微小型多旋翼飞行器的非线性建模研究_第五鹏杰

微小型多旋翼飞行器的非线性建模研究_第五鹏杰
微小型多旋翼飞行器的非线性建模研究_第五鹏杰

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

轴飞行器毕业设计论文

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器 学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院答辩日期: 2015 年6月

目录 摘要.......................................................... I ABSTRACT ...................................................... II 第1章绪论. (1) 论文研究背景及意义 (1) 国内外的发展情况 (2) 本文主要研究内容 (4) 第2章总体方案设计 (5) 总体设计原理 (5) 总体设计方案 (5) 系统硬件电路设计方案 (5) 各部分功能作用 (6) 系统软件设计方案 (7) 第3章系统硬件电路设计 (8) Altium Designer Summer 09简介 (8) 总体电路设计 (8) 遥控器总体电路设计 (8) 飞行器总体电路设计 (10) 各部分电路设计 (10) 电源电路设计 (10) 主控单元电路设计 (12)

无线通信模块电路设计 (13) 惯性测量单元电路设计 (16) 电机驱动电路设计 (18) 串口调试电路设计 (19) PCB设计 (21) PCB设计技巧规则 (21) PCB设计步骤 (22)

PCB外形设计 (23) 实物介绍 (25) 第4章系统软件设计 (27) Keil 简介 (27) Keil MDK概述 (27) Keil MDK功能特点 (27) 软件设计框图 (28) 软件调试仿真 (29) 飞控软件设计 (30) MPU6050数据读取 (30) 姿态计算IMU (32) PID电机控制 (32) 结论 (36) 致谢 (38) 参考文献 (39) 附录1 遥控器主程序源代码 (40) 附录2 飞行器主程序源代码 (45) 附录3 遥控器原理图 (50) 附录4 飞行器原理图 (51)

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

多旋翼无人机教案

哈尔滨四通技工学校第三教学站延寿农民工综合培训学校 多旋翼无人机操作教案 二0 —七春季生 1/1

多旋翼无人机操作基础 授课教师:张海东 第一章无人飞行器概述 1、 无人飞行器发展简史 2、 无人飞行器的优缺点 3、 无人飞行器应用领域 1、 什么事无人机 2、 无人机的应用 3、 无人机未来的发展趋势 无人机的概述重要性,帮助学员更好的了解无人 机。 讲授法 新课 二课时 一、 组织教学 二、 课前提问 三、 导入新课 四、 教学内容: 1、1910年,在莱特兄弟所取得的成功的鼓舞 下,来自俄亥俄州的年轻军事工程师查尔斯?科特林 建议使用没有人驾驶的飞行器:用钟表机械装置控 制飞机,使其在预定地点抛掉机翼并象炸弹一样落 向敌人。在美国陆军的支持和资助下,他制成并试 验了几个模型,取名为“科特林空中鱼雷”、“科 特林虫子”。 2【二战期间,美国海军首先将无人机作为空面 武器使 用。1944年,美国海军为了对德国潜艇基地 进行打击,使用了由B-17轰炸机改装的遥控舰载 机。 3、上世纪70-90年代及其以后,以色列军事专 家、科学家和设计师对无人驾驶技术装备的发展做 出了突岀贡献,并使以色列在世界无人驾驶系统的 研制和作战使用领域占有重要地位。 4、 最著名的是“捕食者”可复用无人机,世界 上 最大的无人机- - “全球鹰”,“影子?200”低空 无人 机,“扫描鹰”小型无人机,“火力侦察兵” 无人直升课程名称: 课题 教 学目标 教学重点 教材分析 教学方法 授课类型 课时 课程内容

