醋 酸 含 量 测 定 方 法

醋 酸 含 量 测 定 方 法

1. 锥形瓶(250ml) 4. NaOH标准液(0.1 mol/L)

2. 酚酞指示剂 5. 纯水

3. 移液管(1ml) 6. 碱式滴定装置一套二. 测定步骤:

1. 加入约10ml纯水于锥形瓶中

2. 再用移液管准确吸取1ml试样于锥形

3. 以0.1mol/L NaOH标准液滴定,颜色

三. 计算方法:

V × C ×60.051010式中:V.—NaOH标准液消耗的体积

60.05—醋酸的分子量

1010—20℃下1ml试样的质量乘以1000四.注意事项:

1.不得将移液管插入到液面以下,以免造成检测结果偏差。20%醋酸含量测定

一. 药品及仪器:

×100%1 醋酸含量(HAC)%=

各种测量方法

各种测量方法 各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 、孔径单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。

三、长度、厚度长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、 气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度 尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件 等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏 心检查器检测偏心距值,用半径规检测圆弧角半径值, 用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用 光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平 面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜) 测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025?6.3卩m 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测 量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零 件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印 模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经 验进行修正);用 激光测微仪激光结合图谱法和激光光能法测量RaO.01?0.32卩m的 表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多

螺纹测量5大方法【干货】

螺纹测量方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1.用螺纹环规及卡板测量 对于一般标准螺纹,都采用螺纹环规或塞规来测量。在测量外螺纹时,如果螺纹“过端”环规正好旋进,而“止端”环规旋不进,则说明所加工的螺纹符合要求,反之就不合格。测量内螺纹时,采用螺纹塞规,以相同的方法进行测量。 2.用螺纹千分尺测量 螺纹千分尺是用来测量螺纹中径的,一般用来测量三角螺纹,其结构和使用方法与外径千分尺相同,有两个和螺纹牙形角相同的触头,一个呈圆锥体,一个呈凹槽。有一系列的测量触头可供不同的牙形角和螺距选用。测量时,螺纹千分尺的两个触头正好卡在螺纹的牙形面上,所得的读数就是该螺纹中径的实际尺寸。 3.用齿厚游标卡尺测量 齿厚游标卡尺由互相垂直的高卡尺和齿厚卡尺组成,,用来测量梯形螺纹中径牙厚和蜗杆节径齿厚。测量时,将齿高卡尺读数调整至齿顶高(梯形螺纹等于0.25﹡螺距t,蜗杆等于模数),随后使齿厚卡尺和蜗杆轴线大致相交成一螺纹升角β,并作少量摆动。这时所测量的最小尺寸即为蜗杆轴线节径法向齿厚。

4.三针测量法 用量针测量螺纹中径的方法称三针量法,测量时,在螺纹凹槽内放置具有同样直径D的三根量针,然后用适当的量具(如千分尺等)来测量尺寸M的大小,以验证所加工的螺纹中径是否正确。 5.双针测量法 双针测量法的用途比三针测量法还要广泛,如螺纹圈数很少的螺纹,以及螺距大的螺纹(螺距大于6.5),都不便用三针量法测量,而用双针量法测量则简便可行,对于普通螺纹,牙形角α=60° 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

差示扫描量热仪的工作原理(DSC)

差示扫描量热仪的工作原理 差示扫描量热仪作为常见的煤炭化验设备—量热仪系列产品中 的一员,在整个的量热仪家族中占据这举足轻重的地位,一直以来,工作人员都在熟练的操作这些仪器进行工作,但是,同样也存在不少个的人对这种量热仪究竟是怎样工作的还不是很明白,本文特汇总部分资料说明下差示扫描量热仪的工作原理。 一、示差扫描量热法我们必须的明白这种量热仪运用的原理其实就是示差扫描量热法:示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差腡时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差腡消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。 二、差示扫描量热仪差示扫描量热仪就是运用了以上的系统原理,现在我们找一款类似的设备看下这种类型的量热仪都有哪些配

置及特点? (一)、主要配置制冷系统除霜功能动态调制DSC功能(二)、主要特点功率补偿型设计原理,直接测定能量和温度而非温度差,灵敏度为微型炉设计,仪器升降温速度快,热慢性小,平衡时间短量热精度±温度精度±温度范围-170℃~+550℃动态量耗(三)、主要用途: 、高分子材料的定性,定量分析、熔点、玻璃化温度、结晶度、熔融热和结晶热、纯度、反应动力学、比热、相转变温度、相容性面向学科: 广泛应用于塑料,橡胶,涂料,胶粘剂,医药,石油化工等不同领域熟悉这种差示扫描量热仪的各种原理及配置后,以后我们在操作这种量热仪的时候就能够做到真正的熟练顺手,同时我们也将更多的一下类似于智能一体定硫仪、定硫仪、自动量热仪、微机全自动量热仪等各种煤炭化验设备,欢迎大家共同参与讨论学习 差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T 或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。 分类

