高考数学(理)二轮配套训练【专题9】(1)函数与方程思想(含答案)

高考数学(理)二轮配套训练【专题9】(1)函数与方程思想(含答案)
高考数学(理)二轮配套训练【专题9】(1)函数与方程思想(含答案)

第1讲函数与方程思想

1.函数与方程思想的含义

(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.

2.和函数与方程思想密切关联的知识点

(1)函数与不等式的相互转化,对函数y=f(x),当y>0

时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.

(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.

(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.

(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.

(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用

例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.

(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3)

解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1

x

3.

设g (x )=3x 2-1

x 3,则g ′(x )=3(1-2x )x 4

,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减,

因此g (x )max =g ????

12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,

f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x

3,

设g (x )=3x 2-1

x 3,且g (x )在区间[-1,0)上单调递增,

因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.

(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.

又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.

因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).

所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).

思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.

(1)若2x +5y ≤2-

y +5-

x ,则有( )

A .x +y ≥0

B .x +y ≤0

C .x -y ≤0

D .x -y ≥0

(2)已知函数f (x )=1

2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )

A .m ≥3

2

B .m >32

C .m ≤3

2

D .m <32

答案 (1)B (2)A

解析 (1)把不等式变形为2x -5-

x ≤2-

y -5y ,构造函数y =2x -5-

x ,其为R 上的增函数,所以

有x ≤-y .

(2)因为函数f (x )=1

2x 4-2x 3+3m .所以f ′(x )=2x 3-6x 2,令f ′(x )=0得x =0或x =3,经检验

知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -27

2,不等式f (x )+9≥0恒成

立,即f (x )≥-9恒成立,

所以3m -272≥-9,解得m ≥3

2,故选A.

热点二 函数与方程思想在数列中的应用

例2 已知数列{a n }是各项均为正数的等差数列.

(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;

(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1

S 2n ,若对任意的n ∈N *,

不等式b n ≤k 恒成立,求实数k 的最小值. 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), b n =1S n +1+1S n +2+…+1

S 2n

=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)

=1n +1-1n +2+1n +2-1n +3+…+12n -1

2n +1

1n +1-12n +1=n

2n 2+3n +1

=1

2n +1n

+3

, 令f (x )=2x +1

x

(x ≥1),

则f ′(x )=2-1

x 2,当x ≥1时,f ′(x )>0恒成立,

所以f (x )在[1,+∞)上是增函数, 故当x =1时,[f (x )]min =f (1)=3, 即当n =1时,(b n )max =1

6

要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =1

6,

所以实数k 的最小值为1

6

.

思维升华 (1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;

(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.

(1)(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6

的值是________.

(2)已知函数f (x )=(1

3)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )

A .-1

B .1 C.23

D .-23

答案 (1)4 (2)D

解析 (1)因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4. (2)由题设,得a 1=f (1)-c =1

3-c ;

a 2=[f (2)-c ]-[f (1)-c ]=-2

9;

a 3=[f (3)-c ]-[f (2)-c ]=-227

. 又数列{a n }是等比数列,

∴(-29)2=(13-c )×(-2

27),∴c =1.

又∵公比q =a 3a 2=13

∴a n =-23(13)n -1=-2(1

3)n ,n ∈N *.

且数列 {a n }是递增数列, ∴n =1时,a n 有最小值a 1=-2

3

.

热点三 函数与方程思想在几何中的应用

例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为2

2.直线y =k (x -1)与椭

圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为

10

3

时,求k 的值. 解 (1)由题意得?????

a =2,c a =2

2,

a 2

=b 2

+c 2

解得b = 2.

所以椭圆C 的方程为x 24+y 2

2

=1.

(2)由?????

y =k (x -1),x 24+y 2

2=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.

设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=4k 2

1+2k 2,x 1x 2=2k 2-41+2k 2.

所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2

.

又因为点A (2,0)到直线y =k (x -1)的距离 d =

|k |

1+k 2

, 所以△AMN 的面积为 S =1

2|MN |·d =|k |4+6k 21+2k 2

. 由|k |4+6k 21+2k 2=103,解得k =±1.

