变频调速典型控制系统_一_

变频调速典型控制系统_一_
变频调速典型控制系统_一_

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

变频器通过编码器实现闭环控制的原理

变频器通过编码器实现闭环控制的原理 变频器带编码器的闭环控制: 变频控制闭环,主要是指速度闭环。 变频电机有需要速度反馈的,在电机启动、加速和减速停止的变速过程中,电机的驱动电流需要与实际转速下电机因发电机效应产生的反电动势相匹配,如果电机驱动电流与反电动势阻抗不匹配,电机驱动力不够转速达不到输出要求,或者因电机负载过大电机没有达到输出速度值,反电动势因与转速成比例而偏弱,这样会引起电机电流徒增,容易烧毁电机线圈或驱动器。速度反馈及时反馈的信息可以计算实际转速并导算反电动势与驱动电流的匹配,从而保护电机和驱动器。 变频频电机的速度闭环反馈,大约有三种模式: 1,霍尔传感器,在电机转径上大部分是三个霍尔传感器,反馈三相位置变化。由于传感器对电机一周的提供信息有限,速度精度低,在低速时很难分辨。 2,所谓无传感器的技术----利用线圈转起来,自感应反电动势。但是在启动到低速过程中反电动势较弱,如果感应电路本底阻抗在,这种微弱的感应被吃掉,低速时实际获得反馈很不稳定。 3,旋转编码器,较高的分辨率(例如每圈1024个脉冲),可获得较高的速度精度,尤其是在启动到低速时精度高。 根据上述描述,可见变频器(尤其是矢量变频)带编码器主要是在低速启动时的效果,可以精细化计算驱动电流,防止电流过小驱动力不够(没有转速),或者因为堵转电机失速,反电动势不够而驱动电流过流,容易烧毁器件或电机。 上述情况在起重启升类电机尤为重要,防止变频器为保护电机失速而溜钩,所以起重启升类变频器必须加装编码器。 注意一下矢量变频的手册内容,一般有编码器反馈的,低速可做到很低。 另外,变频器有的加装了PG卡的位置闭环模式,编码器反馈给具有位置控制功能的变频器(PG卡)做位置闭环控制,或者编码器信号给PLC,PLC给指令变频器减速和制动做位置闭环控制,这时我建议需要用值编码器。

自动控制系统案例分析

北京联合大学 实验报告 课程(项目)名称:过程控制 学院:自动化学院专业:自动化 班级:0910030201 学号:2009100302119 姓名:张松成绩:

2012年11月14日 实验一交通灯控制 一、实验目的 熟练使用基本指令,根据控制要求,掌握PLC的编程方法和程序调试方法,掌握交通灯控制的多种编程方法,掌握顺序控制设计技巧。 二、实验说明 信号灯受一个启动开关控制,当启动开关接通时,信号灯系统开始工作,按以下规律显示:按先南北红灯亮,东西绿灯亮的顺序。南北红灯亮维持25秒,在南北红灯亮的同时东西绿灯也亮,并维持20秒;到20秒时,东西绿灯闪亮,闪亮3秒后熄灭。在东西绿灯熄灭时,东西黄灯亮,并维持2秒。到2秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭,绿灯亮。东西红灯亮维持25秒,南北绿灯亮维持20秒,然后闪亮3秒后熄灭。同时南北黄灯亮,维持2秒后熄灭,这时南北红灯亮,东西绿灯亮……如此循环,周而复始。如图1、图2所示。 图 1

图 2 三、实验步骤 1.输入输出接线 输入SD 输出R Y G 输出R Y G I0.4 东西Q0.1 Q0.3 Q0.2 南北Q0.0 Q0.5 Q0.4 2.编制程序,打开主机电源编辑程序并将程序下载到主机中。 3.启动并运行程序观察实验现象。 四、参考程序 方法1:顺序功能图法 设计思路:采用中间继电器的方法设计程序。这个设计是典型的起保停电路。

方法2:移位寄存器指令实现顺序控制 移位寄存器位(SHRB)指令将DATA数值移入移位寄存器。S_BIT指定移位寄存器的最低位。N指定移位寄存器的长度和移位方向(移位加=N,移位减=-N)。SHRB指令移出的每个位被放置在溢出内存位(SM1.1)中。该指令由最低位(S_BIT)和由长度(N)指定的位数定义。

