NTC1KΩ B=3470热敏电阻-阻温对照表

NTC1KΩ B=3470热敏电阻-阻温对照表
NTC1KΩ B=3470热敏电阻-阻温对照表

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

电阻阻值计算色环电阻识别及精度

电阻阻值计算色环电阻 识别及精度 Document number:PBGCG-0857-BTDO-0089-PTT1998

电阻阻值计算:色环电阻识别及精度 色环电阻是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。具体读法可参考下图: 黑,棕,红,橙,黄,绿,蓝,紫,灰,白 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 倒数第二环,表示零的个数。最后一位,表示误差。这个规律有一个巧记的口诀:棕一红二橙是三,四黄五绿六为蓝,七紫八灰九对白,黑是零,金五银十表误差。 例如,红,黄,棕,金表示240欧。 分四环和五环,通常用四环。倒数第二环,可以金色(代表×)和银色的(代表×),最后一环误差可以无色(20%)。五环电阻为精密电阻,前三环为数值,最后一环还是误差色环,通常也是金、银和棕三种颜色,金的误差为5%,银的误差为10%,棕色的误差为1%,无色的误差为20%,另外偶尔还有以绿色代笔误差的,绿色的误差为%。精密电阻通常用于军事,航天等方面。 电阻色环上看电阻的精度:

色环电阻分为四色环和五色环 四色环:前两位是有效数字;第三位是倍率;第四位是误差,就是它的精确度五色环:前三位是有效数字;第四位是倍率;第五位是误差 它们的误差色环相同时误差是一样的: 色环误差 棕 +/-1% 红 +/-2% 绿 +/% 蓝 +/% 紫 +/% 灰 +/% 金 +/-5% 银 +/-10% 无色 +/-20% 最常见的: 四色环电阻误差是+/-5%,为普通电阻 五色环电阻误差是+/-1%,为精密电阻。

色环电阻识别: 带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数"代"进去,这样就可很快读出数来。 下面介绍掌握此方法的几个要点: (1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的阻值范围,这一点是快识的关键。具体是: 金色:几点几Ω 黑色:几十几Ω 棕色:几百几十Ω 红色:几点几 kΩ 橙色:几十几 kΩ 黄色:几百几十 kΩ 绿色:几点几 MΩ

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

色环电阻对照表92786

电阻色环转换为阻值对照表 4色环电阻,是用3个色环来表示阻值,前二环代表有效值,第三环代表乘上的次方数,用1个色环表示误差。5色环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环表示误差。下表是色环电阻的颜色-数值对照表:

一、电阻阻值的色环表示法 电阻的单位:电阻的基本单位是“欧姆”,什么叫“1欧姆”?假如一段导线,两端的电压是1伏,此时流过导线的电流是1安培,那么这段导线的电阻就是1欧姆,简称“欧”。1000欧=1千欧(KΩ),1000千欧=1兆欧(MΩ)。欧姆的符号是“Ω”;千欧符号“ΚΩ”;兆欧符号“MΩ”。 颜色和数字的对应关系:首先我们向你介绍颜色和阿拉伯数字之间的对应关系,这种规定是国际上公认的识别方法,记住它对我们进一步学习很有帮助。颜色 按照下面的方法容易记忆: 黑0 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 此外,还有金、银两个颜色要特别记忆,它们在色环电阻中,处在不同的位置具有不同的数字含义,这是需要特别注意的。对此,我们放在后面介绍。“四色环”读数规则 所谓“四色环电阻”就是指用四条色环表示阻值的电阻。从左向右数,第一,二环表示两位有效数字,第三环表示数字后面添加“0”的个数。所谓“从左向右”,我们是指把电阻象图中所画的样子放置——四条色环中,有三条相互之间的距离靠得比较近,而第四环距离稍微大一点。如下图:

但是说实在的,现在的电阻产品,你要区分色环距离的大小的确很困难,哪一环是第一环,往往凭借经验来识别;对四色环而言,还有一点可以借鉴,那就是:四色环电阻的第四环,不是金色,就是银色,而不会是其它颜色(这一点在五色环中不适用);这样你就可以知道那一环该是第一环了。 请看下面例子: 红2 紫7 棕1 金±5% 第一环:红——代表2 第二环:紫——代表7 第三环:棕——代表1, 但是第三环的“1”并不是“有效数字”,而是表示在前面两个有效数字后面添加“零”的个数。 由此看来,这个电阻的阻值应该是270,单位是什么?在色环电阻中,一律默认为“欧姆”(电阻的基本单位,符号是Ω)。上述电阻的阻值是:270Ω 那么,第四环又是什么意思?第四环表示电阻的“精度”,也就是阻值的误差。金色代表误差±5%,银色代表误差±10%。对270Ω而言,±5%的误差,意味着这个电阻实际最小的阻值是270*(1-0.05)=265.5Ω;最大不会超过270*(1+0.05)=283.5Ω。 在识别四色环电阻时,有两个情况要特别注意:

色环电阻常识

色环电阻 色环电阻,是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。色环电阻是电子电路中最常用的电子元件,采用色环来代表颜色和误差,可以保证电阻无论按什么方向安装都可以方便、清楚地看见色环。色环电阻的基本单位是:欧姆(Ω)、千欧(KΩ)、兆欧(MΩ)。1000欧(Ω)=1千欧(KΩ),1000千欧(KΩ)=1兆欧(MΩ)。 色环电阻用色环来表示电阻的阻值和误差,普通的为四色环,高精密的用五色环表示,另外还有六色环表示的(此种产品只用于高科技产品且价格十分昂贵)。下表为色环电阻对照关系,其识别方法如下:

黑,棕,红,橙,黄,绿,蓝,紫,灰,白 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 倒数第二环,表示零的个数。 最后一位,表示误差。 色环电阻分四环和五环,通常用四环。 四色环电阻就是指用四条色环表示阻值的电阻,从左向右数,如图所示。第一道色环表示阻值的最大一位数字;第二道色环表示阻值的第二位数字;第三道色环表示阻值倍乘的数;第四道色环表示阻值允许的偏差(精度)。 例如一个电阻的第一环为红色(代表2)、第二环为紫色(代表7)、第三环为棕色(代表1)、第四环为金色(代表±5%),那么这个电阻的阻值应该是270Ω,阻值的误差范围为±5%。

五环电阻为精密电阻,前三环为数值,最后一环还是误差色环,通常也是金、银和棕三种颜色,金的误差为5%,银的误差为10%,棕色的误差为1%,无色的误差为20%,另外偶尔还有以绿色代表误差的,绿色的误差为0.5%。精密电阻通常用于军事,航天等方面。 六色环电阻就是指用六色环表示阻值的电阻,如图所示,六色环电阻前五色环与五色环电阻表示方法一样,第六色环表示该电阻的温度系数。 倒数第二环,可以金色(代表×0.1)和银色的(代表×0.01),最后一环误差可以无色(20%)。 色环电阻顺序的识别方法 技巧1:先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环,就可以基本认定这是色环电阻的最末一环。 技巧2:棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。 技巧3:在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100×104Ω=1MΩ误差为1%,属于正常的电阻系列值,若是反顺序读:棕、黄、黑、黑、棕,其值为140×100Ω=140Ω,误差为1%。显然按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种色环顺序是不对的。 2.四色环数值有他的规律,一般是缺省的是比如1(100,1K,1M0, 2(200,2K,), 34(340, 3.4K), 47(47,470, 4.7K), 68(680,6.8K...),很少有绿色5,紫色7,白色9,灰色8开头的.这个可以帮助你判断.而且大部分最后一环误差是银色金色. 1、偏差环距环较远。 2、偏差环较宽。 3、第一环距端部较近。 4、有效数字环无金、银色。(解释:若从某端环数起第1、2环有金或银色,则另一端环是第一环。) 5、偏差环无橙、黄色。(解释:若某端环是橙或黄色,则是第一环。) 6、试读:成品电阻器的阻值不大于22M,若试读大于22M,说明读反。