所以,k 的值为1或-1.

思维升华 几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.

(1)(2014·安徽)设F 1,F 2分别是椭圆E :x 2

+y 2

b

2=1(0

的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________. (2)若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )

A .(1,2)

B .(2,5)

C .[2,5]

D .(3,5)

答案 (1)x 2+3

2y 2=1 (2)B

解析 (1)设点B 的坐标为(x 0,y 0), ∵x 2

+y 2

b

2=1,且0

∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →

∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2

,y 0=-b 23.

∴点B 的坐标为????-531-b 2,-b

2

3. 将点B ????-531-b 2,-b 2

3代入x 2+y

2b 2=1, 得b 2=2

3

.

∴椭圆E 的方程为x 2+3

2

y 2=1.

(2)e 2

=(c a )2=a 2+(a +1)2

a 2

=1+(1+1

a

)2, 因为当a >1时,0<1

a <1,所以2

即2

1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.

2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.

3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.

4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.

真题感悟

1.(2014·辽宁)已知a =2-13,b =log 21

3,c =12

1log 3

,则( )

A .a >b >c

B .a >c >b

C .c >a >b

D .c >b >a

答案 C 解析 0

3

2

<20=1,b =log 21

3

c =1

2

1log 3>121

log 2

=1, 即01,所以c >a >b .

2.(2014·福建)设P ,Q 分别为圆x 2

+(y -6)2

=2和椭圆x 2

10

+y 2=1上的点,则P ,Q 两点间的

最大距离是( ) A .5 2 B.46+ 2 C .7+ 2 D .6 2

答案 D

解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2

=r 2

(r >0),与椭圆方程x 2

10

+y 2=1联立得方程组,消掉

x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50, 即r =5 2.

由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.

3.(2014·江苏)在平面直角坐标系xOy 中,若曲线y =ax 2+b

x (a ,b 为常数)过点P (2,-5),且

该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.

答案 -3

解析 y =ax 2+b x 的导数为y ′=2ax -b

x 2,

直线7x +2y +3=0的斜率为-7

2

.

由题意得???

4a +b

2=-5,

4a -b 4=-7

2,

解得?

????

a =-1,

b =-2,则a +b =-3.

4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元) 答案 160

解析 设该长方体容器的长为x m ,则宽为4

x m .又设该容器的造价为y 元,则y =20×4+2(x

+4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2x ·4x =4(当且仅当x =4

x

,即x =2时取“=”), 所以y min =80+20×4=160(元). 押题精练

1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)

答案 B

解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.

又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1.

2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )

A .1 B.12 C.52 D.22

答案 D

解析 可知|MN |=f (x )-g (x )=x 2-ln x .

令F (x )=x 2

-ln x ,F ′(x )=2x -1x =2x 2

-1

x

所以当0

2

2

时,F ′(x )<0,F (x )单调递减;

当x >

2

2

时,F ′(x )>0,F (x )单调递增, 故当x =t =

2

2

时,F (x )有最小值,即|MN |达到最小. 3.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-9

8]

C .[-6,-2]

D .[-4,-3]

答案 C

解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3

≥x 2

-4x -3,a ≥x 2-4x -3x 3,所以a ≥

????x 2-4x -3x 3max .

设φ(x )=x 2-4x -3

x 3

所以φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4

=-(x -9)(x +1)

x 4>0, 所以φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.所以a ≥-6. 当x ∈[-2,0)时,a ≤x 2-4x -3x 3,所以a ≤????x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3

,φ′(x )=-(x -9)(x +1)

x 4

. 当x ∈[-2,-1)时,φ′(x )<0,φ(x )在[-2,-1)上单调递减, 当x ∈(-1,0)时,φ′(x )>0,φ(x )在(-1,0)上单调递增. 所以当x =-1时,φ(x )有极小值,即为最小值.

而φ(x )min =φ(-1)=1+4-3

-1=-2,所以a ≤-2.综上知-6≤a ≤-2.

