多元正态分布参数的假设检验

spss_数据正态分布检验方法及意义

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

二项分布与正态分布

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验 一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于()分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( ),它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(),原假设为真而被拒绝的概率越()。 4.二项分布的正态近似法,即以将B(x;n,p)视为()查表进行计算。 5.已知连续型随机变量X~N(0,1),若概率P{X ≥λ}=0.10,则常数λ=()。 6.已知连续型随机变量X~N(2,9),函数值 9772 .0 )2( = Φ ,则概率 }8 {< X P= ()。 二、单项选择 1.关于学生t分布,下面哪种说法不正确()。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差σ 2.二项分布的数学期望为()。 A n(1-n)p B np(1- p) C np D n(1- p)。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为()。 A 大于0.5 B -0.5 C 1 D 0.5。

单个正态总体参数的假设检验

16.3 单个正态总体参数的假设检验 设,,,12n X X X 是来自正态总体()2,N μσ的样本,考虑如下三种关于μ的检 验问题 (1) 00:H μμ≤ vs 10:H μμ> 单侧检验 (2) 00:H μμ≥ vs 10:H μμ< 单侧检验 (3) 00: H μμ= vs 10:H μμ≠ 双侧检验 ********************************************************** (1) 00: H μμ≤ vs 10:H μμ> 单侧检验 (3) 00:H μμ= vs 10:H μμ≠ 双侧检验

********************************************************** 下面给出σ已知时,上述三种检验情况的具体实现。 σ已知时的,对于单侧检验问题(1) 00:H μμ≤ vs 10:H μμ>, 2 ~, X N n σμ?? ?? ? ,故选用服从标准正态分布的检验统计量X u =, 通常称此检验为u 检验。 拒绝域选为()()?? ? ???????≥σμ-==c x n u x x W n 01:,, ,c 为临界值,简记为{}c u ≥。若显著性水平要求为α,则可确定α-=1u c 。 同理对 问题(2),00: H μμ≥ vs 10:H μμ<,水平为α的检验的拒绝域为 ()()?? ? ???????≤σμ-==αu x n u x x W n 01:,, 。 问题(3),00: H μμ= vs 10:H μμ≠,水平为α的检验的拒绝域为 ()()?? ? ???? ? ??≤σμ-= =α2-101u x n u x x W n :,, 。 ********************************************************** 例16.3.1 设某工厂生产一种产品,其质量指标服从正态分布()2 2,μN ,μ为 平均质量指标,其值越大则质量越好,10=μ是达到优级的标准。进货商店从一批产品抽取样本,, ,12n X X X ,16=n ,取显著性水平为050.=α,如何检 验这一批产品是否达到优秀。 分析: 根据工厂产品社会声誉可能的不同,分以下两种情况讨论。 情形一,按照过去长时间的记录,商店的检验人员相信该厂的产品质量很好。

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2 Z z α>,取0.05,α=26,n = 0.0250.9752 1.96z z z α===, 由检验统计量 1.25 1.96Z = ==<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)? 解: 012112:, :,H H μμμμ≥< 3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)? 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n = 由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)? 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n = 由检验统计量0.9733Z = ==<1.65,接受H 0:p ≤0.05. 即, 以95%的把握认为p ≤0.05是成立的. 5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)? 解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n = 0.950.05, 1.65z α=-=-,由检验统计量 400 1.5973i x np Z -= = =-∑>-1.65, 接受0:0.17H p ≥, 即, 以95%的把握认为此项新工艺没有显著地提高产品的质量. 6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?