NPT螺纹以及检测方法详解

N P T螺纹以及检测方法详 解 Prepared on 22 November 2020

一、目的:规范公司技术员,检验员,操作员对NPT螺纹的了解。 二、适用范围:适用于公司任何NPT螺纹类产品,参考资料为通用管螺 纹和国家标准GB/T12716-2011。 三、目录 1、NPT和NPTF介绍 2、螺纹技术参数参数讲解 3、NPT与NPTF加工工艺 4、NPT和NPTF的检测方法 四、内容: NPT和NPTF螺纹介绍 NPT 是 National (American) Pipe Thread 的缩写,属於美国标准的 60 度锥管 密封螺纹,用於北美地区,美国标准为13)通用管螺纹.国家标准可查阅 GB/T12716-2011。NPTF:美制干密封圆锥管螺。NPTF = National Pipe Thread Fine 称之为一般用途的锥管螺纹,这也是我们以前称之为的布氏锥螺纹。NPTF 螺纹称之为干密封式锥管螺纹,它连接密封的原理是在没有润滑剂或密封填 料情况下完全依靠螺纹自身形成密封,设计意图是使内、外螺纹牙的侧面、 牙顶和牙底同时接触,来达到密封的目的。它们两者的牙型角、斜度等指标 都是相同的,关键是牙顶和牙底的削平高度不一样,所以,量规的设计也是 不一样的。NPTF干密封管螺纹的牙形精度比NPT螺纹高,旋合时不用任何 填料,完全依靠螺纹自身形成密封,螺纹间无任何密封介质。干密封管螺纹 规定有较为严格的公差,属精密型螺纹,仅用在特殊场合。这种螺纹有较高 的强度和良好的密封性,在具有薄截面的脆硬材料上采用此螺纹可以减少断 裂现象。NPTF内、外螺纹牙顶与牙底间没有间隙,是过盈配合,而NPT螺 纹是过渡配合。NPTF螺纹主要用于高温高压对密封要求严格的场所。NPT

飞灰含碳量在线检测系统-安装调试

FCB型电站锅炉 飞灰含碳量在线检测系统第二卷安装调试手册 南京擎能自动化设备有限公司

目录 第一部分装置现场安装 (2) 一、结构部分的安装: (2) 1、测试箱与飞灰取样器安装: (2) 2. 主机柜的安装: (4) 3. 制作安装、调试用工作平台: (4) 4. 加装防雨棚: (4) 5. 气源要求: (4) 6. 电功率要求: (5) 二、电缆敷设 (5) 1. 电厂→主机柜 (5) 2. 主机柜→电厂 (5) 3. 主机柜→测试箱 (5) 4. 测试箱→测试箱(A侧-B侧) (5) 三、电气前期安装 (6) 1. 主机柜开孔与安装(见主机柜机械安装说明)。 (6) 2. 主机柜接线端子排的安装 (6) 3. 电缆放置要求: (6) 第二部分装置的调试 (7) 1. 系统接线 (7) 2.设定初始状态 (8) 3. 通电检查 (8) 4. 装置调试 (9)

第一部分装置现场安装 本装置现场安装需电厂方面配合做的工作主要分为结构部分的安装和电缆的铺设和各种信号源的提供。下面就具体内容简述如下: 一、结构部分的安装: 本装置结构部分由两套飞灰取样器、两套测试箱、一套电控箱和一套主机柜组成。锅炉飞灰含碳量在线检测装置的前期现场安装工作包括以下内容:在空预器之后,除尘器之前的A、B两侧烟道上安装飞灰取样器和测试箱;在位于A、B两侧烟道的中间部位,安装电控箱;在集控室或电子间的适当位置安装主机箱;给装于A、B两侧烟道的测试箱分别提供仪用空气气源;电缆铺设: 1、测试箱与飞灰取样器安装: 1.1取样器和测试箱的安装要求: a.取样点位置:空气预热器之后,除尘器之前烟道的直管段。 b.温度要求:取样点处的烟道温度小于200℃。 c.流场要求:烟道内取样点附近烟道截面没有突变,气流平稳。 d.烟道内部要求:在烟道内取样点处,迎着气流方向上,距离取样吸嘴前后(前不小于3米,后不小于0.5米),不能有障碍物(如隔板,大型支撑梁等),在距离取样嘴其它方向上0.5米内不能有导流板。 e.安装形式:可以在垂直烟道安装或水平烟道安装。在垂直烟道安装时,一般取样点选择在烟道水平方向的中部。在水平烟道安装时,一般取样点选择在垂直方向上距离烟道底部1/2到1/3的高度处。

锅炉飞灰含碳量偏高的原因及处理

锅炉飞灰含碳量偏高的原因及处理 火力发电关键词: 锅炉飞灰含碳量粉煤灰 1、前言 吕四港电厂#1、2、3、4炉是哈尔滨锅炉厂有限责任公司生产制造,由三菱重工业株式会社提供技术支持的超超临界参数变压运行直流锅炉。锅炉是单炉膛、结构,炉膛尺寸(宽,深,高)19.268/19.230/19.453。设计煤种神府东胜煤,燃烧器采用摆动式上下浓淡分离直流燃烧器,分六层布置,四墙切圆燃烧。制粉系统采用中速磨正压直吹式。 2、飞灰含碳量主要影响因素 根据燃烧理论和实际运行经验得出,引起飞灰含碳量偏高的主要因素有以下几个方面:燃烧时炉内氧量不足;煤粉细度不合适;配风方式不合理;燃煤品质;燃烧时间。这几个因素相互影响互相制约。为了找出一个合适的工况来指导运行,我们对这几个因素一一加以分析。 2.1烟气氧量 煤粉随着热一次风进入炉膛后,一方面由于卷吸高温烟气的对流加热作用以及高温火焰和炉壁的辐射作用,使煤粉很快着火燃烧,初始时由于氧气充足,燃烧速度由化学反应控制,到燃烧后期,由于氧气不充足,燃烧速度由氧气的混合速度控制。在缺氧状态下,碳粒发生不完全氧化反应和还原反应,造成碳粒不完全燃烧,加大了不完全燃烧热损失。因此,保证一定的过量空气系数是必需的。根据经验,此系数应在1.15~1.3之间,折算成烟气氧量是2.6~5。 吕四港电厂#1、2、3、4炉设计烟气氧量为3~5,但由于实际燃用煤种和设计煤种有差别,因此为了保证安全,氧量一般被取下限。为了摸清具体情况,不同工况下我们作了变氧量试验,试验结果如下: 不同负荷不同氧量下的飞灰指标 通过试验,我们找出了每台炉的最佳氧量。并在实际运行中按照负荷曲线进行调整。 2.2煤粉细度 在锅炉煤粉燃烧中,对流热交换强度和氧气向粉粒表面的扩散强工与颗粒直径大小成反比,所以尽管细煤粉颗粒使紊流交换强度降低,可是,分子扩散交换及对流交换强度增强,煤粉单位重量的表面积大大增加,有利于煤粉的着火、混合与燃烬。有试验表明,煤粉燃烬时间

