土地利用矢量栅格转移矩阵计算

土地利用矢量栅格转移矩阵计算
土地利用矢量栅格转移矩阵计算

最简单的土地利用/景观转移矩阵的制作(转)(2009-05-19 03:36:24)

标签:杂谈分类:相关资料

写文章的过程中,同样也用到了土地利用/景观转移矩阵。转移矩阵的制作很多软件可以实现,有Arcview、Arcmap、还有人用matlab。但就是网上都写的都不详细,在这里,本文才用arcmap的叠加操作+excel的数据统计功能,可以轻松完成这一过程。相信瞧完了本文,初学者或者对GIS了解不多的人,也能轻松的制作出转移矩阵。

方法一:

1数据准备

准备好两期的coverage或shape文件。(注意:拓扑关系要建好,不然无法计算),采用Arcmap打开上述两期文件。

2叠加操作

选择Arcmap里面的“ArcToolbox”按钮下面的“Analysis Tools”工具下面的叠加分析模块(Overlay)下面的交叉分析功能(Intersect)。选择已经打开的两期数据进行叠加分析。叠加的结果存在一个可以找到的地方。同时,把叠加后的结果添加在Arcmap里。

3输出叠加文件的属性数据

A、右键打开intersect产生的矢量文件的数据属性表(open attribute table)。

B、点击“options”按钮,选择“add field”,然后给出一个新name“newarea”,数据类型为double

C、右键点击刚刚产生的“newarea”,并选择“calculate values”

D、然后点击“field calculator”对话框里面的“Advanced”后选择“help”将

Dim Output as double

Dim pArea as Iarea

Set pArea = [shape]

Output = pArea、area

拷入到“field calculator”对话框下面的空白处

E、在对话框“field calculator”最下面的空白处填上“output”

F、在属性表点击“options”按钮,→export(导出),属性以、dbf格式结果存储。

4 Excel进行转移矩阵制作

A、刚才存储的、dbf文件可以使用excel打开,打开的结果重新保存为、xls(excel)文件。

(dbf文件不能保存)

B、重新打开刚存储的excel文件。

C、选中所有数据,选择数据\数据透视表与数据透视图。将两期数据的id值分别拖入行列字段,然后以‘newarea’字段作为数据项拖入计算区域。得到的便就是转移矩阵。如果发现矩阵的形式不美观,可以对单位进行修改。

方法二:作某一地物与其她不同年份地类

例如:

1、做水体与其它年份分类地物的交集

A、分别打开刚刚产生的水域多边形与该地区其她年份的分类矢量文件

B、选择gis里面的“AacToolbox”按钮下面的“Analysis Tools”工具下面的叠加分析模块(Overlay)下面的交叉分析功能(Intersect)

C、分别输入上面抽出的水域多边形与该地区其她年份区的分类后的多边形进行intersect分析

D、右键打开intersect产生的矢量文件的数据属性表(open attribute table)

E、点击“options”按钮,选择“add field”,然后给出一个新name“newarea”,数据类型为double

F、右键点击刚刚产生的“newarea”,并选择“calculate values”

G、然后点击“field calculator”对话框里面的“Advanced”后选择“help”将 Dim Output as double

Dim pArea as Iarea

Set pArea = [shape]

Output = pArea、area拷入到“field calculator”对话框下面的空白处

H、在对话框“field calculator”最下面填上“output”

2、然后分别计算水体在该地区其她年份年转入与转出情况

A、点击“potions”下面的“select by attribute”按钮,并选择“GRID_COD_1”

B、令GRID_COD_1=1点击apply,此时会统计出该地区其她年份年仍然为水域的多边形

C、右键点击“newarea”选择统计功能(“statistics”),就会得到从然为水域的面积

D、分别计算出GRID_COD_1=2(林地)、3(草地)、4(城镇点)、5(耕地)、6(滩涂地)的面积就得到从由水域转入的面积。

以此类推

网上有人还采用的方法:

1、 Erdas:erdas--main--interpreter--gis analysis--matrix输入两个年份的分类图,然后进行重编码即可。

2、 Arcview:可以作个运算,其中一期的图*10或者100或者1000(土地利用类型取1位数时候×10,两位100),然后再加上另一期的土地利用图得出一个图的属性,肯定12,15,或者1221,或者1531之类的数据,应该就可以实现了。