正态总体参数的假设检验matlab处理

正态总体参数的检验 1 总体标准差已知时的单个正态总体均值的U检验 某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。从该切割机切割的一批金属棒中随机抽取15根,测得长度为: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103 假设总体的方差不变,试检验该切割机工作是否正常,即检验总体均值是否等于100?,取显著性水平a=0.05。 分析: 这是总体标准差已知时的单个正态总体均值的检验,根据题目要求可写出如下假设: H0:u=u0=100,H1=u /=u0(u不等于u0) H0称为原假设,H1称为被择假设(或对立假设) MATLAB统计工具箱中的ztest函数用来做总体标准差已知时的单个正态总体均值的检验 调用格式ztest [h,p,muci,zval]=ztest(x,mu0,Sigma,Alpha,Tail) x:是输入的观测向量 mu0:假设的均值 Sigma:总体标准差 Alpha:显著性水平,默认0.05

Tail:尾部类型变量,‘both’双侧检验(默认),u不等于uo;‘right’右侧检验,u>u0; ‘left’左侧检验,uAlpha时,接受原假设H0;p<=Alpha 时,拒绝原假设H0. muci:总体均值u的置信水平为1-Alpha的置信区间 zval:检验统计量的观测值 %定义样本观测值向量 x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103]; mu0=100; %原假设中的mu0 sigma=2; %总体标准差 Alpha=0.05; %显著性水平 %调用ztest函数做总体均值的双侧检验(默认), %返回变量h,检验的p值,均值的置信区间muci,检验统计量的观测值zval [h,p,muci,zval]=ztest(x,mu0,sigma,Alpha) h = 1 p =

单个正态总体的假设检验

学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2.2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他.也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举.但现今德国10马克的印有高斯头像的钞票,其上还印有正态

第三节-两正态总体的假设检验

第三节 两个正态总体的假设检验 上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题. 1.两正态总体数学期望假设检验 (1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22 已知,要检验的是 H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 怎样寻找检验用的统计量呢从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…, 1n X 及Y 1,Y 2,…,2n Y ,由于 2111~,X N n σμ?? ??? ,2222~,Y N n σμ?? ???, E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )= 22 121 2 n n σσ+, 故随机变量X -Y 也服从正态分布,即 X -Y ~N (μ1-μ2, 22 121 2 n n σσ+). 从而 X Y ~N (0,1). 于是我们按如下步骤判断. (a ) 选取统计量 Z X Y , () 当H 0为真时,Z ~N (0,1). (b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使 P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. () (c ) 由两个样本观察值计算Z 的观察值z 0: z 0 x y . (d ) 作出判断: 若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0. 例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

例右侧正态分布均值的假设检验

Z 假设检验 例1 (Z 值右侧检验) 某种元件的寿命X (以h 计)服从正态分布N (μ,δ2 ), 已知δ2 =10000,μ未知,现在测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 取α=0.05,问是否有理由认为元件的平均寿命大于225h ? 解:按题意需检验 H 0:μ≤μ0=225 ,H 1 :μ>225 由题设得Z 0.05=1.65 , n=16,x =241.5, z 0.66 x = = = 得,Z 0.05=1.65 > z=0.66 即z 值没有落在拒绝域内,故接受H 0 。认为元件的平均寿命不大于225h.

例2(t值右侧检验)某种元件的寿命X(以h计)服从正态分布 N(μ,δ2 ), δ2 ,μ均未知,现在测得16只元件的寿命如下: 159280101212224379179264 222362168250149260485170 取α=0.05,问是否有理由认为元件的平均寿命大于225 h? 解:按题意需检验 H0:μ≤μ0=225 ,H1:μ>225 由题设得t0.05 (15)=1.75 , n=16, χ=241.5, 0.67 t=== 得,t0.05 (15)=1.75 > z=0.67 即z值没有落在拒绝域内,故接受H0。认为元件的平均寿命不大于225 h.

例3 某厂生产的某种型号的电池,其寿命(以h 计)长期以来服从方差δ2 =5000的正态分布,现有一批这种电池,从他的生产情况来看,寿命的波动性有所改变。现随机取26只电池,测出其寿命的样本方差S 2=9200。问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(取α=0.02)? 解:本题要求在水平α=0.02下检验假设 H0: δ2 = 5000 , H0: δ2 ≠ 5000 现在n = 26 , 22/20.01(1)(25)44.314n αχχ-== , 221/20.99(25)(25)11.524αχχ-== . 即拒绝域为, 2 2 (1)44.314n S δ -≥ ,或 2 20 (1)11.524n S δ -≤ 由观察值S 2 = 9200 得 2 2 0(1)4644.314n S δ-=>, 所以拒绝H 0。认为这批电池寿命波动性较以往的有显著的变化。