4.若关于x 的方程(2-2-|x -2|

)2=2+a 有实根,则实数a 的取值范围是________.

答案 [-1,2) 解析 令f (x )=(2-2

-|x -2|

)2.要使f (x )=2+a 有实根,只需2+a 是f (x )的值域内的值.∵f (x )的

值域为[1,4),∴1≤a +2<4,∴-1≤a <2.

5.已知函数f (x )=ax 2+ax 和g (x )=x -a ,其中a ∈R ,且a ≠0.若函数f (x )与g (x )的图象相交于不同的两点A 、B ,O 为坐标原点,试求△OAB 的面积S 的最大值. 解 依题意,f (x )=g (x ),即ax 2+ax =x -a , 整理得ax 2+(a -1)x +a =0,① ∵a ≠0,

函数f (x )与g (x )的图象相交于不同的两点A 、B ,

∴Δ>0,即Δ=(a -1)2-4a 2=-3a 2-2a +1=(3a -1)·(-a -1)>0,

∴-1

3且a ≠0.设A (x 1,y 1),B (x 2,y 2),

且x 1

由①得x 1x 2=1>0,x 1+x 2=-a -1

a

.

设点O 到直线g (x )=x -a 的距离为d ,则d =|-a |

2,

∴S =1

21+12|x 1-x 2|·|-a |2=12-3a 2-2a +1

=12

-3????a +132+43.∵-1

. 即△OAB 的面积S 的最大值为

3

3

.

6.如图,已知椭圆G :x 2a 2+y 2

a 2-1=1(a >1),⊙M :(x +1)2+y 2=1,P 为椭

圆G 上一点,过P 作⊙M 的两条切线PE 、PF ,E 、F 分别为切点. (1)求t =|PM →

|的取值范围;

(2)把PE →·PF →表示成t 的函数f (t ),并求出f (t )的最大值、最小值.

解 (1)设P (x 0,y 0),则x 2

0a 2+y 20a 2-1

=1(a >1),∴y 20=(a 2-1)????1-x 20a 2, ∴t 2

=|PM →|2=(x 0+1)2+y 20=(x 0+1)2+(a 2-1)????1-x 20a 2=???

?1a x 0+a 2, ∴t =???

?1

a x 0+a . ∵-a ≤x 0≤a ,∴a -1≤t ≤a +1(a >1).

(2)∵PE →·PF →=|PE →||PF →|cos ∠EPF =|PE →

|2(2cos 2∠EPM -1) =(|PM →|2-1)??????2(|PM →|2-1)|PM |2-1

=(t 2

-1)????2(t 2

-1)t 2-1=t 2+2

t 2-3,

∴f (t )=t 2+2

t

2-3(a -1≤t ≤a +1).

对于函数f (t )=t 2+2t

2-3(t >0),显然在t ∈(0,4

2]时,f (t )单调递减,

在t ∈[4

2,+∞)时,f (t )单调递增.∴对于函数f (t )=t 2+2t 2-3(a -1≤t ≤a +1),

当a >42+1,即a -1>4

2时,[f (t )]max =f (a +1)=a 2+2a -2+

2

(a +1)2

[f(t)]min=f(a-1)=a2-2a-2+2

(a-1)2

当1+2≤a≤4

2+1时,[f(t)]max=f(a+1)=a2+2a-2+

2

(a+1)2

[f(t)]min=f(4

2)=22-3;

当1

(a-1)2

[f(t)]min=f(4

2)=22-3.