GIS矢量数据和栅格数据知识点

栅格数据和矢量数据 矢量数据 定义: ?矢量数据结构通过记录空间对象的坐标及空间关系来表达空间对象的位置。 ?点:空间的一个坐标点; ?线:多个点组成的弧段; ?面:多个弧段组成的封闭多边形; 获取方法 ?定位设备(全站仪、GPS、常规测量等) ?地图数字化 ?间接获取 ●栅格数据转换 ●空间分析(叠置、缓冲等操作产生的新的矢量数据) 矢量数据表达考虑内容 ?矢量数据自身的存储和管理 ?几何数据和属性数据的联系 ?空间对象的空间关系(拓扑关系) 矢量数据表达 ?简单数据结构 ?拓扑数据结构 ?属性数据组织 矢量数据结构编码方式 实体式 索引式 双重独立式 链状独立 栅格数据 定义 以规则像元阵列表示空间对象的数据结构,阵列中每个数据表示空间对象的属性特征。或者说,栅格数据结构就是像元阵列,每个像元的行列号确定位置,用像元值表示空间对象的类型、等级等特征。 每个栅格单元只能存在一个值。 对于栅格数据结构 ●点:为一个像元 ●线:在一定方向上连接成串的相邻像元集合。 ●面:聚集在一起的相邻像元集合。 获取方式: ●遥感数据 ●图片扫描数据 ●矢量数据转换 ●手工方式 栅格数据坐标系 栅格数据压缩编码方案 栅格数据的分层

栅格数据的组织方法 栅格数据特点 编码方式: 直接编码—无压缩编码 链式编码—便界编码 游程长度编码 块式编码 四叉树编码 矢量数据优点: ?表示地理数据的精度较高 ?严密的数据结构,数据量小 ?完整的描述空间关系 ?图形输出精确美观 ?图形数据和属性数据的恢复、更新、综合都能实现 ?面向目标,不仅能表达属性,而且能方便的记录每个目标的具体属性信息缺点: ?数据结构复杂 ?矢量叠置较为复杂 ?数学模拟比较困难 ?技术复杂,特别是软硬件 栅格数据优点: ?数据结构简单 ?空间数据的叠置和组合方便 ?各类空间分析很易于进行 ?数学模拟方便 缺点: ?图形数据量大 ?用大像元减少数据量时,精度和信息量受损 ?地图输出不美观 ?难以建立网络连接关系 ?投影变换比较费时 ?矢量数据结构是一种常见的图形数据结构,它用一系列有序的x、y坐标对表示地理实体的空间位置。 ?矢量结构的特点:属性隐含,定位明显 ?矢量型数据结构按其是否明确表示各地理实体的空间相互关系可分为实体型和拓扑型两大类。 实体型与拓扑型数据结构比较 ?两者都是目前最常用的数据结构模型 实体型代表软件为MapInfo 拓扑型代表软件为ARC/INFO ?它们各具特色 实体型虽然会产生数据冗余和歧异,但易于编辑。 拓扑型消除了数据的冗余和歧异,但操作复杂,甚至会产生新的数据冗余。

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

ArcGIS栅格数据矢量化和编辑要点

实验三 ArcGIS栅格数据矢量化和编辑 一、主要内容 1、掌握ArcMap中地图、数据框架、组图层、数据层等基本概念及相互关系; 2、掌握利用ArcMap进行地图屏幕扫描数字化的主要流程及具体操作; 二、ArcMap基础知识 基本概念 1) 地图—Map (arcMap document) 在ArcGIS中,一个地图存储了数据源的表达方式(地图,图表, 表格) 以及空间参考。在ArcMap中保存一个地图时,ArcMap将创建与数据的链接,并把这些链接与具体的表达方式保存起来。当打开一个地图时,它会检查数据链接,并且用存储的表达方式显示数据。一个保存的地图并不真正存储显示的空间数据! 2) 数据框架—Data Frame 在“新建地图”操作中,系统自动创建了一个名称为“Layers”的数据框架。在ArcMap中,一个数据框架显示统一地理区域的多层信息。一个地图中可以包含多个数据框架,同时一个数据框架中可以包含多个图层。例如,一个数据框架包含中国的行政区域等信息,另一个数据框架表示中国在世界的位置。但在数据操作时,只能有一个数据框架处于活动状态。在Data View只能显示当前活动的数据框架,而在Layout View可以同时显示多个数据框架,而且它们在版面布局也是可以任意调整的。 3)组图层-- New Group Layer 有时需要把一组数据源组织到一个图层中,把它们看作Contents窗口中的一个实体。例如,有时需要把一个地图中的所有图层放在一起或者把与交通相关的图层(如道路、铁路和站点等)放在一起,以方便管理。 4)数据层 ArcMap可以将多种数据类型作为数据层进行加载,诸如AutoCAD 矢量数据DWG,ArcGIS的矢量数据Coverage、GeoDatabase、TIN 和栅格数据GRID,ArcView的矢量数据ShapeFile,ERDAS的栅格数据ImageFile,USDS的栅格数据DEM等。注意Coverage不能直接编辑,要编辑需要将Coverage转换成ShapeFile。

ArcGIS土地利用转移矩阵

一、数据准备(图1) 准备两幅不同时相的土地利用现状图(shp格式),每幅图的属性表都要有一个表示土地利用类型的字段,并且要使用不同的名称加以区分,如Type1995,Type2000。土地利用类型名称必须统一,并且完整,如都使用“城镇用地”、“有林地”等。 二、数据融合(图2) 在ArcMap里分别打开两个时相的图层,打开ArcToolbox,选择Data Management Tools | Generalization | Dissolve工具。Input Feature选择要融合的图层,Output Feature Class选择输出结果存储的位置及名称,Dissolve Field(s)选择土地利用类型字段(如Type1995),然后勾选Creat multipart features选项,点击OK完成。重复此过程,对另一时相数据进行融合。此步骤使相同利用类型的记录融合为一个记录,以提高后面步骤的计算速度。

