HCL(pH8.0)定容至100mL。 pH8.0 Tris-HCl:50mL 0.1M tris碱溶液与29.2mL 0.1M HCl溶液混合,加蒸馏水定容至100mL。 淀粉酶测定 称取六神曲0.5g,研细,用20mL去离子水40℃浸泡1h,过滤。取2只250mL的碘瓶,各加入5%的淀粉液25mL,10mL醋酸钠缓冲液(pH4.5),10mL蒸馏水,摇匀,40℃水浴预热5min。A管中加入滤液5mL,准确反应1h,立即加2mol/L HCl 1mL终止反应,B管中先加入HCl,再加滤液5mL。2只碘瓶分别加入0.05mol/L碘液10mL,0.1mol/L氢氧化钠45mL,边滴边振摇,暗处放置20min,加入1mol/L 硫酸2mL,用0.1mol/L硫代硫酸钠滴定至无色。每份样品测定3次。记录消耗硫代硫酸钠的体积,计算得淀粉酶活力。

淀粉酶活力是指1g六神曲粉末在一定条件下(T=40℃,pH=5.0),1h 内催化可溶性淀粉水解生成葡萄糖的毫克数。计算公式: 淀粉酶活力=[c×(vB-vA)·M·N]/2×m·t 式中:c为硫代硫酸钠的浓度(mol/L),M为葡萄糖的摩尔质量(g/mol),N为酶液稀释倍数,V A为样品滴定值(mL),VB为空白滴定液(mL),m为六神曲的取样量(g),t为反应时间(h),淀粉酶活力单位为mg/(g·h) 。 试剂配制 pH4.5醋酸钠缓冲液:18g醋酸钠加9.8mL冰醋酸,定容至1000mL。1mol/L硫酸溶液:量取6mL浓硫酸,倒入适量水中,用水稀释至100mL。 0.1mol/L碘液:取碘13.0g,加碘化钾36g与水50ml溶解后,加盐酸3滴与水适量使成1000ml,摇匀,用垂熔玻璃滤器滤过。 蛋白酶活力测定 称取六神曲1g,研细,加蒸馏水20ml,于40℃水浴放置1h,间断搅拌,过滤,滤液以磷酸钠缓冲液稀释1倍。取1mL稀释液置离心管中,于40℃水浴预热5min,加入预热的酪蛋白1mL,保温10min,立即加入0.4 mol / L 三氯醋酸2 ml,终止反应,继续置水浴中保温20 min,使残余蛋白质沉淀后离心滤过。取1 mL滤液,加入0.4 mol/L 碳酸钠溶液5 mL,福林试液1 mL,蒸馏水2 mL,摇匀,置水浴锅中,40 ℃保温显色20 min。以试剂溶液为空白,于763 nm 波长处测定吸光度。 在40℃时每1min水解酪蛋白产生1g酪氨酸的酶量,定义为1个蛋白酶活力单位。

人体脂肪代谢的调控和调动

人体脂肪代谢的调控和调动 人体摄入的大部分)脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸). 水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。 脂肪细胞在体内的代谢过程受到多种因素的调控,脂蛋白脂酶,以及脂肪细胞膜上的肾上腺素能受体、胰岛素受体及其他肽类激素和腺苷受体都参与这一过程的调节。 (1)脂蛋白脂酶(LPL):脂蛋白脂酶由体内脂肪细胞合成,然后释放到血液中附着在毛细血管的表面。其功能是将与其接触的乳糜微粒和极低密度脂蛋白中的三酰甘油(甘油三酯)水解成游离脂肪酸和α-磷酸甘油。前者进入脂肪细胞内,与磷酸甘油结合生成三酰甘油。由于人类脂肪细胞合成脂肪酸的能力很弱,因此在脂蛋白脂酶作用下所产生的游离脂肪酸就成为体内脂肪细胞合成三酰甘油所需要游离脂肪酸的主要来源。因此脂蛋白脂酶在调节人体局部脂肪沉积上发挥着一定的功能。脂蛋白脂酶的活性受机体营养状况及相关激素的调节,空腹及营养不良时其活性降低,进食后其活性增高。胰岛素可以增加脂蛋白脂酶的合成,而脂解激素则使脂蛋白脂酶活性受到抑制。 (2)胰岛素:胰岛素可以通过降低脂肪细胞内cAMP的浓度来抑制三酰甘油脂肪酶活性,减少三酰甘油的水解,促进水解后的游离脂肪酸再酯化。胰岛素是体内主要的抗脂解激素。当胰岛,素水平下降时,体内脂肪组织的脂解过程加快,血中游离脂肪酸和磷酸甘油浓度增高。 (3)儿茶酚胺:人类脂肪细胞上分布着许多α2和β1,受体,儿茶酚胺主要就是通过脂肪细胞膜上的肾上腺素能受体来调节脂解反应。 儿茶酚胺通过。α2受体抑制脂解,通过β1受体刺激脂解。人体不同部位脂肪细胞对儿茶酚胺的反应性是不相同的。无论男女,腹部脂肪细胞对儿茶酚胺促进脂解的反应性和敏感性均强于股部,绝经前女性股部脂肪细胞对儿茶酚胺的脂解反应性明显下降,而妊娠晚期和哺乳期女性股部脂肪细胞对儿茶酚胺的脂解反应性明显增强。造成上述差别的主要原因可能与分布在这些部位脂肪细胞上的。α2和β1受体的数目、比例及活性不同有关。 (4)性激素:性激素在促进脂肪细胞脂解反应区域性差异的发生上起着一定的作用。女性激素可以促进脂肪细胞α2受体的活性来达到拮抗儿茶酚胺的脂解作用。 (5)其他激素:生长激素、促肾上腺皮质激素、促甲状腺激素、泌乳素、胰高血糖素等均可促进脂肪细胞的脂解反应。 肪细胞的代谢过程是怎样进行的? 体内脂肪细胞的代谢过程是一个非常活跃、从不间断的循环过程。 正常情况下,机体内的脂肪细胞一方面不断地从血液中摄取食物分解后产生的游离脂肪酸,然后在细胞内将游离脂肪酸与由葡萄糖合成的。α-磷酸甘油结合生成磷酸三酰甘油。