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

QFT飞行控制系统设计

QFT 飞行控制系统设计 4.1 引言 在飞控系统中,被控对象(如直升机等)往往是非常复杂的多输入多输出系统,具体表现为非线性、时变、高度耦合、高阶、不稳定、模型不确定性等。因此,这对设计一个覆盖整个飞行包线的控制器带来相当大的难度。目前,国内外设计全包线控制器一般有以下几种方法: 增益调度(gain scheduling )、非线性动态逆(Non-Linear Dynamic Inversion )、定量反馈理论(QFT )、自适应控制(AC )等。其中,国内外大多数采用增益调度方法。 本章将介绍一种工程上较为容易实现的强鲁棒控制理论—定量反馈理论(QFT )。重点介绍了MIMO 系统设计QFT 控制器的原理和一般步骤。 4.2 MIMO 系统的QFT 控制器设计概述 定量反馈理论(QFT )是以色列人Horowitz 教授提出的一种强鲁棒控制理论,它针对当对象具有不确定性和存在干扰的情况下,如何利用反馈信息设计出满足一定要求的控制系统这一问题而提出的。QFT 的最初发展首先研究具有不确定性的线性时不变单输入单输出系统(LTI/SISO ),如图4.1所示。其中,P 为不确定控制对象,r 为指令输入,y 为系统输出,1d 和2d 分别表示输入干扰和输出干扰,G 和F 为要设计的控制器和前置滤波器。随着QFT 的理论研究的深入,进一步推广到多输入多输出、非最小相位/不稳定、时变及非线性等系统。LTI/SISO 系统是QFT 研究的基础,而其他的MIMO 系统等都可以通过数学变化转化为等效的LTI/SISO 系统,再进行设计。 y 图4.1 SISO 系统的QFT 控制框图 MIMO 系统QFT 研究的重点就是如何有效地将原控制系统转化成一组等效的MISO 系统,从而可以运用相对成熟的SISO 系统QFT 设计分析,这也是MIMO 系统QFT 设计相比较与SISO 系统设计的最大特点。图4.2给出了两输入两输出系统的等效过程。可以看出原系统是22?系统,等效后变成了4个结构类似的21?子系统。每个系统都有两个输入端,一个输出端。两个输入分别是指令输入和由各子系统之间耦合作用引起的输入,即“干扰”输入。 然后,就可以对每个子系统采用SISO 系统的QFT 设计方法设计对应的控制器。最后,将各子系统的设计结果综合起来就是原系统的设计结果。

(整理)几个开环与闭环自动控制系统的例子

2-1 试求出图P2-1中各电路的传递函数。 图P2-1 2-2 试求出图P2-2中各有源网络的传递函数。 图P2-2 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a )的 ()()?=s X s X r c (2)求图(b )的() () ?=s X s X r c (3)求图(c )的 ()()?12=s X s X (4)求图(d )的 ()() ?1=s F s X 图P2-3 2-4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上的等效转动惯量、等效粘性摩擦系数和()()() s M s s W 2θ= 。

图P2-4 图P2-5 2-5 图P2-5所示为一磁场控制的直流电动机。设工作时电枢电流不变,控制电压加在励磁绕组上,输出为电机角位移,求传递函数()() () s u s s W r θ=。 2-6 图P2-6所示为一用作放大器的直流发电机,原电机以恒定转速运行。试确定传递函数() () ()s W s U s U r c =,设不计发电机的电枢电感和电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 ()()()()()()[]()s X s W s W s W s W s X s X c r 87111--= ()()()()()[]s X s W s X s W s X 36122-= ()()()()[]()s W s W s X s X s X c 3523-= ()()()s X s W s X c 34= 2-8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。 图P2-7 图P2-8

变频器的闭环速度控制功能

https://www.360docs.net/doc/977576359.html,/m/b/1411607.html 丹佛斯VLT2800系列变频器的闭环速度控制功能 一、概述: 丹佛斯VLT2800系列变频用具有响应时间快、速度控制精度高等特点,通过内部的滑差补偿功能,可以在开环速度控制中将转速误差控制在+/-23rpm之内(4极电机,90~3600rpm)。假如对转速精度有更高的要求,可以采用速度闭环的方式:通过速度传感器反馈信号与给定信号的比较进行PID运算,控制电机的实际转速。通过速度闭环控制,VLT2800系列变频器可将转速误差控制在+/-7.5rpm之内(4极电机,30~3600rpm)。 二、实施方法: 将速度传感器安装于电机轴上,通过对实际转速信号的采集达到精确控制转速的目的。速度传感器一般采用旋转编码器,而旋转编码器根据工作原理、分辨率、电源类型和输出形式的不同又分为很多不同类型,如下表所列。 在此,我们选用增量型、24V电源供电、集电极开路(PNP)输出、分辩率为1024的旋转编码器,按下表方式接线:

一般使用旋转编码器需要判定电机转向和定位控制时需要使用A/B/Z三相信号。在此,我们仅需要A 相信号传感实际转速。 需重新设定的参数见下表(以四极电动机为例,由电位器给定转速信号):

基于S7-200 PLC USS协议通信的速度闭环定位控制系统设 计 时间:2013-11-20 来源:作者: 可以应用于多个自动化控制系统中,大大节约了项目的开发时间和成本,在实际应用中取得了良好的效果。 0 引言 随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,简单可靠,操作方便、通用灵活、体积小、使用寿命长且功能强大、容易使用、可靠性高,常常被用于现场数据采集和设备的控制;在此,本次设计就是基于S7-200PLC的USS通信方式的速度闭环定位控制。 将现在应用最广泛的PLC和变频器综合起来通过USS协议网络控制实现速度闭环定位控制。PLC根据输入端的控制信号及脉冲信号,经过程序运算后由通讯端口控制变频器运行设定的行程;电机运行到减速值后开始减速;电机运行到设定值后 停止运行并锁定。因此,该系统必须具备以下三个主体部分:控制运算部分、执行和反馈部分。控制运算主要由PLC和变频器来完成;执行元件为变频器和电机;反馈部分主要为速度反馈。 S7-200 PLC通过USS协议网络控制Micro-Master MM420变频器,控制电动机的启动、制动停和定位控制,并能够通过PLC读取变频器参数、设置变频器参数。 1.系统设计的总体思路 系统主要由三个部分构成,即可编程逻辑控制器件PLC、变频器和电机。首先通过设置给定输入给PLC,再通过PLC控制变频器,再经由变频器来控制电机,随后将电机的转速反馈给PLC,经比较后输出给变频器从而实现无静差调速。构成闭环系统就要把速度信息反馈给输入。速度的测量可以通过光电编码器和PLC来实现。 速度采集:S7-200具有高速脉冲采集功能,采集频率可以达到30KHz,共有6个高速计数器(HSC0~HSC5)工作模式有12种。在固定时间间隔内采集脉冲差值,通过计算既可以获得电动机的当前转速。 例如:设采样周期为100ms即是每隔100ms采集脉冲一次,光电开关每转发出8个脉冲,那么就可以得到速度为:

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

变频器的控制方式有哪些

变频器的控制方式有哪些 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。那么,常见的变频器有哪些种类,它们的控制方法又是什么? 变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。从电压角度来讲,有低压变频器、高压变频器两种。从电源角度来讲,有单相变频器、三相变频器的区分。从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。 变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1)V/f正弦脉宽调制(SPWM)控制方式 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2)转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有 对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳

1 飞行控制系统的硬件设计

1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块, 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器 在多旋翼的飞行控制系统当中,加速传感器应该说是一个非常重要的元器件。这不仅是由于加速度传感器具有动态载体的特性校正功能,并且它能够针对加速度实施积分,继而得出载体速度以及位置之类的基本信息。我们所选取的ADI公司研发的ADXL345传感器,同时兼具SPI以及I2C的数字输出功能,其分辨率较高,同时体积也比较小。 1.2.3 GPS模块 当无人机在天空飞行的时候定位系统是十分重要的,需要对无人机所呈现的姿态加以实时的测量,可以说在无人机系统当中,GPS模块占据着一定的主导地位。我们选取了U-BLOX公司所研发和生产的CJMCU-6M当作GPS的接收机,该传感器具有接口较为方便,而且定位的速度也比较快,不用长时间等待的特征。其利用串口输出的形式RS-232数据传输,继而结合协议而解算无人机所处的坐标、高度和时间之类的信息。 1.3 电源 电源模块主要的功能是为飞控系统当中的其他模块供给电量,从而确保飞行顺利。电源模块当中主要包含一个电源接口,以及一个稳压器,稳压器所具备的功能是对电压加以转换,避免因为高电压而导致电路板和一些其他元器件的损坏。本文中选择系统稳压器的标准为5V 输入,主控板的供电输出是3.3V,而最大的输出电流是500mA。 1.4 执行机构驱动 多旋翼无人机的飞行系统想要达成自主悬停功能,这就需要飞行器必须要在飞行不稳的情况之下能够迅速地改变成为平稳的状态,也就是在这种情况之下,执行机构要在非常短的时间之内做出相应的反应,让无人机所呈现的速度能够高速地提升或降低。本文所设计的系统当中采用直流无刷电机当作执行机构,继而配合无刷电调来应用,这个电机具备周期较长,而且效率较高等特征。电机是一种十分关键的执行机构,是对飞行器的姿态加以控制的动力。而我们所选择的直流无刷电机是想让四旋翼形式的飞行器形成多种飞行的姿态,工作的主要原理为对空气动力学的利用,从而使旋翼形成多种转速,继而达到想要的效果,完成各种飞行姿态。直流无刷的电机所接收到的控制信号是PWM波所发出的。而结合DSP所发出的具