机。 5、理论开创阶段,多旋翼无人飞行器理论开创于 上世纪10年代,直升机研发之前。几家主要飞机生产 商开发出的在多个螺旋桨屮搭乘飞行员的机型。这种设 计开创了多旋翼飞行器的理论。 6、加速发展阶段,2007年以后,装配高性能压电 陶瓷陀螺仪和角速度传感器(六轴陀螺仪)的多旋翼无 人飞行器开始出现加速发展。 7、未来发展阶段,伴随着飞行器技术的进步,多 旋翼无人飞行器使用者会急剧增加。这样一来,事故和 故障也会相应增加,甚至会发展成社会问题。今后不仅 是制造商和商店一级,协会和主管部门面向多旋翼无人 飞行器的飞行会和培训班也会增加。 8、优点的特性。 9、避免牺牲空勤人员,因为飞机上不需要飞行人 员,所以最大可能地保障了人的生命安全。 10、无人机尺寸相对较小,设计时不受驾驶员生理 条件限制,可以有很大的工作强度,不需要人员生存保障 系统和应急救生系统等,大大地减轻了飞机重量。 11、制造成本与寿命周期费用低,没有昂贵的训练 费用和维护费用,机体使用寿命长,检修和维护简单。 12、无人机的技术优势是能够定点起飞,降落,对起 降场地的条件要求不高,可以通过无线电遥控或通过机 载计算机实现远程遥控。 课程后记给学生留了上网查询无人机的信息的作业。

多旋翼无人机的结构和原理

多旋翼无人机的结构和原理 翼型的升力: 升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。 根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。[摘自升力是怎样产生的]。所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。 旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。 而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

四旋翼飞行器飞行控制系统设计开题报告

四旋翼飞行器飞行控制系统设计开题报告

集美大学信息工程学院 毕业设计(论文)开题报告 设计题目:四旋翼飞行器飞行控制系统设计 专业通信工程班级通信1012 姓名 xxx 学号xxx

设计方案如下: 1、利用atmega 2560单片机开发飞行控制系统,采集传感器数据,计算飞机姿态, 通过PWM控制电调实现飞行控制。 2、Atmega 2560 单片机将实时传感器的数据通过串口输出给s5pv210(Cortex-A8) 嵌入式系统,在通过无线网卡发送给地面站。 3、S5pv210采集摄像头数据,H.264编码完通过RTSP协议传给地面站。 补充对系统框图的说明。。。。。。 计划进度安排ATmega2 560 加速度计、陀螺 I2 电调无刷电 S5PV210 嵌入式 串 无线 摄 PW 云台 PW V4

(1)2014年2月17日起至2014年2月28日: 查阅本学科最新发展动态和最新研究论文;根据任务书撰写开题报告,完成5000字的英译汉; (2)2014年3月1日起至2014年3月20日: 学习Linux操作系统驱动编程,编写Linux系统应用; (3)2014年3月21日起至2012年4月10日: 完成对互补滤波器算法研究,用互补滤波器对陀螺仪测量误差进行矫正,并学习互补滤波器融合系数的确定方法; 学习基于欧拉角反馈的PID 控制器进行姿态控制算法; (4)2014年4月11日起至2014年5月15日: 设计四旋翼飞行器飞行控制系统的软硬件实现,完成调试、测试、优化结果; (5)2014年5月15日起至2014年6月10日: 完成毕业设计论文;准备相应的电子文档,完成毕业答辩。 指导教师意见 该同学对毕业设计的任务明确,提出的设计方案和技术路线可行,计划进度安排合理,同意开题。 指导教师签名: 20年月日