最新脂肪酶酶活测定方法

脂肪酶是一种特殊的水解酶,广泛地存在于动物组织、植物种子和微生物体中,是能水解甘油三酯或脂肪酸酯产生单或双甘油酯和游离脂肪酸,将天然油脂水解为脂肪酸及甘油,同时也能催化酯合成和酯交换的酶。其在轻工、化工、医药、食品等行业有广泛的用途。近年来,随着非水酶学和界面酶学的不断深入,脂肪酶应用也不断地扩展,被广泛应用于酯合成、手性化合物的拆分、化工合成中间体的选择性基团保护、高聚物的合成、肽合成等方面,应用前景广阔。脂肪酶在微生物中有广泛的分布。脂肪酶催化的反应是:甘油三酸酯+水→甘油二酸酯+游离脂肪酸→甘油酸酯+游离脂肪酸→甘油+游离脂肪酸。脂肪酶只能在异相系统,即在油-水界面上作用,对水溶性底物无作用,这一点在有机合成中合成手性中间体方面具有很多的优越性。 1 滴定法(参照国家标准,适用于脂肪酶制剂) 1.1 脂肪酶活力定义 为1g固体酶粉(或1mL液体酶),在一定温度的pH条件下,1min水解底物产生1μmol的可滴定的脂肪酸,即为一个酶活力单位,以u/g(u/mL)表示。 1.2 测定原理 脂肪酶在一定条件下,能使甘油三酯水解成脂肪酸、甘油二酯、甘油单酯和甘油,所释放的脂肪酸可用标准碱溶液进行中和滴定,用pH计或酚酞指示反应终点,根据消耗的减量,计算其酶活力。反应式为:RCOOH+NaOH→RCOONa+H2O。 1.3 仪器设备 恒温水浴箱,移液枪,高速匀浆机,pH计,电磁搅拌器 1.4 试剂溶液 95%酒精 4%聚乙烯醇(PVA,聚合度1750±50):称取4g PVA,加蒸馏水80mL,沸水中加热,并不断搅拌,使其完全溶解,慢速搅拌,以免产生过多气泡,冷却后定容至100mL,用双层纱布过滤后备用。 橄榄油(分析纯) 底物溶液:按4%聚乙烯醇:橄榄油=3:1比例混合,用高速匀浆机处理6min(分两次处理,间隔5min,每次处理3min)。 pH7.5磷酸缓冲液:称取十二水磷酸氢二钠39.62g,磷酸二氢钾1.96g,用水溶解并定容至500mL,调节溶液的pH 到7.5±0.05。 0.05mol/L氢氧化钠按GB/T601配制与标定。使用时稀释10倍。 10g/L酚酞指示液:GB/T603配制。 1.5 待测酶液的制备

2脂肪酶的概念

脂 肪 酶 脂肪酶(Lipase,EC 3.1.1.3) 脂肪酶即三酰基甘油酰基水解酶,它催化天然底物油脂水解,生成脂肪酸、甘油和甘油单酯或二酯。 脂肪酶基本组成单位仅为氨基酸,通常只有一条多肽链。它的催化活性仅仅决定于它的蛋白质结构。 1 脂肪酶的来源 脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。在动物体内,各类脂肪酶控制着消化、吸收、脂肪重建和脂蛋白代谢等过程;细菌、真菌和酵母中的脂肪酶含量更为丰富(Pandey等)。由于微生物种类多、繁殖快、易发生遗传变异,具有比动植物更广的作用p H、作用温度范围以及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,适合于工业化大生产和获得高纯度样品,因此微生物脂肪酶是工业用脂肪酶的重要来源,并且在理论研究方面也具有重要的意义。 2 脂肪酶的性质 脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。 脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(Veeraragavan等)。总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度范围,高稳定性和活性,对底物有特异性(Schmid等;Kazlauskas等)。 脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda 和Desnnelv 就发现了这一现象。溶于水的酶作用于不溶于水的底物,反应是在2个彼此分离的完全不同的相的界面上进行。这是脂肪酶区别于酯酶的一个特

相关文档
最新文档