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

2019-2020学年度最新人教版高考数学总复习(各种专题训练)Word版

2019-2020学年度最新人教版高考数学总复习 (各种专题训练)Word版(附参考答案) 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体 (对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排 列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法:

中考专题--方程思想

方程应用试题 姓名___________ 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力;(正确的找到等量关系)③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知25A x mx n =-+,2 321B y x =-+-,若A B +中不含有一次项和常数项,则222m mn n -+的值为 2.单项式2343m n m n x y ++与422y x -是同类项,则m n 的值为 (2)函数与方程思想 3.若函数2 1 5m m y mx --=+是一次函数,且y 随x 的增大而减小,则m = 4.已知反比例函数k y x = 与一次函数2y x k =+的图像的一个交点的纵坐标是4-,则k 的值为 5.已知点(1,)P m 在正比例函数2y x =的图像上,那么点P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程;②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B . 34 C .2 3 D .2 7.如图,如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE , 则CE 的长________. 8.如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 AD AC 的值为( ) . A . 1 2 B .51- C .1 D .51+ 9.如图,在△ABC 中,∠C=45°,BC=10,高AD=8,矩形EFPQ 的一边QP 在边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H 。设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值 (3)圆与方程思想 通常以半径相等或者切线长相等为突破口 以“勾股定理”为等量关系列出方程 10.如图,ABC Rt ?中,?=∠90ACB ,4=AC ,3=BC ,以BC 上一点O 为圆心作⊙O,与AC 、AB 分别相切于C 点、E 点,则⊙O 的半径为 11.如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则⊙O 的半径等于______________cm 。 A ′ G D C 6题 第7题 F A D O E B C E B O 第10题 O B A P D 第11题 第8题

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

2014年高考数学理科分类汇编专题03 导数与应用

1. 【2014江西高考理第8题】若1 2 ()2(),f x x f x dx =+? 则1 ()f x dx =?( ) A. 1- B.13- C.1 3 D.1 2. 【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32 430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9 [6,]8 -- C .[6,2]-- D .[4,3]--

4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A .()2,+∞ B .()1,+∞ C .(),2-∞- D .(),1-∞- 5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2 b y ax x =+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-

6. 【2014高考广东卷理第10题】曲线25+=-x e y 在点()0,3处的切线方程为 . 7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 8. 【2014全国2高考理第12题】设函数()x f x m π=.若存在()f x 的极值点0x 满足 ()2 22 00x f x m +

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

高考数学专题之排列组合小题汇总

2018年11月14日高中数学作业 温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 124.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A. B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故 序号123456789101112选项 13141516171819202122232425

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

2015届高考数学(理)二轮专题配套练习:解析几何(含答案)

解析几何 1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2 x 1-x 2(x 1≠x 2);③直 线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 2.直线的方程 (1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线. (2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线. (3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标 轴的直线. (4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b =1,它不包括垂直于坐标轴的直 线和过原点的直线. (5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式. [问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 3.点到直线的距离及两平行直线间的距离 (1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C | A 2+ B 2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d = |C 1-C 2|A 2 +B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 4.两直线的平行与垂直 ①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2?k 1=k 2;l 1⊥l 2?k 1·k 2=-1. ②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2?A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2?A 1A 2+B 1B 2=0. 特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1 C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解 析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线. [问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 5.圆的方程 (1)圆的标准方程:(x -a )2+(y -b )2=r 2. (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为1 2D 2+E 2-4F 的圆. [问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 6.直线、圆的位置关系 (1)直线与圆的位置关系 直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断: ①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0?相交;Δ<0?相离;Δ=0?相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r ?相离;d =r ?相切. (2)圆与圆的位置关系 已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1 +r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|b >0);焦点在y 轴上,y 2a 2+x 2 b 2=1(a >b >0).

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

高三数学一轮复习必备精品6:函数与方程 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第6讲 函数与方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】 一.【课标要求】 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.【命题走向】 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关 预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.【要点精讲】 1.方程的根与函数的零点 (1)函数零点 概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02 =++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 0)()(

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有 关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通 过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1 ?函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数 关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2 ?方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者 构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3 ?函数方程思想的几种重要形式 (1) 函数和方程是密切相关的,对于函数y = f(x),当y= O时,就转化为方程f(x) = 0, 也可以把函数式y= f(x)看做二元方程y —f(x) = O。 (2) 函数与不等式也可以相互转化,对于函数y = f(x),当y > O时,就转化为不等式f(x) > 0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分 重要; (4) 函数f(x) = (1+x)^n (n ∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数

相关文档
最新文档