详解多旋翼飞行器上的传感器技术

详解多旋翼飞行器上的传感器技术 导语:现在多旋翼飞行器市场火爆,诸多产品琳琅满目,价格千差万别。为了理解这些飞行器的区别,首先要理解这些飞行器上使用的传感器技术。 本文作者YY硕,来自大疆工程师。 2014年的六月,我在知乎“民用小型无人机的销售现状和前景怎么样? - YY硕的回答”这个问题下面发布了一篇科普多旋翼飞行器技术的回答,在知乎上至今获得了889个赞同、近10万次浏览,并且被几十家媒体和公众号转发。2014年中正是多旋翼飞行器市场爆发前的风口,后来很多朋友告诉我说正是这篇文章吸引他们走入了多旋翼飞行器行业。 两年来,大疆精灵系列更新了两代,飞控技术更新了两代,智能导航技术从无到有,诸多新的软件和硬件产品陆续发布。同时我们也多了很多友商,现在多旋翼飞行器市场火爆,诸多产品琳琅满目,价格千差万别。为了理解这些飞行器的区别,首先要理解这些飞行器上使用的传感器技术。我觉得现在很有必要再发一篇科普文章,定义“智能导航”这个概念,顺便字里行间介绍一下两年来大疆在传感器技术方面的努力。 1. 飞行器的状态 客机、多旋翼飞行器等很多载人不载人的飞行器要想稳定飞行,首先最基础的问题是确定自己在空间中的位置和相关的状态。测量这些状态,就需要各种不同的传感器。 世界是三维的,飞行器的三维位置非常重要。比如民航客机飞行的时候,都是用GPS获得自己经度、纬度和高度三维位置。另外GPS还能用多普勒效应测量自己的三维速度。后来GPS民用之后,成本十几块钱的GPS接收机就可以让小型的设备,比如汽车、手机也接收到自己的三维位置和三维位置。 对多旋翼飞行器来说,只知道三维位置和三维速度还不够,因为多旋翼飞行器在空中飞行的时候,是通过调整自己的“姿态”来产生往某个方向的推力的。比如说往侧面飞实际上就是往侧面倾,根据一些物理学的原理,飞行器的一部分升力会推着飞行器往侧面移动。为了能够调整自己的姿态,就必须有办法测量自

多旋翼飞行器解决方案

多旋翼飞行器解决方案 一、多旋翼飞行器介绍 多旋翼飞行器是由多组动力系统组成的飞行平台,一般常见的有四旋翼、六旋翼、八旋翼……十八旋翼,甚至更多旋翼组成。旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。电动多旋翼飞行器由无刷电机驱动螺旋桨组成单组旋翼动力系统,由惯导系统、飞控系统、导航系统、电子调速器组成控制驱动部分。瑞伯达提供专业无人机飞行器解决方案。飞行器作为飞行载体可携带影像器材、通讯器材、采集器材、特殊器材等升空,可达到传统方式达不到的高度(0-500米)。 二、多旋翼飞行器优点 多旋翼飞行器以其独特的结构和简洁的系统构架与传统飞行器相比 有明显的优势。 1、多旋翼飞行器的最大优点是安全 2、需要的起降条件要求很低。 3、以高能电池作为能量与油动飞行器相比噪音更低 4、简单的机械部件组成(仅电机轴承为机械部件)与传统直升机 (有较复杂的机械部件与传动结构)相比维护相当简单。

5、操纵简单,整机全电子增稳,一个人只需要半天左右学习就基 本可以独立驾驶了。 三、多旋翼飞行器缺点: 1、速度差,旋翼飞机比直升飞机稍慢,与固定翼飞机相比差得太远,因此在需要快速运输而又没有特别要求的场合,都使用普通固定翼飞机; 2、灵活性欠佳。虽然旋翼飞机比直升飞机略快一点,安全性也更 高,但其使用灵活性却比直升飞机差太多。它的机动性远逊于直升飞机,而且比固定翼飞机起降场地要求低很多,跟直升飞机比起来却又有些逊色,但是安全性和操纵简单的优势就突出 四、多旋翼飞行器的用途 多旋翼飞行系统可广泛应用于农业中低空撒种、喷洒农药,治安监控、森林灭火、灾情监视、应急通讯、电力应用、海运应用、气象监测、航拍航测,另外对空中勘探、无声侦查、边境巡逻、核辐射探测、航空探矿、交通巡逻等三十多个行业方面的应用也将进一步得到开发。 多旋翼飞行器在多行业的应用 1、公安系统的应用 多旋翼飞行器具有便携、质轻、飞行稳定、噪音低等特点,携带影像设备与侦测设备可以为秘密侦察提供强有力的手段,尤其是人不易接近的区域,可以提供空中第一手影像资料。同样在群体性事件中也可以发挥巨大的作用,除侦察外甚至可以携带小型催泪瓦斯进行空中投