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

热敏电阻温度-阻值表

柜机、分体、窗机、TMC、变频空调(除压缩机排气处)热敏电阻 温度/阻值表(R25=5KΩB25/50=3470K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -30.0 63.7306 14.0 7.7643 58.0 1.5636 -29.0 60.3223 15.0 7.4506 59.0 1.5142 -28.0 57.1180 16.0 7.1513 60.0 1.4666 -27.0 54.1043 17.0 6.8658 61.0 1.4206 -26.0 51.2686 18.0 6.5934 62.0 1.3763 -25.0 48.5994 19.0 6.3333 63.0 1.3336 -24.0 46.0860 20.0 6.0850 64.0 1.2923 -23.0 43.7182 21.0 5.8479 65.0 1.2526 -22.0 41.4868 22.0 5.6213 66.0 1.2142 -21.0 39.3832 23.0 5.4048 67.0 1.1771 -20.0 37.3992 24.0 5.1978 68.0 1.1413 -19.0 35.5274 25.0 5.0000 69.0 1.1068 -18.0 33.7607 26.0 4.8108 70.0 1.0734 -17.0 32.0927 27.0 4.6298 71.0 1.0412 -16.0 30.5172 28.0 4.4566 72.0 1.0100 -15.0 29.0286 29.0 4.2909 73.0 0.9800 -14.0 27.6216 30.0 4.1323 74.0 0.9509 -13.0 26.2913 31.0 3.9804 75.0 0.9228 -12.0 25.0330 32.0 3.8349 76.0 0.8957 -11.0 23.8424 33.0 3.6955 77.0 0.8695 -10.0 22.7155 34.0 3.5620 78.0 0.8441 -9.0 21.6486 35.0 3.4340 79.0 0.8196 -8.0 20.6380 36.0 3.3113 80.0 0.7959 -7.0 19.6806 37.0 3.1937 81.0 0.7730 -6.0 18.7732 38.0 3.0809 82.0 0.7508 -5.0 17.9129 39.0 2.9727 83.0 0.7293 -4.0 17.0970 40.0 2.8688 84.0 0.7086 -3.0 16.3230 41.0 2.7692 85.0 0.6885 -2.0 15.5886 42.0 2.6735 86.0 0.6690 -1.0 14.8913 43.0 2.5816 87.0 0.6502 0.0 14.2293 44.0 2.4934 88.0 0.6320 1.0 13.6017 45.0 2.4087 89.0 0.6144 2.0 1 3.0057 46.0 2.3273 90.0 0.5973 3.0 12.4393 47.0 2.2491 91.0 0.5808 4.0 11.9011 48.0 2.1739 92.0 0.5647 5.0 11.3894 49.0 2.1016 93.0 0.5492 6.0 10.9028 50.0 2.0321 94.0 0.5342 7.0 10.4399 51.0 1.9656 95.0 0.5196 8.0 9.9995 52.0 1.9015 96.0 0.5055 9.0 9.5802 53.0 1.8399 97.0 0.4919 10.0 9.1810 54.0 1.7804 98.0 0.4786 11.0 8.8008 55.0 1.7232 99.0 0.4658 12.0 8.4385 56.0 1.6680 100.0 0.4533 13.0 8.0934 57.0 1.6149 借助上表,用万用表测量热敏电阻的阻值,比较实际温度,可以判断热敏电阻的好坏,也可以通 过测量热敏电阻的阻值来简单测量温度。 变频空调压缩机排气处热敏电阻 温度/阻值表(R25=50.000KΩB25/50=3950K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -40.0 2009.2 0.0 168.10 40.0 26.507 80.0 6.3515 -39.0 1869.0 1.0 159.46 41.0 25.464 81.0 6.1541

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

NTC热敏电阻原理及应用

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有 接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、 温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的 检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的 应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度 25 ℃时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。

色环电阻阻值对照表

一、四色环:

二、第四环决定第一、第二环颜色组合: 标称值系列误差电阻标称值 E24(金色)±5%1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.87.58.29.1 E12(银色)±10%1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.88.2 E6(无色)±20% 1.0 1.5 2.2 3.3 4.7 6.8如:一、二环为棕和棕,那四环只能是金色了,因为只有E24标称值系列才有1.1对应阻值。 一、二环为棕和红,那四环可能是金或银了,因为E24和E12标称值系列都有1.2对应阻值。 一、二环为棕和黄,那你可能是眼花没看清楚,因为三个标称值系列中都没有1.4对应阻值,三、四色环阻值范围: 第三环颜色倍乘阻值范围单位备注金色10-1 1.0-9.1Ω几点几欧 黑色10010-91Ω几十几欧 棕色101100-910Ω几百几十欧 红色1021.0-9.1K Ω 几点几千欧 橙色10310-91KΩ几十几千欧 黄色104100-910K Ω 几百几十千欧 绿色1051.0-9.1M Ω 几点几兆欧 蓝色10610-91MΩ几十几兆欧 紫色107100-910M Ω 几百几十兆欧

银色 倍乘太小一般不会常用灰色 倍乘太大一般不会用白色 倍乘太大一般不会用无色 第三环不可能是无色环 四、五色环:颜色第一环第二环第三环 第四环(倍乘)第五环(误差环)备注黑色 0001误差环与阻值环隔距较大 棕色 11110±1%红色 222100±2%橙色 3331000黄色 44410000绿色 555100000±0.5%蓝色 6661000000±0.25%紫色 77710000000±0.1%灰色 888100000000±0.05%白色 9991000000000金色 0.1±5%银色 0.01±10%无色±20%