基于PLC模拟量的变频器闭环调速控制

漳州师范学院 课 程 设 计 报 告 课题名称:PLC的变频闭环调速及其应用 姓名:林铭泰 学号:070505116 班级:07电气1班 指导老师:洪清辉 2010-06-20

1 引言 (3) 2 系统设计 (3) 2.1 设计目的 (3) 2.2 设计要求 (3) 2.3 硬件接线图 (6) 3 各硬件模块简介 (6) 3.1 变频器 (6) 3.1.1 变频器主要功能 (6) 3.1.2 变频器平面图 (7) 4 软件设计 (8) 4.1 A/D输入模块程序 (8) 4.2 D/A输出模块程序 (8) 4.3 偏移参数设定 (8) 5 系统测试 (8) 5.1 测试方法 (8) 5.2 测试中遇到的问题 (9) 6 应用扩展 (10) 基于PLC在矿井提升机中的调速控制系统 (10) 6.1 控制要求 (10) 6.2 本设计控制结构 (10) 6.3 设计说明 (11) 7 结束语 (12) 8 参考文献 (12) 9 附录 (13)

1 引言 随着变频调速技术的应用日益广泛,应用水平的不断提高,对变频调速控制系统的精度要求也越来越高。目前,许多变频调速装置属于开环控制方式,不能满足有较高精度的控制要求。为提高开环变频调速器控制精度,本系统采用有编码器速度检测的、由高性能FX2NPLC 调节控制的闭环系统。 2 系统设计 2.1 设计目的 1.利用可编程控制器及其模拟量模块,通过对变频器的控制,实现电机的闭环调速。 2.了解可编程控制器在实际工厂生产中的应用及可编程控制器的编程方法。 2.2 设计要求 电机的实际转速在较快的时间内接近给定目标转速,并且能够稳定运行。当改变给定速度时,电机能快速响应达到接近给定值。 系统简介 1.1FXON一3A简介 可编程控制器(PLC)原是为了开关量的控制而设计的。但是,在一个复杂的控制系统中,控制任务多种多样,而且随着电子技术的发展,新型过程控制计算机的不断涌现,在STD总线计算机、可编程调节器、集散型控制系统的基础上,PLC的模拟量控制越来越得到广泛的应用。模拟量不同于开关量,它在时间上、数值上都是连续变化的。 为了满足模拟量控制系统的控制要求,几乎所有的可编程控制器生产厂家都开发了模拟量控制功能。采取的方法是在软件上为PLC增加功能指令,在硬件上为PLC设计各种各样的模拟量控制模块。不同厂家的可编程控制器,开发了不同的模拟量专用模块,三菱FXON一3A模块就是其中的一种。 FXoN是日本三菱公司设计的产品,该系列是依据FX2系列的固定及可扩展性概念,在软硬件两方面兼备微程序装置所必要的性能、功能。FX ON一3A是可编程控制器的模拟量特殊功能模块。该模块具有2路模拟量输入通道和1路模拟量输出通道。其输入通道数字分辨率为8位,A/D的转换时间为100s,在模拟与数字信号之间采用光电隔离,适用于FX1N、FX2N、FX2NC子系列。在A/D转换中,输入通道接收模拟信号后转换成数字信号;在D /A转换中,输出通道取数字信号并输出等同的模拟信号。它占用FXON扩展总线的8点输入/输出,8点可定为输入或输出。对于FXON一3A模块,用户可连接电压或电流输入/输出,并有3种信号形式可供选择:0~10 VDC(分辨率为40 mV),0~5 VDC(分辨率为