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四轴飞行器论文

2014-2015年大学生创业新基金项目结题论文 作品名称:用于作物生长监测的飞行机器人 学院:工学院 指导老师:孙磊 申报者姓名(团队名称):李家强、梁闪闪、谈姚勇 二〇一五年五月

目录 摘要 (3) 关键词 (3) 引言 (3) 多旋翼农用无人机的发展简史 (4) 作品设计方案 1.1 飞行器的结构框架和工作原理 (5) 1.2 硬件选择 (6) 1.3硬件电路设计 1.3.1:主控模块 (7) 1.3.2:姿态传感器模块 (8) 1.3.3:电源模块 (9) 1.4 软件系统设计 1.4.1:总体设计 (9) 1.4.2:姿态解算实现 (10) 参考文献 (11) 附件1:作品实物图 (12) 附件2:原件清单 (13) 附件3 电路原理图 (14) 附件4 部分程序(遥控器) (15)

关于作物成产检测的飞行机器人的研究报告 作者:李家强、梁闪闪、谈姚勇指导老师:孙磊 (安徽农业大学工学院合肥市长江西路130号 230036) 摘要:四旋翼飞行器通过排布在十字形支架四个顶端的旋翼,产生气动力,控制飞行器的升降、倾斜、旋转等。本文主要讨论四旋翼飞行器所选用的单片机类型,以及选用此款单片机的原因。通过PWM技术来调节飞行器的飞行状态,以MPU-6050为惯性测量器件。所形成的飞行控制系统使得飞行器能达到较平稳的飞行姿态。整体采用无线遥控控 制,无线频波为2.51GHZ。 关键词:四旋翼飞行器、作物检测、飞行时间、飞行距离 Abstract:through four rotor aircraft configuration at the top of the cross-shaped bracket four rotor, aerodynamic force, control aircraft movements, tilt, rotation, etc. This article focuses on four rotor aircraft chooses the types of single chip microcomputer and choose this single chip microcomputer. Through the PWM technology to adjust the aircraft's flight status, inertial measurement device for MPU - 6050. Formed by makes the aircraft flight control system can achieve a smooth flight. Overall the wireless remote control, wireless 2.51 GHZ frequency wave. Keywords: four rotor aircraft, crop detection, time of flight, flight distance 引言:随着我国的经济迅速发展,农业种植的规模化、机械化、信息化。但是现阶段的农业生产中存在着一些很棘手的问题。例如农作物的病虫害的实时监控这个问题以及作物生长情况采样分析等。而飞行机器人可以利用自身携带的航拍工具在操作人员制定的地块进行拍摄,通过无线接收装置可以在操控室的接收显示屏播放航拍发送回来的图片和视频。此作品飞行距离可达到2000米,留空时间可达30分钟。故而此作品完全可以实时监测农作物的病虫害的发展以及采取大量有效的作物生长数据。

多旋翼飞行器原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图 1.1所示。 2.工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿 z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。由于旋翼1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图 d中,当电机 1和电机 3 的转速上升,电机 2 和电机 4 的转速下降时,旋翼 1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在富余反扭矩的作用下绕 z轴转动,实现飞行器的偏航运动,转向与电机 1、电机3的转向相反。 (5)前后运动:要想实现飞行器在水平面内前后、左右的运动,必须在水平面内对飞行器施加一定的力。在图 e中,增加电机 3转速,使拉力增大,相应减小电机 1转速,使拉力减小,同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。按图 b的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动。向后飞行与向前飞行正好相反。(在图 b 图 c中,飞行器在产生俯仰、翻滚运动的同时也会产生沿 x、y轴的水平运动。) (6)倾向运动:在图 f 中,由于结构对称,所以倾向飞行的工作原理与前后运动完全一样。 首先声明本人也是菜鸟,此教程就是从一个菜鸟的角度来讲解,现在论坛上的帖子都突然冒很多出来,又不成体系,我自己开始学的时候往往一头雾水,相信很多新手也一样。所以在这个帖子里面,我都会把自己遇到的疑惑逐一讲解。 【概述】 1、diy四轴需要准备什么零件 无刷(4个) 电子调速器(简称,4个,常见有好盈、中特威、新西达等品牌)