1_差示扫描量热法的原理

1 差示扫描量热法的原理 DSC(differential scanning calorimetry)差示扫描量热法,是在程序控制温度下,测量输出物质与参比物的功率差与温度关系的一种技术。其主要特点是使用的温度范围比较宽(-175~725°C)、分辨能力高和灵敏度高。差示扫描量热仪得到的曲线以每秒钟的热量变化(热流率dH/dt)为纵坐标, 温度为横坐标, 称为DSC曲线, 与DTA 曲线形状相似,但峰向相反。在具体分析中图谱中峰的方向表示吸热或放热(通常峰表示放热,谷表示吸热);峰的数目表示在测定温度范围内待测药物样品发生变化的次数;峰的位置表示发生转化的温度范围;峰的面积反映热效应数值的大小;峰高峰宽及对称性与测定条件有关外,往往还与样品变化过程的动力学因素有关。根据测量方法的不同,又分为两种类型:功率补偿型DSC 和热流型DSC。 1.1功率补偿型DSC 功率补偿型DSC的主要特点是试样和参比物分别具有独立的加热器和传感器,其结构如图1-1所示。 图1-1 试样与参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时使参比物一边电流增大,直到两边达到热平衡,温差消失为止。也就是说,试样在热反应中发生热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面的两只电热补偿的热功率之差随时间的变化关系。如果恒速升温,记录的也就是热功率之差随温度的变化。 1.2 热流型DSC 在热流型DSC中试样和参比物在同一个加热炉内,它们受同一温度-时间程序的监控。热流型DSC的结构如图1-2所示,该仪器的特点是利用鏮铜盘把热量传输到试样和参比物的,并且鏮铜盘还作为测量温度的热电偶结点的一部分。传输到试样和参比物的热流差通过试样和参比物平台下的镍铬板与鏮铜盘的结点所构成的镍铬-鏮铜热电偶进行监控。试样温度由镍铬板下方的镍铬-镍铝热电偶直接监控。试样和参比物的温差DT与两者的热流差成正比。为了获得一条水平的理想基线,在热流型DSC的构造中,结构对称性必须很高,温度滞后应该很小,炉温要均匀且总的传热系数必须很大。

常用飞灰含碳量检测技术比较

常用飞灰含碳量检测技术比较 目前国内飞灰含碳量在线检测装置有微波检测法和灼烧失重法。 一、微波检测法又分为:微波衰减(吸收)法和微波谐振法。 1.1微波衰减(吸收)法测碳原理——检测信号功率(强度)变化(我厂一期4*125MW 采用的产品) 1.1.1 电磁波在传输过程中,不论遇到何种电介质都要产生能量的损耗。即任何介质对电磁波都有吸收的特性,只是物质的介电常数、介质损耗、传输特性不同对电磁波的吸收强弱不同。这是电磁波的一种公认特性。 因为飞灰可燃物主要成分是碳及碳的介电常数,微波测试单元就用固定频率发射能量衡定的微波信号,飞灰中可燃物的含量越高,吸收微波能量的作用就越强。所以,这种检测方法对煤种变化影响不大。 1.1.2系统工作过程——系统采用无动力飞灰取样器,自动将烟道中的灰样收集到微波测试装置的测量管中,由灰位控制器自动判别收集灰位的高度。当收集到足够的灰样时,系统对飞灰含碳量进行微波谐振测量。已分析完的灰样受智能飞灰控制装置指令,打开电磁阀接入压缩空气吹扫,根据程序设定或手动设置,飞灰可以自动经采样管道吹回烟道或者送入收灰容器,以便于化学分析化验。然后进行下一次飞灰的取样和含碳量的测量。系统就是如此循环往复的工作。 系统对飞灰含碳量进行微波测量分析后,受智能飞灰控制装置指令,打开吹扫电磁阀接入压缩空气吹扫,(根据程序设定或手动设置)飞灰可以自动经采样管道吹回烟道或者送入收灰容器,以便于化学分析化验。 1.1.3 主要特点 采用多点无动力等速取样装置,(取样不需要电、气等能源)自抽力强劲,取样速度快,灰样反吹回烟道,不堵灰。 灰路系统全封闭,无接触检测,结构简单。 整套装置没有电机、齿轮及其他任何机械转动部件,操作维护简单、方便。 检测结果数据准确、可靠。 装置防磨损、防腐,寿命较长。 1.2微波谐振法——检测微波频率变化(我厂2*300MW采用的产品) 由于不同物质的频率特性不同,而飞灰中物质组成复杂,特别是煤种变化时主要是矿物质变化,所以,这种方法在煤种变化时不能检测飞灰含碳量变化。 二、灼烧失重法 2.1 原理: 该产品采用的是灼烧法失重法测量技术,也就是电厂化验室采用的测量技术,它基于中国电力工业标准《飞灰和炉渣可然物测定方法》及《煤的工业分析方法》中的相关方法,当含有未燃尽碳的灰样在规定的高温下经灼烧后,由于灰样中残留的碳被燃尽后使灰样的质量出现了损失,利用灰样的烧失量作为依据计算出灰样中的含碳量。 含碳量的质量(%)= [灼烧前灰样加坩埚的质量(g)—灼烧后灰样加坩埚的质量(g)] / [灼烧前灰样加坩埚的质量(g)—收灰前坩埚的质量(g)] 2.2工作过程:

电站锅炉飞灰含碳量在线检测装置.docx

电站锅炉飞灰含碳量在线检测装置 前期现场安装工作

电站锅炉飞灰含碳量在线检测装置的前期现场安装工作包括以 下内容: 1.在空预器之后,除尘器之前的 A、B 两侧烟道上安装飞灰取样 器和测试箱。 2.在位于 A、B 两侧烟道的中间部位,安装电控箱。 3.在集控室或电子间的适当位置安装主机箱。 4.给装于 A、B 两侧烟道的测试箱分别提供仪用空气气源。 5.电缆铺设: a.从电厂配电箱处至主机箱,铺设一根动力电缆。 b.从主机箱处至电控箱处,铺设两根信号电缆及一根动力电缆。 c.从电控箱处至 A、B 两侧测试箱处,分别铺设一根信号电 缆和一根动力电缆。 在以上工作的实施过程中,需做以下具体工作: 1.取样器和测试箱的安装要求: a.取样点位置:空气预热器之后,除尘器之前烟道的直管段。 b.温度要求:取样点处的烟道温度小于200℃。 c.流场要求:烟道内取样点附近烟道截面没有突变,气流平稳。 d.烟道内部要求:在烟道内取样点处,迎着气流方向上,距 离取样吸嘴前后(前不小于 3 米,后不小于0.5 米),不能有障碍物(如隔板,大型支撑梁等),在距离取样嘴其它方向上0.5 米内不能

有导流板。 e.安装形式:可以在垂直烟道安装或水平烟道安装。在垂直 烟道安装时,一般取样点选择在烟道水平方向的中部。在水平烟道安 装时,一般取样点选择在垂直方向上距离烟道底部1/2 到 1/3 的高度处。 f.取样管长度:取样管伸入烟道深度的原则是:在沿着取样管方向上的烟道尺寸的1/3 到 1/2 之间,一般取样管长度不宜超过 2米。 g.安装要求:取样器和测试箱安装在烟道的侧面,烟道外有 安装取样器和测试箱的空间,并且具有日常装置维护操作的空间(长 ×宽×高至少为 1.5 米× 1.5 米× 1.8 米)及平台。测试箱的支架和取样 器法兰盘焊接在同一个烟道上,测试箱和烟道壁之间的保温层厚度不 小于 15 厘米,并考虑是否需要防雨蓬。焊装矩形过渡法兰、焊接安 装测试箱用的支架和工作平台等具体尺寸见附图(一)。去保温层、 在烟道壁上开孔具体尺寸见附图(二)。 2.电控箱的安装要求:电控箱一般安装于测试箱附近,要求有打 开箱门正常操作的空间,且操作方便。电控箱支架由我方提供或由电 厂配合制作。若原有构架可利用,也可不做支架。若安装电控箱处不 具备防雨条件,还需制作防雨棚。电控箱的安装尺寸见附图(三)。 3.主机箱安装要求:主机箱安装于集控室或电子间。外形尺寸320 ×180×300mm(长×宽×深),开孔尺寸282 ×172mm(长×宽),详见附图(四)。

三种螺纹测量方法的比较

本文介绍了几种螺纹参量的测量方法:综合测量法(量规测量法)、三针测量法和仪器测量法等,并对这几种测量法进行了比较。综合测量法(量规测量法)测量螺纹效率高,三针测量法适合测量外螺纹中径,仪器测量法则可以一次测出多个参数。 一、综合测量法(量规测量法) 螺纹的检验可用综合测量,也可单项测量。螺纹量规检验螺纹属综合测量。螺纹量规的形状和被测螺纹量规的形状相反,通规与止规配对使用。目前工厂使用的螺纹量规一般按图1所示的传递系统传递。 由图1可看出,内、外螺纹制件均可通过一种合格的螺纹量规以旋合法检验,其基本要点是: 1)螺纹基本尺寸集中控制在外螺纹量规上,这是因为外尺寸简单,易达到足够的准确度。 2)螺纹量规(塞规或环规)与制件旋合,是一种理想的螺旋副,这时检验制件的塞规或环规就是一种传递尺寸的理想标准,它满足量学上的一个基本准则,即量规仅用基准尺寸与被检制件进行比较,通过的量规(1_r、1Y 、T)是全牙形,它控制被检制件的全部尺寸,不通过量规(TZ、zZ、Z),则是截短牙形,它只控制被检制 件的实际螺纹中径尺寸。 图1 螺纹量规的传递系统 螺纹与制件旋合,可出现四种典型情况:1)量规与制件半角相等,但其中有一个偏斜,只要中径不一样,它们能旋合,但牙面是点接触。 2)螺距不同,但只要内螺纹中径~gp[-螺纹中径足够大,同样也可能出现点接触。 3)中径一样大,半角不同,这时不能旋合。 4)半角不同,但中径有足够差别,它们也可旋合。因此,只要采用通端和止端的两种量规,就可对螺纹制件的全部尺寸(螺纹内径、中径、外径、螺距、牙型角)进行综合检查。 1.1 检验内螺纹的量规 1)通端工作塞规用以控制被检内螺纹的大径最小极限尺寸和作用中径的最小极限尺寸,其牙型完整,螺纹长度与被检螺纹长度一样,一般8~9扣,合格标志为顺利通过被检内螺纹。 2)止端工作塞规控制被检内螺纹的实际中径,为消除牙型误差,制成截断牙型,为减少螺距误1 1差影响,其扣数为2 1~3 扣,合格标志是不能通过,但可以部分旋入,多于4扣的内螺纹旋入量不得多于2扣;少于4扣的,两端旋入量不得多于2扣。 3)通端验收塞规的检验作用与螺纹通端工作塞规相同,一般是选取部分磨损的,但螺距和半角误差较小的通端塞规,验收人员用以验收螺纹制件,其中径尺寸因磨损而稍小,可减少被通端工作塞规检验为合格而被验收塞规验成不合格的矛盾。验收塞规无止端。