三、叠置分析(图3) 在ArcMap中打开两个时相融合后的数据,在ArcToolbox中选择Analysis Tools | Overlay | Intersect工具,Input Features选择两个时相的图层,Output Feature Class 选择叠加结果存储的位置及名称,其余选项可以忽略,单击【OK】完成。 四、计算面积并导出属性表(图4-6) 在ArcMap中打开叠加后的图层数据,在该图层上右键打开属性表,选择Option |

Add field… 新建一个字段,命名为NewArea。 在Editer工具条中选择Editer | Start Editing,然后在属性表中NewArea字段上单击右键选择Calculate Geometry… ,在打开的Calculate Geometry对话框中,Property选择Area,Units选择要使用的面积单位,单击【OK】完成图斑面积计算。依次选择Editer | Save Edits / End Editing保存和退出编辑状态。

状态转移矩阵判定条件小论文

摘要:状态转移矩阵是现代控制理论的重要概念,在线性控制系统的运动分析中起着重要的作用。分别对连续时间线性时变系统、离散时间线性定常系统以及离散时间线性时变系统的状态转移矩阵进行了研究。根据常微分方程和差分方程解的唯一性,得到了判断矩阵函数是某一线性系统状态转移矩阵的充分条件,以及如何求出其对应的系统矩阵的方法。 状态转移矩阵是现代控制理论的重要概念,在线性控制系统的运动分析中起着重要的作用。 文献[1-8] 对线性系统的状态转移矩阵(包括连续时间线性定常系统、连续时间线性时变系统、离散时间线性定常系统、离散时间线性时变系统)进行了详细而深人的介绍。通常情况下,判断矩阵函数是某一连续时间线性时不变系统的状态转移矩阵的充要条件会在之前的工作中给出。 本文对连续时间线性时变系统、离散时间线性定常系统、离散时间线性时变系统的状态转移矩阵进行了进一步的研究。根据常微分方程和差分方程解的唯一性,得到了判断矩阵函数是某一线性系统状态转移矩阵的充分条件,并求出了其对应的系统矩阵。 1预备知识 考虑连续时间线性时变系统、离散时间线性定常系统和时变系统,它们的齐次状态方程分别为: 其中差分方程部分如下: 为了给出判断矩阵函数是某一线性系统状态转移矩阵的充分条件,需要用到下面的引理。 引理1状态转移矩阵是下列矩阵微分方程初值问题的解,且解是唯一的[5]: 引理2状态转移矩阵是下列矩阵差分方程初值问题的解:

引理3状态转移矩阵是下列矩阵差分方程初值问题的解: 2.1判定结果

2.2讨论 定理1 ~3给出了判定矩阵函数是某一线性系统状态转移矩阵的充分条件,也给出了计算其对应的系统矩阵的公式。由状态转移矩阵的性质可知对连续系统,定理1的条件也是必要的;但对于离散系统,由于状态转移矩阵不能保证必为非奇异[2],所以定理2和定理3的条件不是必要的。但对于连续时间线性系统的时间离散化系统,无论其为时不变或时变系统,状态转移矩阵必为非奇异[2],此时定理2和定理3 的条件是充分必要的。 定理1 ~3给出的条件是非常容易验证的,可使用比较流行的Matlab工具进行验证,因而这些充分条件是有效的。 3结束语 本文对线性系统的状态转移矩阵进行了进一步的讨论,针对连续时间线性时变系统、离散时间线性定常系统和离散时间线性时变系统,分别给出了函数矩阵是某一线性系统状态转移矩阵的充分条件。这些条件是非常容易验证的,因而是有效的,并通过例子说明了结论的正确性。 参考文献 [1 ]王高雄,周之铭,朱思铭,等.常徽分方程[M].2版.北京:高等《自动化仪表》 [2] 郑大钟.线性系统理论[M].2版.北京:清华大学出版社,2002. [3] 刘豹,唐万生.现代控制理论[M].2版.北京:机械工业出版社, 2005. [4] 施颂椒,陈学中,杜秀华.现代控制理论基础[M].北京:高等教育出版社,2007. [5] 王孝武.现代控制理论基础[M].2版.北京:机械工业出版社, 2006. [6] 白素英四种计算方法的比较[J].数学的实践与认识,2008 , 38(2) :156-158. [7] 徐进.常系数齐次线性微分方程组基解矩阵的求解[J].江汉大学学报:自然科学版,2005,33(4): 17-19. [8] 黄承绪.矩阵指数函数的一些性质[J].武汉理工大学学报:交通科学与工程版,2001,25(2) ;147 -149.