多旋翼飞行器设计与控制课程简介

《多旋翼飞行器设计与控制》课程简介 课程编号:031574 课程名称:多旋翼飞行器设计与控制 学时:32学时 开课学期:春季 上课时间:2016年3月10日- 2016年6月30日,周四晚7:00-9:00 上课地点:北航新主楼B208 一.内容简介 1、专业与学生定位: (1)专业:面向控制科学与工程专业特别是导航、制导与控制专业。 (2)学生:控制科学与工程专业特别是导航、制导与控制专业的研究生,或有一定航空和自动化专业背景的研究生。 2、课程目的: 本门课程讲授多旋翼设计、动态模型建立、状态估计、控制和决策等方面的基础知识。涉及到空气流体力学、电机、电路、材料结构、理论力学、以及导航、制导与控制各个学科的基础知识,具有基础性和系统性两个特色。因此,有利于学生将已学知识融会贯通,着重培养学生解决问题的综合能力。 二.先修课程与专业基础 自动控制原理,航空航天概论、理论力学、线性系统(建议) 三.讲授方式 课堂授课、学生大作业展示 四.教学安排与内容 1.多旋翼绪论

首先介绍飞行器的基本概念、评价、以及多旋翼的历史,以及本课的安排。 2.多旋翼设计 通过这一阶段,学生可以对多旋翼机身主体设计和动力系统选择有一个较为深入的认识。 2.1多旋翼的基本组成。这一部分包括机身主体、动力系统、控制系统和通讯链路等四个部分。主要按作用和指标参数两个方面分别介绍机架、起落架、云台、涵道、电机、电调、螺旋桨、电池、遥控器和接收器、自动驾驶仪、地面站、数传电台、图传电台、通讯协议等方面。 2.2多旋翼的机身主体设计。这一部分包括机体基本构型,以及减震和降噪的考虑等。 2.3多旋翼动力系统性能建模和估算。多旋翼的动力系统由航模电池、电子调速器、直流无刷电机和螺旋桨四个部分组成。这一部分包括对这四个部分建立力和能量方面的数学模型,提出动力系统的飞行性能估算,比如:悬停状态下的续航时间和最大负重等等。 3.多旋翼动态模型 通过这一阶段,学生可以对多旋翼运动模型有一个较为深入的认识。基于这个基础,可以做多旋翼状态估计和控制。 3.1坐标系和姿态表示。主要介绍世界惯性坐标系和机体系,以及姿态的三种表示方法:欧拉角、旋转矩阵和四元数。 3.2多旋翼的动态模型。这一部分包括姿态模型、动力学模型、控制分配模型、电机模型,还包括气动阻力模型。这将为后续的多旋翼位姿估计和控制等课程服务。 4.多旋翼状态估计 通过这一阶段,学生可以对多旋翼信息估计有一个较为深入的认识。 4.1 传感器模型以及校正。这一部分首先建立这些传感器的测量模型,进而进一步提出较正方法,估计需要较正的参数。 4.2 可观性和卡尔曼滤波。 4.3 多旋翼的运动信息估计。这一部分包括姿态估计、位置-速度估计、速度估计和障碍估计的介绍。 5.多旋翼控制 通过这一阶段,学生可以对多旋翼控制有一个较为深入的认识,所介绍的方法大部分是较为常用的方法。

相关文档
最新文档