飞灰含碳量的影响因素

飞灰含碳量的影响因素概括起来主要有三方面:燃料特性、锅炉结构及其附属设备、锅炉的运行 燃料特性主要包括煤的热值、挥发分含量及煤的粒度。 一燃料特性 1. 当煤质变化时,床温床压将出现大幅波动,虽然可以通过调整配风进行调整,但燃烧工况的恶化必然导致飞灰含碳量的增加。对于挥发分含量较高、结构比较松散的烟煤、褐煤和油页岩等燃料,燃烧速率较高,飞灰含碳量较小。对于挥发分含量低,结构密实的无烟煤、石煤等相同条件下飞灰含碳量要高出很多 煤种对飞灰含碳量的影响很大,对于挥发分含量较高、结构比较松软的烟煤,褐煤和油叶岩等燃料,当煤进人流化床受到热解时,首先析出挥发分,煤粒变成多孔的松散结构,周围的氧向粒子内部扩散和燃烧产物向外扩散的阻力小,可以提高燃烧速率,降低飞灰含碳量。对于挥发分含量少,结构密实的无烟煤、石煤等,当煤粒表面燃烧后形成一层坚硬的灰壳,阻碍燃烧产物向外扩散和氧气向内扩散,燃煤燃层困难,灰壳所包覆的碳核中。 一般而言,飞灰含碳量随煤种干燥基挥发分含量增加而减少,但也要注意到挥发分高、含灰量低的烟煤的煤由于剧烈的一次破碎和二次破碎产生大量的细焦碳颗粒,从而增加飞灰含碳量。而对于含灰量高、含碳量低的煤颗粒增加,其燃烧所产生的飞灰颗粒的含碳量降低。经研究如果以干燥无灰基挥发分除以发热量所得的数值作为一个煤质指标,会发现飞灰含碳量和煤质之间明显的相关关系。2.煤的粒径 煤的颗粒粒径影响流化质量和稀、浓相区的颗粒浓度。在一定的运行风速和给料量下,床料的粒度决定了颗粒在床内的行为。当煤的颗粒粒径增大后,稀相区颗粒浓度减小,而浓相区颗粒浓度增加。研究表明,颗粒浓度越高,颗粒的扰动也越大,相互间的碰撞的机会也越多,传热系数就大。由此可知,当燃煤粒径增大后,燃烧室上部燃烧份额偏少,燃烧温度偏低,燃烧效果变差和受热面发挥不了应有的吸热作用,会造成过热蒸汽温度偏低,蒸汽参数得不到保证。 煤的颗粒粒径增加对蒸发量的影响主要表现在其循环颗粒量的减少。当大颗粒煤增多后,在一定的流化风速下,其沉积在浓相区,则飞出床层的颗粒量减少,这使锅炉往往不能维持正常的返料量,循环倍率下降,蒸发量下降。 通过计算可知,直径为2.00 mm的粒子运行速度已经超过了0.5 mm颗粒的飞出速度,因此燃料中0.5 mm以下的细颗粒进入流化床后,很快就会随烟气带出床层,飞灰中的碳主要来自这一部分细颗粒。 对粒径在20以下的焦炭颗粒,虽然在炉内的停留时间很短,但是其反应表面积大,反应速度快,其停留时间仍大于燃尽所需时间,故颗粒在离开炉膛之前就可以燃尽。对粒径在40~50间的焦炭颗粒,炉内停留时间小于其所需要的燃尽时间,所以该档颗粒的含碳量较高。对粒径大于100的焦炭颗粒,其停留时间较长,而且分离器能够捕捉到,能够返回炉内循环燃烧,所以燃尽情况较好。所以飞灰含炭量高的粒径主要集中于40~50。 要避免出现分布不均,防止两极分化,入炉煤不能粒过细,一般1 mm以下的应小于30%,特别是粒径小于0.1mm的比例应尽可能少,否则,飞灰含碳量就会增大。燃用优质煤煤颗粒可粗些,燃用劣质煤,煤颗粒要细些。所以对于不同的煤质要调整二级破碎机的破碎能力来调整煤的粒度 二锅炉设备及其附属设备的影响 1.锅炉炉膛的高度