基于ArcGIS Engine的栅格数据转换矢量数据

基于ArcGIS Engine的栅格数据转换矢量数据 摘要:ArcGIS提供了栅格数据向矢量数据转换函数,但是有特定的要求。同时,在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,从而可以到达栅格数据转矢量数据的要求。 关键词:ArcGIS Engine ;栅格数据;矢量数据 Abstract: The ArcGIS provides raster data to vector data conversion function, but it has the specific requirements. At the same time, providing the operating raster data function in the ArcGIS Engine, can edit the raster data, to reach the raster data to the vector data requirements. Key words: ArcGIS Engine, raster data, vector data 在日常地理信息数据处理中,会对栅格数据进行各种要求处理,并且最终要求将其转换成矢量数据[1][2][3][4][5]。我们可以采用ArcGIS Engine中提供的操作栅格数据的函数,对栅格数据进行各种编辑,满足对栅格数据的各种操作,同时可以将栅格数据转换成矢量数据。 ArcGIS栅格转矢量工具 在ArcGIS桌面版中打开ArcToolbox找到转换工具->由栅格转出,可以找到具体的栅格转矢量的工具。比较常用的是转点、转线、转面。查看帮助文档可以看到栅格转面矢量的函数是RasterToPolygon_conversion (in_raster, out_polygon_features, {simplify}, {raster_field}),其用法要求为:输入栅格的栅格单元大小可以任意,但必须属于有效的整数型栅格数据集。对栅格数据集要求必须是整数型(指栅格数据中格网像素的数据类型)。然而,在实际数据中大部分栅格数据采用浮点型。在ArcGIS中可以通过查看栅格数据的文件属性来查看栅格数据的像素数据类型,如图1。 由于ArcGIS中栅格转矢量工具的具体要求,所有必须对栅格数据进行像素类型转换;同时,要满足数据转出的其它要求,比如某一个栅格数据中,只要求像素值在某个特定范围的数据转出为矢量数据等各种具体的实际操作要求,有必须对栅格数据进行改写等的操作。在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,所有,有必要运用ArcGIS Engine对栅格数据进行编辑,从而满足栅格转矢量等各种具体要求。

利用栅格计算器进行土地利用类型转移矩阵计算

利用栅格计算器进行土地利用类型转移矩阵计算 1.数据准备 准备好两期的土地利用分类数据裁剪_86和裁剪_95,用arcmap 打开这两期影像文件:

2.转移矩阵计算 打开Arctoolbox window 窗口,在Arctoolbox window窗口中选择Spatial Analyst Tools>>Map Algebra>>Raster Calculator. 双击Raster Calculator,出现如下显示窗口。

表达式输入框 在表达式输入框中输入表达式:"裁剪_86" * 10 + "裁剪_95",在Raster Calculator中双击map algebra expression中的文件即为 选中此文件,Output raster中设置输出文件目录及文件名fangfa_1, 选择OK。 如图得到栅格计算器结果文件fangfa_1,右击layers中文件fangfa_1, 选择open attribute table,查看fangfa_1的属性表。

在fangfa_1属性表中选择table options>>export,选择路径和文件名,输出一个.dbf文件表格。 3.结果分析 按照刚刚的输出路径,找到该表,用excel打开该表格。每个像元大小为30*30,所以需要将表中count字段乘以900即为面积(单位为米)。

需要注意的是,“23”表示由裁剪_86年的第2类型转化为裁剪 _95年的第3类型,“56”表示由裁剪_86年的第5类型转化为裁剪_95 年的第6类型,等等。 调整excel表中的数值为下表所示: 调整后的转移矩阵结果表中右边即为86年到95年土地利用类型转移矩阵结果。

栅格矢量数据的相互转换

栅格、矢量数据的相互转换 地理信息系统空间数据类型主要有矢量和栅格结构。矢量结构包含有拓扑信息,通常应用于空间关系的分析;栅格数据则易于表示面状要素,主要应用于空间分析和图象处理。由于栅格和矢量数据在GIS应用过程中各有其优缺点,所以,一般情况下,同一个GIS系统能够处理、存储栅格和矢量数据。对同一研究区域而言,有时为了分析处理问题的方便,需要实现栅格和矢量数据间的转换(如扫描图象的矢量化,地形图的栅格化)。 矢量向栅格的转换 图3-37 栅格单元属性值的确定 从矢量向栅格转换过程中,应尽量保持矢量图形的精度。在决定属性值时尽可能保持空间变量的真实性和最大信息量。在图3-37中,格网单元对应几种不同的属性值,而每一单元只能取一个值。在这种情况下,有如下一些取值方法。 (1)中心点法:用处于格网单元0处的地物类型或空间特征决定属性值。此时,该单元属性值为C。此法常用于连续分布的地理要素,如降雨量分布、大气污染等; (2)面积占优法:以占单元面积最大的地物类型和空间特征决定格网单元的属性值。此时,栅格单元的属性值为B。面积占优法适合分类较细、地物类别斑块较小的情况; (3)重要性法:根据格网单元内不同地物的重要性,选取最重要的地物类型代表相应的格网单元的属性值。这种方法对于特别重要的地理实体,尽管其面积很小或不在格网的中心,也采取保留的原则。重要性法常用于具有特殊意义而面积较小的地理要素,特别是具有点、线状分布的地理要素,如城镇、交通枢纽、河流水系等。 在进行弧段或多边形的矢量化时,可以利用上述三种方法确定格网的属性值。 为了逼近原图或原始数据精度,除了采用上述几种取值方法外,还可以采用提