色环电阻读值方法及电阻色环表

色环电阻读值方法及电阻色环表 色环电阻读值方法及电阻色环表 在某些不好区分的情况下,也可以对比两个起始端的色彩,因为计算的起始部分即第1色彩不会是金、银、黑3种颜色。如果*近边缘的是这3种色彩,则需要倒过来计算。 色环电阻的色彩标识有两种方式,一种是采用4色环的标注方式,令一种采用5色环的标注方式。两者的区别在于:4色环的用前两位表示电阻的有效数字,而5色环电阻用前三位表示该电阻的有效数字,两者的倒数第2位表示了电阻的有效数字的乘数,最后一位表示了该电阻的误差。 对于4色环电阻,其阻值计算方法位: 阻值=(第1色环数值*10+第2色环数值)*第3位色环代表之所乘数 对于5色环电阻,其阻值计算方法位:阻值=(第1色环数值*100+第2色环数值*10+第3位色环数值)*第4位色环代表之所乘数 色标法色标法是指在电感器表面涂上不同的色环来代表电感量(与电阻器类似),通常用四色环表示,紧靠电感体一端的色环为第一环,露着电感体本色较多的另一端为末环。其第一色环是十位数,第二色环为个位数,第三色环为应乘的倍数(单位为11H),第四色环为误差率,各种颜色所代表的数值见表2。例如:色环颜色分别为棕、黑、金、金的电感器的电感量为1LIH,误差为5%。

常规贴片电阻(部分) 常规的贴片电阻的标准封装及额定功率如下表: 英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/20 0402 1005 1/16 0603 1608 1/10 0805 2012 1/8 1206 3216 1/4 1210 3225 1/3 1812 4832 1/2 2010 5025 3/4 2512 6432 1 直插电阻 1/8W ----AXIAL-0.3 1/4W ----AXIAL-0.4或AXIAL-0.3(如果自己弯折的比较靠近电阻根部的话)1/2W ----AXIAL-0.5或AXIAL-0.4(如果自己弯折的比较靠近电阻根部的话) 1W ----AXIAL-0.6或AXIAL-0.5(如果自己弯折的比较靠近电阻根部的话) 2W ----AXIAL-0.8 3W ----AXIAL-1.0 5W ----AXIAL-1.2 附铜处的连接孔线宽 1.针对某块铜,选中SHAPE,右键Parameter 里Thermal Relief Conenct 设置即可。 2.针对全局设置,打开Global Shape Parameter 设置即可。 3.针对某些PTH PIN进行设置,在PIN上添加以下属性即可。 DYN_FIXED_THERM_WIDTH 连接线宽 DYN_THERMAL_CON_TYPE 连接类型

电阻颜色表

每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 ,金、银表示误差 色环电阻是应用于各种电子设备的最多的电阻类型,无论怎样安装,维修者都能方便的读出其阻值,便于检测和更换。但在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错,在识别时,可运用如下技巧加以判断: 技巧1:先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环,就可以基本认定这是色环电阻的最末一环。 技巧2:棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。 技巧3:在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100×104?=1M?误差为1%,属于正常的电阻系列值,若是反顺序读:棕、黄、黑、黑、棕,其值为140×100?=140?,误差为1%。显然按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种色环顺序是不对的。电阻按材料分一般有:碳膜电阻、金属膜电阻、水泥电阻、线饶电阻等。一般的家庭电器使用碳膜电阻较多,因为它成本低廉。金属膜电阻精度要高些,使用在要求较高的设备上。水泥电阻和线饶电阻都是能够承受比较大功率的,线饶电阻的精度也比较高,常用在要求很高的测量仪器上。 小功率碳膜和金属膜电阻,一般都用色环表示电阻阻值的大小,这也是我们在学习电阻的很重要的一步。电阻阻值的单位是欧姆。下面详细说明。 色环电阻分为四色环和五色环, 先说四色环。顾名思义,就是用四条有颜色的环代表阻值大小。每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 金、银表示误差 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示。 例如:电阻色环:棕绿红金,第一位:1;第二位:5;第三位:10的幂为2(即100);误差为5%;即阻值为:15×100=1500欧=1.5千欧=1.5K 还有精确度更高的“五色环”电阻,用五条色环表示电阻的阻值大小,具体如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第四条色环:阻值乘数的10的幂数; 第五条色环:误差(常见是棕色,误差为1%) 有些五色环电阻两头金属帽上都有色环,远离相对集中的四道色环的那道色环表示误差,是第五条色环,与之对应的另一头金属帽上的是第一道色环,读数时从它读起,之后的第二道、第三道色环是次高位、次次高位,第四道环表示10的多少次方,例如某电阻色环电阻顺序为:红(2)-黑(0)-黑(0)-黑-棕,则它表示该电阻阻值为:200×100?。再如棕-黑-黑-红-棕,表示该电阻阻值为:100×102?=10000?=10K?。可见,四色环电阻误差为5-10%,五色环常为1%,精度提高。 例如:有电阻:黄紫红橙棕,前三位数字是:472,第四位表示10的3次方,即1000,阻值为:472×1000欧=472千欧(即472K) 综上,只要金、银色环在最后,那就可以了。

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

相关文档
最新文档