假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。 解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。采用t 分布的检验统计量n x t /0σμ-=。查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。334.116/60800 820=-=t 。因为t <2.131<2.947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)? 解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布的检验统计量n x z /0σμ-=。查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。计算统计量值3100 /5001000010150=-=z 。因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。 3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差 σ已知,当

单个正态总体的假设检验复习过程

单个正态总体的假设 检验

学号:20115034036 学年论文(本科) 学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授 成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (3) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (5) 2.2 δ未知时的t检验 (7) 3 单个正态总体方差的检验 (9) 参考文献 (10)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords: normal distribution;price value;hypothesis test;variance; rejected region; receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将

单个正态总体均值和方醚的假设检验

§2 一.已知方差2σ, 检验假设::H μμ=o o (1)提出原假设::H μμ=o o ( μo 是已知数) (2)选择统计量: 2 X U n μσ-= o (3 )求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (0,1)U N : (4)选择检验水平 α,查正态分布表(附表1),得临界值12 u α- ,即 2 12 ( )X P u n α μα σ- ->=o (5) 根据样本值计算统计量的观察值u o ,给出拒绝或接受H 。的判断: 当 12 u u α - >o 时, 则拒绝H 。; 当 12 u u α - ≤o 时, 则接受H 。. 【例1】 某厂生产干电他,根据长期的资料知道,干电他的寿 解:

现取0.05 α=,即 ( 1.96)0.05 5/10 X P>= 因而,拒绝原假设,即这批干电他的平均寿命不是200小时. 【例2】P.191 ――例2.1(0.05 α=,0.01) P.193――例2.2 二.未知方差2σ, 检验假设:: Hμμ = o o : (1)提出原假设:: Hμμ = o o ( μ o是已知数) (2)选择统计量:2 X T S n - =o (3)求出在假设H o成立的条件下,确定该统计量服从的概率分布: (1) T t n- : (4)选择检验水平 α,查自由度为1 n-的t-分布表(附表2),得临界值λ,即 2 () X P S n μ λα - >= o

(5) 根据样本值计算统计量的观察值t o ,且给出拒绝或接受H 。的判断: 当t λ> o 时, 则拒绝H 。; 当 t λ≤o 时, 则接受H 。. 【例2】 某糖厂用自动打包机包装糖,每包重量服从正态分布,其标准重量μo =100斤.某日开工后测得9包重量如下: 99.3, 98.7, 100.5,101.2, 98.3, 99.7, 99.5, 102.1,100.5, 问:这一天打包机的工作是否正常?(检验水平α=5%) 解: (0)计算样本均值与样本均方差: 1.21S = (1)提出原假设::100H μ=o (2)选择统计量: 2 9 X T S = (3)求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (8)T t : (4)检验水平 α=0.05,查自由度为8的t -分布表(附表2),得临界值 2.36λ= ,即

假设检验二项分布与正态分布

第七章假设检验 有了概率和概率分布的知识,接下来我们要逐步掌握统计检验的一般步骤。既然按照数学规则得到的概率都不能用经验方法准确求得,于是,理论概率和经验得到的频率之间肯定存在某种差别,这就引出了实践检验理论的问题。 第一节二项分布 二项分布是从著名的贝努里试验中推导而来。所谓贝努里试验,是指只有两种可能结果的随机试验。。每当情况如同贝努里试验,是在相同的条件下重复n次,考虑的是“成功”的概率,且各次试验相互独立,就可利用与二项分布有关的统计检验。虽然许多分布较之二项分布更实用,但二项分布简单明了,况且其他概率分布的使用和计算逻辑与之相同。所以要理解统计检验以及它所涉及的许多新概念,人们几乎都乐意从二项分布的讨论入手。 1.二项分布的数学形式 C p x q n-x。 二项试验中随机变量X的概率分布,即P(X=x)=x n (7.3) 2.二项分布的讨论 (1)二项分布为离散型随机变量的分布。 (2)二项分布的图形当p=0.5时是对称的,当p≠0.5时是非对称的,而当n愈大时非对称性愈不明显。 (3)二项分布的数学期望E(X)=μ=np,变异数D(X)=σ2=npq。 (4)二项分布受成功事件概率p和试验次数n两个参数变化的影响,只要确定了p和n,成功次数x的概率分布也随之确定。因而,二项分布还可简写作B(x;n,p)。 (5)二项分布的概率值除了根据公式直接进行计算外,还可查表求得。 第二节统计检验的基本步骤 概率分布不是一种研究者从资料中看到的分布,我们讨论它,不是出于对数学的爱好,而是因为统计推论的有关工作需要它。所有的统计检验都包含某些特定的步骤: (1)建立假设; (2)求抽样分布(所谓抽样分布,就是把具体概率数值赋予样本每个或每组结果的概率分布); (3)选择显著性水平和否定域; (4)计算检验统计量; (5)判定。 1.建立假设 统计检验是将抽样结果和抽样分布相对照而作出判断的工作。取得抽样结果,依据描述性统计的方法就足够了。抽样分布则不然,它无法从资料中得到,非利用概率论不可。而不对待概括的总体和使用的抽样程序做某种必要的假设,这项工作将无法进行。 2.求抽样分布