马尔科夫转移矩阵法

马尔科夫转移矩阵法 1.工具名称 马尔科夫转移矩阵法是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。 2.工具使用场合/范围 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 市场占有率的预测可采用马尔科夫转移矩阵法 3.工具运用说明: 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。 马尔科夫分析法的一般步骤为: ①调查目前的市场占有率情况; ②调查消费者购买产品时的变动情况; ③建立数学模型; ④预测未来市场的占有率。 二、马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。 马尔科夫分析法的基本模型为: X(k+1)=X(k)×P 式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵,X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。 必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一

在ArcGIS中栅格数据矢量化

在ArcGIS中(TIF、JPEG)栅格图像矢量化 一、图像加载。 启动ArcMap,【开始】→【程序】→【ArcGIS】→【ArcMap】,选择A existing map,单击Browse for maps。 跳出文件选择对话框。选择所要打开的地图文件出现如下界面。 二、点状符号矢量化 2.1 新建点状地理要素图层 单击ArcMap工具条上的ArcCatalog按钮打开ArcCatalog程序(ArcGIS的地理信息资源都这里完成创建、删除、复制等管理工作),出现如下对话框。

在Catalog树下找到地图存储所在位置,鼠标右键菜单中选择New子菜单的Shapefile…新建一个Shape格式的地理要素文件(地理要素可存储为其他格式)。输入文件名称和符号类型,Name: 城市,Feature Type: Point(点状符号)。 设置地图投影,在Spatial Reference下选择Edit,跳出空间参考属性对话框。

选择Select…,提出地图投影选择对话框Browse for Coordnate Systems。 选择Geographic Coordinate Systems/Asia/Xian 1980.prj,单击Add,并【确定】,则完成了新建一个点状Shape格式的地理要素文件【城市】图层。 2.2 添加图层 单击ArcMap工具条上的添加图层工具,找到前面新建【城市】图层所在目录,选择城市.shp文件,单击Add,中地图中添加城市图层。

2.3 设置符号格式 对准ArcMap界面中,左边layers/城市下面的点状符号双击,跳出符号选项对话框,设置点状符号样式。选择符号类型Circle 20,符号设置选项Options中,Color下拉表中选择白色,Size设置为20,Angle设置为0。 2.4 点状符号定位 在ArcMap工具条上点击Editor下拉菜单,选择Starting Editing,进入编辑状态。使用“Edit Tool”工具可选择要素,右键菜单中有复制、删除、粘贴等操作。 选择Editor工具条的Sketch Tool工具,移动鼠标到地图区,按住“Z”键放大地图,按住“X”键缩小地图,按住“C”键移动地图,找到合适位置时单击一下鼠标,一个点要素创建成功。依次把江苏省十三个地级城市用点状符号标出来。并点击Editor下拉菜单,选择Stop Editing。跳出是否保存所做的编辑对话框。

转移矩阵计算

写文章的过程中,同样也用到了土地利用/景观转移矩阵。转移矩阵的制作很多软件可以实现,有Arcview、Arcmap、还有人用matlab。但是网上都写的都不详细,在这里,本文才用arcmap的叠加操作+excel的数据统计功能,可以轻松完成这一过程。相信看完了本文,初学者或者对GIS了解不多的人,也能轻松的制作出转移矩阵。 方法一: 1数据准备 准备好两期的coverage或shape文件。(注意:拓扑关系要建好,不然无法计算),采用Arcmap打开上述两期文件。 2叠加操作 选择Arcmap里面的“ArcToolbox”按钮下面的“Analysis Tools”工具下面的叠加分析模块(Overlay)下面的交叉分析功能(Intersect)。选择已经打开的两期数据进行叠加分析。叠加的结果存在一个可以找到的地方。同时,把叠加后的结果添加在Arcmap里。 3输出叠加文件的属性数据 A、右键打开intersect产生的矢量文件的数据属性表(open attribute table)。 B、点击“options”按钮,选择“add field”,然后给出一个新name“newarea”,数据类型为double C、右键点击刚刚产生的“newarea”,并选择“calculate values” D、然后点击“field calculator”对话框里面的“Advanced”后选择“help”将 Dim Output as double Dim pArea as Iarea Set pArea = [shape] Output = pArea.area 拷入到“field calculator”对话框下面的空白处 E、在对话框“field calculator”最下面的空白处填上“output”