自动控制系统案例分析资料

学合大北京联 告报实验 制控:目)名称过程课程(项 化:专业院:学自动化学院自动 学:级班20091003021190910030201号: :张名:姓绩松成 日14 11 年2012 月 制灯控实验一交通 验目的一、实编程方法和程序调试方法,掌握交通灯控制的多PLC 的熟练使用基本指令,根据控制要求,掌握 种编程方法,掌握顺序控制设计技巧。二、实验说明南按以下规律显示:按先关控制,当启动开关接通时,信号灯系统信号灯受一个启动开开始工作, 20 秒,在南北红灯亮的同时东西绿灯也亮,并维持北红灯亮,东西绿灯亮的顺序。南北红灯亮维持 25 到秒。,东西黄灯亮,并维持 2 秒;到 20 秒时,东西绿灯闪亮,闪亮 3秒后熄灭。在东西绿灯熄灭时北绿秒,南,

绿灯亮。东西红灯亮维持 25 2 秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭东西绿秒后熄灭,这时南北红灯亮,23 秒后熄灭。同时南北黄灯亮,维持灯亮维持 20秒,然后闪亮 。所示……如此循环,周而复始。如图1、图2灯亮 1图 2图三、实验步骤 1. .输入输出接线1 G输出R Y G RSD输入输出YQ0.4I0.4东西Q0.1Q0.0Q0.3Q0.5Q0.2南北 2.编制程序,打开主机电源编辑程序并将程序下载到主机中。 3.启动并运行程序观察实验现象。 四、参考程序 方法 1:顺序功能图法 设计思路:采用中间继电器的方法设计程序。这个设计是典型的起保停电路。

2.

:移位寄存器指令实现顺序控制方法 2指指定移位寄存器的最低位。N 数值移入移位寄存器。)指令将移位寄存器位(SHRB DATA S_BIT 在溢出内存,移位减N=-N)。SHRB指令移出的每个位被放置=定移位寄存器的长度和移位方向(移位加)指定的位数定义。)和由长度()中。该指令由最低位(位(SM1.1S_BITN 3.

飞行操纵系统

飞行操纵系统

飞行操纵系统 ——飞机系统结课论文 指导老师:闫凤良 班级:080441D 学号:080441436 姓名:朱仕广 2010.6.25

摘要:飞行操纵系统是飞机在天空中自由飞行必不可少的系统。飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。此文对飞机的飞行操纵系统、空客A320的操纵系统和相关案例进行简单介绍。 关键词:飞行操纵系统空客A320的操纵系统相关案例 正文: 飞机要想在天空中自由自在的翱翔,飞行操纵系统是必不可少的。飞行操纵系统让飞机在空中能按照人的意愿自由改变飞行状态,从而飞抵人们想要飞去的地方。下面,我们简单介绍飞机的飞行操纵系统、空客A320的操纵系统和相关案例。 一、飞行操纵系统 定义:飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。

1.飞行操纵系统分类 按照操纵指令的来源分为:人工飞行操纵系统和自动飞行控制系统。 (1)人工飞行操纵系统:其操纵信号由驾驶员发出。包括主飞行操纵系统和辅助飞行操纵系统。 主飞行操纵系统:操纵升降舵、方向舵、副翼、三个主舵面,实现飞机的俯仰、偏航和滚转操纵;辅助飞行操纵系统:操纵襟翼、副翼、扰流板、调整片等增升、增阻及水平安定面配平、方向舵配平等系统。 (2)自动飞行控制系统:其操纵信号由系统本身发出。 对飞机实施自动和半自动控制,协助驾驶员工作或自动控制飞机对扰动的响应。 包括:自动驾驶、飞行指引和自动油门。 按照指令的执行方式来分: (1)机械式操纵系统 (2)电传操纵系统 2.基本飞行操纵原理 (1)飞机的纵向操纵是通过操纵驾驶杆或驾驶