区间估计、假设检验练习题

a)某大学为了了解学生每天上网的时间,在全校7500名学生中采取重复抽样的方法 随机抽取36人,调查他们每天上网的时间,得到下面数据(单位:小时) 求该校大学生平均上网时间的置信区间,置信水平为95%。 b)某居民小区为研究职工上班从家到单位的距离,抽取了由16人组成的一个随机样 本,他们到单位的距离(单位:千米)分别是: 假定总体服从正太分布,求职工上班从家里到单位平均距离的95%的置信区间。 c)顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有 关,比如,银行业务员办理业务的速度,顾客等待排队的方式等。为此银行准备采取两种排队方式进行试验。第一种排队方式是:所有顾客都进行一个等待队列;第二种排队方式是:顾客在三个窗口处列队三排等待。为比较那种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单位:分钟)如下: 要求(1)构建第一种排队方式等待时间标准差的95%的置信区间; (2)构建第二种排队方式等待时间标准差的95%的置信区间; (3)根据(1)与(2)的计算结果,你认为那种排队方式更好 d)为了控制贷款规模,某商业银行有个内部要求,平均每项贷款数额不能超过60万元。随着经济的发展,贷款规模有增大的趋势。银行经理想了解在同样项目条件下,贷款的平均规模是否明显地超过60万元,故一个n=144的随机样本被抽出,测得x=68.1万元,s=45。用a=0.01的显著性水平,采用p值进行检验。

e) 有人说在大学中男生的学习成绩比女生的学习成绩好。现从一个学校中随机抽取 了25名男生和16名女生,对他们进行了同样题目的测试。测试结果表明,男生的平均成绩为82分,方差为56分,女生的平均成绩为78分,方差为49分。假设显著性水平α=0.02,从上述数据中能得到什么结论 f) 糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验一次打包 机工作是否正常。某日开工后测得9包重量(单位:千克)如下: 99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5 已知包重服从正态分布,试检验该日打包机工作是否正常(a=0.05) 区间估计、假设检验课堂练习 1.【例】一家食品生产企业以生产袋装食品为主,为对食品质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布,且总体标准差为10g。试估计该批产品平均重量的置信区间,置信水平为95% 2.【例】一家保险公司收集到由36个投保人组成的随机样本,得到每个投保人的年龄(单位:周岁)数据如下表。试建立投保人年龄90%的置信区间

正态性检验的一般方法

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201

正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个问题放在一般性的分布拟合下作简短处理,而这种"万精油"式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 一、2 拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X的分布不为.

构造统计量 其中为样本中发生的实际频数,为H0为真时发生的理 论频数。 (2)检验原理 若2χ=0,则=,意味着对于,观测频数与期望频数完全一致,即完全拟合。 观察频数与期望频数越接近,则2χ值越小。 当原假设为真时,有大数定理,与不应有较大差异,即2χ值应较小。 若2χ值过大,则怀疑原假设。 拒绝域为R={2χd} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定分布。比如检验一组数据是否为正态分布。它的检验方法是以样本数

相关文档
最新文档