栅格地图和矢量地图的概述

栅格地图和矢量地图的概述 数字地图作为整个城市交通GIS系统的基础,它的地位是至关重要的。 首先了解一下数字地图的概念以及目前GPS实验室做过的与城市交通GIS系统相关的工作。 1栅格地图和矢量地图的基本概念 数字地图按照其数据结构的不同,又主要分为数字矢量地图和数字栅格地图两种(文中为叙述方便分别简称矢量地图和栅格地图)。 栅格地图是各种比例尺的纸介质地形图和各种专业使用的彩图的数字化产品,就是每幅图经扫描、几何纠正及色彩校正后,形成在内容、几何精度和色彩上与地形图保持一致的栅格数据文件。栅格数据为按给定间距排列的阵列数据,基本信息单元由数据点的空间位置和数据信息构成,数据信息可以是高程、遥感图象的RGB值或其它信息。数据按图幅或按区域存放,文件结构包括文件头和数据体,文件头包括对数据的各种描述信息(如行数、列数、格网间距、坐标等),数据体依次记录基本单元信息。一般为节省存储空间,栅格数据需进行压缩或以其它形式进行重新组织。 矢量地图是每幅经扫描、几何纠正后的影像图,对一种或多种地图要素进行矢量化形成的一种矢量化数据文件,是一种更为方便的放大、漫游、查询、检查、量测、叠加地图。其数据量小,便于分层,能快速的生成专题地图,所以也称作矢量专题信息DTI(DigitalThematicInformation)。此数据能满足地理信息系统进行各种空间分析要求,视为带有智能的数据。可随机地进行数据选取和显示,与其他几种产品叠加,便于分析、决策。通常矢量数据的基本单元定义为点、线、面3种目标形式。基本信息单元由反映其分类体系及位置的基本数据组成。同一类基本空间信息单元具有类似的质量、数量特征,构成一个要素层;多个图形要素层构成一个图幅,数据按图幅存放;同一比例尺的多个图幅构成一个区域。 这两种数据结构的优缺点对比如下: 矢量数据,数据结构紧凑,冗余度低;有利于网络和检索分析;图形显示质量好,精度高;但是数据结构复杂,多边形叠加分析比较困难。栅格数据,数据结构简单;便于空间分析和地表模拟;现势性较强;但是数据量大,投影转换比较复杂。例如成都市地图,按照比例尺1:(约),转化为24位位图,大约15M,而利用城市交通GIS系统生成的矢量地图数据库,只有137K,近3000条道路(矢量边)的矢量文件大小只有约61K。可见矢量电子地图的优越性。 2 GPS实验室开发的城市交通GIS系统 绝大多数GIS系统中使用的地图是以矢量地图作为其表现形式的。国内目前矢量地图常用的生成方式有两种,一种是用数字化仪从纸质地图中提取,另一种是从点位图中利用模式识别的有关理论进行识别和提取。生成一个准确而完备的矢量地图要花费大量的人力和财力,一个中等规模的城市用数字化仪生成矢量地图,大约需要一个月的时间。如何以较小的代价生成一副实用的矢量地图,并在此基础上构造一个实用的GIS系统,是GPS实验室一直在研究的一个课题。 GPS实验室从1993年以来,一直在从事GPS定位、监控与导航和GIS系统的研究。无论是GPS定位、监控、导航,都离不开GIS系统的支持。在GIS系统方面,已经有过多个版本,分别是在DOS、WIND31和WIN95下开发的。经过许多人多年的努力GPS实验室形成了一套有实验室特色的,而且比较成熟的GIS软件和GIS

土地利用景观转移矩阵方法汇总

最简单的土地利用/景观转移矩阵的制作(转)(2009-05-19 03:36:24) 写文章的过程中,同样也用到了土地利用/景观转移矩阵。转移矩阵的制作很多软件可以实现,有Arcview、Arcmap、还有人用matlab。但是网上都写的都不详细,在这里,本文才用arcmap的叠加操作+excel的数据统计功能,可以轻松完成这一过程。相信看完了本文,初学者或者对GIS了解不多的人,也能轻松的制作出转移矩阵。 方法一: 1数据准备 准备好两期的coverage或shape文件。(注意:拓扑关系要建好,不然无法计算),采用Arcmap 打开上述两期文件。 2叠加操作 选择Arcmap里面的“ArcToolbox”按钮下面的“Analysis Tools”工具下面的叠加分析模块(Overlay)下面的交叉分析功能(Intersect)。选择已经打开的两期数据进行叠加分析。叠加的结果存在一个可以找到的地方。同时,把叠加后的结果添加在Arcmap里。 3输出叠加文件的属性数据 A、右键打开intersect产生的矢量文件的数据属性表(open attribute table)。 B、点击“options”按钮,选择“add field”,然后给出一个新name“newarea”,数据类型为double C、右键点击刚刚产生的“newarea”,并选择“calculate values” D、然后点击“field calculator”对话框里面的“Advanced”后选择“hel p”将 Dim Output as double Dim pArea as Iarea Set pArea = [shape] Output = pArea.area 拷入到“field calculator”对话框下面的空白处 E、在对话框“field calculator”最下面的空白处填上“output”