三种飞灰含碳量在线检测装置比较分析

三种飞灰含碳量在线检测装置比较分析飞灰含碳量在电厂的经济、安全运行中是比较重要的参数。锅炉飞灰含碳量偏高说明锅炉燃烧不完全,降低锅炉的热效率。同时也增大了锅炉受热面的磨损。飞灰含碳量高对煤粉综合利用及环境的影响。因为飞灰含碳量高会降低粉煤灰综合利用厂粉煤灰的质量。煤粉灰的销售是粉煤灰综合利用厂的效益的来源。其中一级粉煤灰是建筑市场中很好的材料,不仅价格高,而且销路好。但是锅炉燃烧烟气中的飞灰含碳量高,就造成煤粉灰的细度,烧失量,需水量比明显增加,使得粉煤灰综合利用厂的一级灰只能当作二级灰来卖,假如指标超标严重的话,按照是建筑科学研究院的规定,还不能对外销售。最后,飞灰含碳量偏高严重加重了环境的污染。锅炉燃烧烟气中的飞灰含碳量上升,也增大了烟囱向大气的排放烟尘量;如果电除尘捕捉下来的灰走湿排放,增加了外排污水的污染。所以飞灰含碳量的在线测量对电厂机组的安全运行、公司的经济利益和生态环境都有着相当大的影响。对于飞灰含碳量测量的主要来源——飞灰含碳量在线检测装置现在社会上主要有微波衰减法、微波谐振法、灼烧失重法三种,现在对这三张在线检测装置进行简单的分析。 一、概述——各种在线检测装置: 1、微波衰减法:第一代飞灰含碳量在线检测装置 测量原理:根据飞灰中未燃尽的碳对微波能量的吸收特性,进行分析 确定飞灰中碳的含量。微波衰减法是采用撞击时取样方法,将烟道内 的灰样收集到取样瓶内,再经过测量设备进行微波测量;锅炉飞灰中 含有未燃尽的碳颗粒,由于碳具有导电性,它对微波具有吸收作用, 吸收要求被测介质在禁止状态,需要一个短时间的测量过程。微波的 吸收过程主要有两个方面: A:被测飞灰样本的含碳量:在同样多的灰样下,含碳量越多,对微 波的吸收也越多。反之,含碳量越少,对微波的吸收也越少; B:被测飞灰样本的多少:同样含碳量的灰样,被测样本越多,对微波 的吸收就越多,反之被测样本越少,对微波的吸收就越少。 所有的微波检测设备只能对飞灰含碳量测出一个相对线性关系值,含 碳量的绝对值,需要通过人工对同一飞灰样本(仪器测量过的样本) 进行化学分析一次,测出含碳量的绝对值,对微波检测设备进行一次 标定,这样微波检测设备才能测量出飞灰含碳量的绝对值。

15.-实验二-差示扫描量热法(DSC)

实验二差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c 、熔点T m 、结晶度X D 。结晶动力学参数。 (2)测定玻璃化转变温度T g 。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DSC测定聚合物的T g 、T c 、T m 、X D 。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、

螺纹检测

普通螺纹的检测方法 实际生产中,经常会涉及到螺纹的检测和测量。螺纹的检测包括对螺纹合格性的综合性检验和确定某一几何参数量值的单一测量。下面对这两 种方法分别进行分析。 一、综合检验 在螺纹成批生产中,可采用光滑极限量规和螺纹量规联合对螺纹进行综合检验。即用光滑极限量规检验螺纹顶径,用螺纹量规检验其作用中径和底径的合格性。外螺纹顶径的合格性用环规(或卡规)检验,其通端和止 端分别按螺纹大径的最大极限尺寸d max 和最小极限尺寸d min 设计制造;内螺 纹顶径的合格性用光滑极限量规塞规检验,其通端和止端分别按螺纹小径 的最小极限尺寸D 1min 和最大极限尺寸D 1max 设计制造。由此光滑极限量规可 分别控制内、外螺纹顶径的实际尺寸位于其规定的公差范围内。 螺纹量规通规体现的是最大实体边界,并具有完整的牙型,其长度应等于被检验螺纹的旋合长度。通端螺纹环规用来控制外螺纹作用中径d 2作用 及小径最大极限尺寸d 1max ,通端螺纹塞规用来控制内螺纹作用中径D 2作用 及 大径最小极限尺寸D min 。螺纹量规止规的牙型为截短牙型,且只有几个牙, 以减少螺距误差和牙型半角误差对检验结果的影响。止端螺纹环规和塞规 分别用来控制外螺纹单一中径的最大极限尺寸d 2max 和内螺纹单一中径的最 小极限尺寸D 2min 。若螺纹通规在旋合长度内与被检螺纹顺利旋合,而螺纹止规不能通过被检螺纹(允许旋进最多2~3牙),则说明被检螺纹的作用中径、底径和单一中径均合格,否则不合格。 所以,采用光滑极限量规和螺纹量规联合可综合检验内、外螺纹顶径、作用中径、底径和单一中径是否合格(见图1)。 二、单项测量 单项测量主要用于检查精密螺纹及分析各个参数的误差产生原因。常用的单项测量方法有螺纹百分尺测量、三针测量和工具显微镜测量。螺纹百分尺测量原理与外径千分尺相同,装上螺纹测头可直接测量螺纹中径,该方法测量精度受半角误差的影响较大。下面具体讨论另外两种方法。 1.三针测量法: 三针测量法具有精度高,方法简单的特点,可以测量螺纹的中径和牙型半角。选用0级量针和四等量块在光学比较仪上测量,其测量误差可控制在±1.5μm以内。 (1). 测量中径 把三根直径相同的量针放在外螺纹沟槽内,量出三针外表面的尺寸M(图2),根据已知的螺距Р,牙型角α及量针直径d0和测出的M值可计算出中径测量值d2:

差示扫描量热法DSC说明介绍

聚合物的热分析------差示扫描量热法(DSC) 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。简称DSC(Diffevential Scanning Calovimltry)。DSC技术克服了DTA 在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。因此,近年来DSC的应用发展很快,尤其在高分子领域内得到了越来越广泛的应用。它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一。 一、目的和要求 了解差示扫描量热法的基本原理及应用范围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。 二、实验原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于 试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。 DSC 与DTA 所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC 和DTA 截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T 。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。 在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC 曲线。它与DTA 曲线基本相似,但其

几种飞灰含碳量在线检测方式的比较

几种在线检测产品比较 传统测量飞灰含碳量采用化学灼烧失重法是一种离线的分析方法,对灰样的代表性要求高、分析滞后,难以实时快速反映锅炉真实燃烧状况。 公司先后对国内外多种飞灰含碳量在线检测装置产品进行了对比研究(包括撞击取样式、烟道测量式、红外照相测量式、燃烧灰样测CO2、微波等速取样式等)。 1、采用撞击式方法取样分析,由于采集飞灰主要是依靠重力取样,所采集的灰样颗粒较大,所取灰样不具代表性,特别是其灰路存在严重的堵管现象,导致经常提供虚假的测量数据;此外运行维护量较大。 2、采用烟道测量非取样式分析,由于没有把烟气浓度信号接入,所测量的区域受烟气浓度影响很大,常常不能准确反应真实的飞灰含碳量;所测量区域也并非整个烟道截面;此外由于其采用非接触式测量,

灰样不能收集保留下来,无法准确衡量装置的准确性以及实时校验。 3、红外照相测量式因其安装在锅炉炉膛上,每次测量只能对炉膛内很小区域的烟气进行摄像,测量代表性差,并且摄像头易损坏,维护费用高。 4、燃烧灰样测CO2方式其结构复杂、测量周期长,应用很少。 5、微波谐振法,利用微波谐振腔的工作特性,将飞灰作为谐振腔的工作介质,通过检测谐振参数的变化,来实现对飞灰含碳量的测量。由于不同的煤质其燃烧后的飞灰中所含物质的密度、氧化物成分分别不同,实践中发现微波测量精度受煤种变化的影响比较大,更换煤种后需要重新进行标定,因此,难以满足用户对测量精度的要求。 灼烧法飞灰特点: 公司根据多年对客户需求的了解,研究开发了灼烧法飞灰含碳量在线检测装置,属于第三代高精度在线测碳产品,该产品将大家公认的实验室灼烧失重技术应用到工业现场的在线测量上,解决了目前微波测碳精度受煤种变化的难题,满足了电厂用户对飞灰含碳量小指标考核的要求,是在线飞灰检测技术的一次质的飞跃。 装置对每个烟道采用独立的取样、检测和控制系统,所有设备都安装于现场,有利于现场的安装和使用,可以为电厂节省电子间的有限空间。每个烟道采用一套独立的取样、检测和控制系统,与采用一台主机检测两个烟道系统相比,可以有效分散系统风险,从而进一步提高系统的可靠性。 为了提高检测指标,缩短检测周期,本装置采用富氧燃烧技术,采用先进的分子筛技术,无需使用化学试剂,无需更换制氧试剂,而是

微波飞灰测碳仪说明书

国电霍州发电厂 2×600MW机组“上大压小”工程锅炉飞灰含碳量在线检测系统 技术资料 太原市海通自动化技术有限公司 2010年11月

H T W-Ⅲ 飞灰在线测量装置 产品说明书 太原市海通自动化技术有限公司

目录 一前言 (2) 二工作原理 (3) 三功能特点 (3) 四主要技术指标 (4) 五系统结构 (4) 六安装要求 (7) 七操作 (8) 八维护 (9) 九常见故障及处理 (10) 十调试 (11)

一、前言 非常感谢您使用我公司生产的HTW系列飞灰在线测量装置! 飞灰含碳量是衡量电站锅炉和机组运行经济性的重要指标,当飞灰含碳量高时,会直接导致煤耗的升高,从而使发电成本增高。同时增大了NO X气体的排放,对环境质量也造成了严重的影响。随着电力系统体制的改革,竞价上网等政策的实施,煤耗的高低不仅关系到发电企业的经济效益,还会影响到电厂的生存与发展。 为了优化锅炉燃烧,提高燃料的利用率,降低发电煤耗,首先必须有良好的监测手段。传统的测定飞灰含碳量的方法是灼烧称重法。它是将一定重量的灰样在高温下完全燃烧,按照燃烧前后的重量差求出飞灰含碳量。用这种方法测得的结果要比锅炉实际工况至少推迟几个小时,不能及时反映锅炉的燃烧状况以指导对锅炉燃烧状况的调整。近几年来,陆续有一些飞灰含碳量监测仪投入使用,但都存在一些问题,例如有的采用撞击式取样器进行取样。这种方法存在着灰样颗粒偏大、影响飞灰的代表性的问题。有的取样管路设计不合理,经常堵灰。还有一些仪器采用模拟电路和分立元件组成,调试复杂,功能简单,系统的稳定性差。普遍的问题是:微波源稳定性差、系统的温度漂移和时间漂移大、飞灰中含水量对测量结果的影响严重等问题。 我公司生产的HTW型飞灰含碳量实时监测系统是经过多年的用户和市场调查,采用目前最先进的微波技术和信号处理技术进行设计,很好地解决了以往该类仪器存在的问题,适用于火力发电厂和其它燃煤锅炉进行飞灰含碳量的实时监测。系统结构如图1所示。 图1:系统框图