典型飞行控制系统

三、典型飞行控制系统 1、已知某飞机的传递函数是: ) 69.19.0()4.0(5.1) () (2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的 控制规律为:? Z Z Z ?K +?-?K =?+T ? ? ??δ? ? δ)()1(g s 。 (1)由控制规律画出相应的系统结构图; (2)要控制该飞机舵回路的时间常数应作何限制? (3)若飞机受到常值力矩92 .0=?M Z γ 公斤*米,已知 Z Z M δ=-1.15公斤*米/度,若要求 稳定后其静差 s θ?<0 1 ,应对Z K ? 作何限制; (4)若要保证该系统的动态性能,应如何选取Z ? K ? 的值。 (5)分析在垂直向上风干扰下,系统的动态相应过程以及稳态情况。 2、已知某飞机的传递函数是: ) 47.15.1()59.0(2.1) ()(2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的控 制规律为:? Z Z Z ?K +?-?K =?+? ???δ? ? )()11.0(g s 。 (1)由控制规律画出相应的系统结构图; (2)求出内回路闭环传递函数,并绘制随参数? Z K ? 变化的根轨迹图,并求取 值时的使? Z K =? ξ87.0以及此时三个内回路闭环极点值; (3)求出外回路闭环传递函数,并绘制随参数?Z K 变化的根轨迹图,并求取 值时的使?ξZ K =8.0以及此时三个外回路闭环极点值; (4)采用根轨迹方法分析舵回路时间常数对飞行控制系统工作性能的影响; (5)分析参数? Z K ? 与?Z K 之间的关系。 ● 自动驾驶仪有哪几个工作回路? (1)同步回路 (2)舵回路 (3)稳定回路 (4)控制回路 ● 俯仰阻尼器的作用是什么? 用来改善飞机的纵向短周期运动的阻尼特性 ● 滚转阻尼器的作用是什么? 用来改善飞机—阻尼器系统的滚转特性 ● 什么是控制增稳系统?其作用是什么? 不牺牲操纵性来提高飞机的阻尼比和固有频率,又可以解决非线性操纵指令问题 ● 飞行高度控制系统需要 最基本的信号? 需要直接测量飞行高度,使用高度差传感器,根据高度差的信息来直接控制飞机的飞行姿态,从而改变航迹请教,以实现对飞行高度的闭环稳定和控制

自动飞行控制系统 AFCS

涡轮发动机飞机 第六章自动飞行控制系统AFCS 自动飞行控制系统的组成和基本功能 自动驾驶仪(AP)飞行指引(FD)偏航阻尼系统(YDS)俯仰配平系统(Auto Trim)自动油门系统(ATS) 6.1自动飞行控制系统AFCS的组成和基本功能 系统的功用——自动飞行控制系统可在除起飞的飞机的整个飞行阶段中使用:离场、爬升、巡航、下降和进近着陆。 6.1.1 自动飞行控制系统AFCS由下列分系统组成: 自动驾驶仪(A/P)—既可用于控制飞行轨迹,也可用于控制飞行速度减轻飞行员 的工作负担,还可实现飞机的自动着陆。 飞行指引仪(F/D) 在PFD或EADI上显示计算机提供的自动飞行的指令使飞行 员按照飞行指引杆的指引驾驶飞机,或监控飞机的姿态。自动配平系统自动调节飞机的水平安定门,改善飞机的俯仰稳定性 偏航阻尼系统(Y/D)改善飞机整个飞行阶段的动态稳定性 自动油门系统(ATS)自动调节发动机输出功率,实现最佳飞行,并减轻飞行 员的负担。 偏航阻尼系统与自动配平系统合称为增稳系统。 飞行管理系统FMS 在现代飞机上,利用飞行管理系统FMS,可完成对飞机的全自动导航; 提供从起飞到进近着陆的最优侧向飞行轨迹和垂直飞行剖面的计算, 实现最佳飞行。FMS的输出信号加到AFCS,控制自动飞行控制系统 的工作,实现对飞机的制导和推力管理;同时监测AFCS的工作,防止 飞机在不正常条件下的自动飞行。 6.1.3 AFCS的基本结构 AFCS的基本组成: 飞行控制计算机——计算控制指令。 控制板——(方式控制板MCP)是人机接口,用于向计算机输入飞行员的控制 指令,如飞行方式、速度、高度等。 输出设备——将计算机产生的控制信号加到飞行控制系统(通过舵机控制飞行操 纵面等),将显示信息输往显示器。 数字式AFCS的结构 80年代AP/FD计算机集成为FCC。 电子飞行控制系统EFCS的结构

相关文档
最新文档