转移矩阵及其基本性质

哈尔滨师范大学 学年论文 题目转移矩阵及其基本性质 学生周林 指导教师张强讲师 年级 2008级 专业物理学 系别物理系 学院物理与电子工程学院

哈尔滨师范大学 2011年 2 月 论文提要 一是随着光通信、光信息处理和光传感等技术的迅速发展,研究光在薄膜波导中调制、耦合、传输、放大、色散和非线性相互作用等现象的波导光学日益受到有关研究人员的重视。而波导光学领域内的研究的研究成果对一系列薄膜光电子器件的发展也起到了重大作用。 而在研究导波光学中转移矩阵是不可或缺的,在导波光学中,利用转移矩阵方法研究多类波导特性已经取得了许多的创造性成果,其内容覆盖了多层薄膜导波、渐变折射率波导、周期性波导、多量子阱波导、泄漏波导、金属覆盖波导以及金属与介质界面上的表面等离子波。由此可见,转移矩阵在导波光学中的作用是巨大的。 二是在数学和物理学的研究中,转移矩阵也是不能缺少的,利用转移矩阵的定义和转移矩阵的八个基本的性质解决了许多数学和物理学的问题。

转移矩阵及其基本性质 周林 摘要:利用矩阵技术描述光在多层薄膜中的传播是一种简单易行的方法。这种方法不仅物理意义清晰、计算方便,而且具有给出解析式的潜力。本文先介绍平板波导的波动方程以此为基础通过简单的三层平板波导来建立转移矩阵,从而导出转移矩阵的八个基本性质,在现在科学界中转移矩阵及其基本性质被广泛应用。 关键词:波动方程 TM 波 TE 波 转移矩阵 矩阵方程 基本性质 模式本征方程 一、平板导波的波动方程 在研究转移矩阵前我们要先知道平板导波的波动方程因为在下面的转移矩阵的推导中 会用到这个方程,还可以通过推导波导方程更好的理解转移矩阵的推导过程,还有它们之间的联系和转移矩阵在导波光学中的重要作用。 假设有一个非对称平板波导的结构如图1所示,它是由三层材料组成的,中间一层是折射率为1n 导波层,它的淀基在折射率为2n 的衬底上,导波层上面是折射率为3n 的覆盖层(也称包层)。 图 1 为了构成真正的光波导,所以1n 必须大于2n 和3n ,为了不失一般性,可以假设 321n n n ≥>。如果21n n =,则称波导是对称的;当32n n ≠时,则称波导是非对称的。由 于对称波导是非对称波导的极限情况,所以在此我们讨论非对称波导。 x y z h 1n 2n 3 n o

第五讲矢量转化为栅格

第五讲矢/栅转换 一:基本内容 1:栅格化:矢量数据结构向栅格数据结构的转换 ①:确定栅格矩阵(行列数/分辨率) ②:点的变换、线的变换以及多边形的变换(面的变换) 2:矢量化:栅格数据结构向矢量数据结构的转换 ①:拓扑转换—保持栅格表示出的联通性和邻接性 ②:转换物体正确的外形 二:栅格化 1:确定栅格矩阵 ①:矢量数据转换成栅格数据后,图形的几何精度必然要降低,所以选择栅格尺寸的大小要尽量满足精度要求,使之不过多地损失地理信息。 ②:为了提高精度,栅格需要细化,但栅格细化,数据量将以平方指数递增,因此,精度和数据量是确定栅格大小的最重要的影响因素。 ③:在转换之前需要确定栅格单元的大小,栅格单元的大小又称为栅格图像的分辨率,直接决定了栅格数据的精度 2:点的栅格化

3:线的栅格化 ⑴线是由多个直线段组成的,因此线的栅格化的核心就是直线段如何由矢量数据转换为栅格数据 ⑵栅格化的两种常用方法为: DDA法(Digital Differential Analyzer数字微分分析法) Bresenham法 ①:DDA法(Digital Differential Analyzer数字微分分析法) i: ②:Bresenham法

ii:Bresenham算法—实现过程 在算法实现时,令起始的误差项为e=-1/2,然后在推断出下一点后,令e=e+△y/△x(为直线斜率),若e≥0时,确定位置后,e=e-1 若e≥0,取(1,1)点 若e<0,取(1,0)点 a:第1点:e1=-1/2 +1/3=-1/6取点1 b:第2点:e2=-1/6 +1/3 = 1/6且e2’=-5/6;取点2 c:第3点:e3=-5/6+1/3=-1/2取点3; d:第4点:e4=-1/2+1/3=-1/6取点4; e:第5点:e5=-1/6 +1/3 = 1/6且e2’=-5/6;取点5; f:第6点:e6=-5/6+1/3=-1/2取点6; g:直线斜率为1/3,起始点:e0=-1/2,取点0

在ArcGIS中配准(TIF、JPEG)栅格图像并矢量化(转)

在ArcGIS中配准(TIF、JPEG)栅格图像并矢量化(转) 图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop完成。 一、栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。 图像加载后即可看到图像内容,右键工具栏打开Georeferencing工具条,进行图像的配准工作,在配准之前最好先保存工程。