差示扫描量热法的应用

差示扫描量热法的应用 差示扫描量热技术在高分子材料与工程中的具体应用,将和差热分析技术一起讨论。为此,光将这两种技术作一比较,以便了解实际应用时究竟采用哪种技术更为有益.DTA和DSC的主要区别:DTA测定的是试样与参比物之间的温度差△T了,而DSC 测定的是热流率dH/dt,定量方便。因此,DSC的主要优点就是热量定量方便,分辨率高,灵敏度好.其缺点是使用温度低。以美国SII公司生产的DSC7020,最高温度只能到725℃.一般用到600℃以上,基线便明显变环,已不能使用最高灵敏度档.对于DTA,因为没有补偿加热器,目前超高温DTA,可做到2400℃,一般高温炉也能作到l 500一]700℃.所以,需要用高温的矿物、冶金等领域还只能用DTA.对于需要温度不高,而灵敏度要求很高的有机物高分子及生物化学领域,DSC则是一种很有用的技术,正因如此,其发展也非常迅速.本书列举的DSC曲线,就是用美国Perkin—Elmer公司生产的DSC—7型仪器测定的,见附录2. 近年来,DTA和DSC在高分子方面的应用特别广泛,如研究聚合物的相转变,测定结晶温度T c。结晶度θ,熔点T m,等温结晶动力学参数,破璃化转变温度了T g,以及研究聚合、固化、交联、氧化、分解等反应,并测定反应温度成反应温区、反应热、反应动力学参数等.图1.29说明这两种技术在聚合物科学上的应用.图1.30例说明聚合物材料各种热行为在DTA(DSC)曲线上的表现形式. 这里仅就应用DTA(DSC)曲线测定熔点、比热容、玻璃化转变温度、纯度、结晶变、固化反应工艺参数相固化反动力学参数,以及聚合物材料组成的剖析等作简要的介绍.

螺 纹 测 量 的 方 法

螺纹测量的方法 1.用螺纹环(塞)规及卡板测量 对于一般标准螺纹,都采用螺纹环规或塞规来测量如图(a)示。在测量外螺纹时,如果螺纹“过端”环规正好旋进,而“止端”环规旋不进,则说明所加工的螺纹符合要求,反之就不合格。测量内螺纹时,采用螺纹塞规,以相同的方法进行测量。 图(a) 图(b) 图(c) 在使用螺纹环规或塞规时,应注意不能用力过大或用扳手硬旋,在测量一些特殊螺纹时,须自制螺纹环(塞)规,但应保证其精度。对于直径较大的螺纹工件,可采用螺纹牙形卡板来进行测量、检查,如图(b)示。 2.用螺纹千分尺测量外螺纹中径 图1为螺纹千分尺的外形图。它的构造与外径千分尺基本相同,只是在测量砧和测量头 上装有特殊的测量头1和2,用它来直接测量外螺纹的中径。螺纹千分尺的分度值为0.01 毫米。测量前,用尺寸样板3来调整零位。每对测量头只能测量一定螺距范围内的螺纹,使

用时根据被测螺纹的螺距大小,按螺纹千分尺附表来选择,测量时由螺纹千分尺直接读出螺纹中径的实际尺寸。 图 1 3.用齿厚游标卡尺测量 齿厚游标卡尺由互相垂直的高卡尺和齿厚卡尺组成,如图(d)示,用来测量梯形螺纹中径牙厚和蜗杆节径齿厚。 测量时,将齿高卡尺读数调整至齿顶高(梯形螺纹等于0.25﹡螺距t ,蜗杆等于模数),随后使齿厚卡尺和蜗杆轴线大致相交成一螺纹升角β,并作少量摆动。这时所测量的最小尺寸即为蜗杆轴线节径法向齿厚S n 。 蜗杆(或梯形螺纹)节径法向齿厚,可预先用下面的公式计算出来: S n =21 t*cos β 基中:S n :蜗杆(或梯形螺纹)节径法向齿厚、t :蜗杆周节、β:螺纹升角 例1如何用齿厚游标卡尺对模数m n =6、头数K =2、外径d a =80mm 的蜗杆进行测量? 解 在测量时应先算出: 蜗杆周节 t =m n *π=6*3.142=18.852mm 蜗杆导程 L =t*k =18.825*2 = 37.704mm 蜗杆节径 d = d a -2* m s =80-2*6=68.00mm 螺旋角 β= π *arctan d L = π*68704.37arctan =1765.0arctan =10°1ˊ 蜗杆节径处法向齿厚 S n =21 t*cos β=21 *18.825*cos10°1ˊ=9.28mm 齿厚游标卡尺应在与蜗杆轴线成10°1ˊ的交角位置上进行测量,如果测得的蜗杆节径处法向齿厚实际尺寸为9.28 mm 时(因齿厚公差的存在,有些偏差),则说明蜗杆齿形正确。 4.三针测量法 用量针测量螺纹中径的方法称三针量法,测量时,在螺纹凹槽内放置具有同样直径D 的三根量针,如图(e)示,然后用适当的量具(如千分尺等)来测量尺寸M 的大小,以验证所加工的螺纹中径是否正确。 螺纹中径的计算公式: d 2=M -D ) 2 sin 11(α + +21t*ctg 2α M :千分尺测量的数值(mm)、D :量针直径(mm)、α/2:牙形半角、t :工件螺距或蜗杆周节(mm) 量针直径D 的计算公式:

相关文档
最新文档