在File菜单下打开Map Properties编辑地图属性,Data Source Options可设置保存地图文件的相对路径和绝对路径。(这里选择相对路径以确保将工程复制到其他机器可用)。 配准前要先读懂地图,望都县土地利用现状图采用1954北京坐标系,比例尺1:40000,查阅河北省地图发现望都县位于东经115度附近,那么按6度分带属于20带中央经线117度,按3度分带属于38带。从图框看到的公里数发现没有带号,应该是公里数。 这里只找了4个点进行配置(可以找更多的点),从左到右从下到上,逆时针编号为1、

2、3、4;在ArcMap中单击Georefercning工具条上的Add Control Ponit工具(先掉Auto Adjuest 选项),添加4个点控制点。 然后编辑Link Table中的4个控制点的代表的公里数,然后单击“Georeferecning下拉菜单的Auto Adjuest”图像即进行校正这时可看到参差值这里是0.00175(Total RMS)非常小说明配准较为精确。单击Save按钮可将控制点信息保存到文件,单击Load按钮可从文件加载控制点坐标。

矢量栅格一体化数据结构

矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 矢栅一体化的概念 对于面状地物,矢量数据用边界表达的方法将其定义为多边形的边界和一内部点,多边形的中间区域是空洞。而在基于栅格的GIS中,一般用元子空间充填表达的方法将多边形内任一点都直接与某一个或某一类地物联系。显然,后者是一种数据直接表达目标的理想方式。对线状目标,以往人们仅用矢量方法表示。 事实上,如果将矢量方法表示的线状地物也用元子空间充填表达的话,就能将矢量和栅格的概念辨证统一起来,进而发展矢量栅格一体化的数据结构。假设在对一个线状目标数字化采集时,恰好在路径所经过的栅格内部获得了取样点,这样的取样数据就具有矢量和

ArcGIS栅格数据与矢量数据的转换

A r c G I S栅格数据与矢量 数据的转换 The Standardization Office was revised on the afternoon of December 13, 2020

ArcGIS中栅格数据和矢量数据的相互转换 1. 栅格数据向矢量数据的转换 (1)展开 Conversion Tools 工具箱,打开From Raster 工具集,双击 Raster to Polygon,打开 Raster to Polygon 对话 框。 (2)在 Input raster文本框中选择输入需要转换的栅格数据。 (3)在Output Polygon Features文本框键入输出的面状矢量数据的路径与名称。(4)选择 Simplify Polygons按钮(默认状态是选择),可以简化面状矢量数据的边界形状。 (5)单击 OK按钮,执行转换操作。 2. 矢量数据向栅格数据的转换 (1)展开 Conversion Tools 工具箱,打开To Raster 工具集,双击 Feature to Raster打开 Feature to Raster对话框。 (2)在 Input features 文本框中选择输入需要转换的矢量数据。 (3)在Field窗口选择数据转换时所依据的属性值。 (4)在 Output raster 文本框键入输出的栅格数据的路径与名称。 (5)在 Output raster文本框键入输出栅格的大小,或者浏览选择某一栅格数据,输出的栅格大小将与之相同。 (6)单击 OK按钮,执行转换操作。该命令同样适用于地理数据库中的要素类。

转移矩阵计算

如何利用ARCGIS10.0(中文版)软件求景观 转移矩阵 1 数据准备 准备好两期的coverage或shape文件,并加载或者可以 复制图层并粘贴。例如: 单击右键点击箭头处图层,点击复制便可复制在别的新建图层里。 2 叠加操作 首先将上述两期图层加载进来,选择Arcmap里面的“ArcToolbox”按钮下面的“分析工具(Analysis Tools)”工具下面的叠加分析模块(Overlay)下面的相交功能(Intersect)。选择已经打开的两期数据进行叠加分析。叠加的结果存在一个可以找到的地方。同时,把叠加后的结果添加在Arcmap里。如下图所示:

3 输出叠加文件的属性数据 打开刚才所做的“相交”图层属性表,点击(红色箭头)处,添加字段:面积,然后在面积这一项点击计算几何求的面积。

将上面这个表复制到Excle 表格里,这个自己看,如果数据太多一般要分段复制,最简单的办法就是分段利用Shift 键一段一段复制,也有人说直接点击上图一那个箭头,在下面点击导出,属性以.dbf 格式结果存储。 4 Excel 进 行 转 移 矩 阵 制 作 A.如果是自己复制粘贴的Excle ,点击打开数据选中所 图一

有数据,选择数据\数据透视表和数据透视图。如图二所示; B.如果是导出的则:刚才存储的.dbf文件可以使用excel 打开,打开的结果重新保存为.xls(excel)文件。(dbf文件不能保存)。重新打开刚存储的excel文件。选中所有数据,选择数据\数据透视表和数据透视图。将两期数据的需要相交分析的值分别拖入行列字段,然后以‘面积’字段作为数据项拖入计算区域。得到的便是转移矩阵。如果发现矩阵的形式不美观,可以对单位进行修改。如图二所示: 图二

相关文档
最新文档