曲线曲面的基本理论(2)

空间曲线与曲面

实验七空间曲线与曲面 实验目的 1.掌握空间直线、平面的画法。 2.了解常见的空间曲线与曲面的画法。 与本实验相关的理论 最基本的空间作图函数是Plot3 ,用于作所有二元函数的三维立方体图形,其格式是: Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},可选项] 由于很多曲面和绝大多数曲线都不能用显函数的形式表示。Mathematica 还提供了Parametric Plot3D参数作图函数,其格式是:Parametric Plot3D[{x[u,v],y[u,v] ,z[u,v]} ,{u,umin,umax},{v,vmin,vmax},可选项] Mathematica作三维图形的机理是先在XOY坐标面给定区域内计算出一系列格点的值,再用矩形“小瓦片”拟合张在上面的曲面上。因而如果曲面的表面变化复杂,可通过设置更细的“瓦片”分割来改善。这时候可增加选项PlotPoint―>n 来说明分割数n。 实验步骤 一、画空间曲线 注意空间曲线的参数方程只有一个参变量,如果要画出螺旋线 x=10cost , y=10sint , z=2t 的图形,只要输入: Parametric Plot3D[{10cos[t],10sin[t],2t} ,{t,0,20}] 空间直线也类似地处理。 例1:求过A(3,5,-2),B(3,5,-2)的直线方程,并画图。 分析:空间直线方程可由点向式写出,再改成参数式

) 2(4)2(535313----=--=--z y x 化为参数式是:t x 23-=,t y 25-=,t z 62+-= 输入:Parametric Plot3D[{3-2t ,5-2t ,-2+6t} ,{t ,0,1}] 二、画空间曲面 例2:求过A (1,0,0),B (0,2,0),C (0,0,3),的平面方程,并画图。 分析:平面方程可由截距式写出,y x z 2 333--=。 输入:Parametric Plot3D[{3-3x-3y/2} ,{x ,-1,1},{y ,-1,1}] 例3:画出二元函数22),(y x y x f +=的图形。 输入:Parametric Plot3D[{x^2+y^2} ,{x ,-4,4},{y ,-4,4}] 例4:画出椭球心在原点,3=a ,4=b ,5=c 的椭球面。 输入:Parametric Plot3D[{3*Cos[u] Cos[v], 4*Sin[u] Cos[v],5*Sin[v]} ,{u ,0,2Pi},{v ,-Pi/2,Pi/2}] 例5:画出以x y cos =为准线,母线平行于Z 轴的柱面。 输入:Parametric Plot3D[{x,Cos[x],z} ,{x ,-4,4},{z ,-4,4}] 例6:画出由平面曲线z x cos 1+=绕Z 轴放转而成的旋转面。 输入:Parametric Plot3D[{(1+Cos[u])Cos[v] ,(1+Cos[u])Sin[v] ,u} ,{u ,-Pi ,Pi},{v ,0,2Pi}] 例7:画单叶双曲面。 输入:Parametric Plot3D[{Sec[u]Cos[v] ,Sec[u]Sin[v] ,Tan[u]} ,{u ,-Pi/2+0.5,Pi/2-0.5},{v ,0,2Pi}]

空间曲线地切线与空间曲面地切平面

第六节 空间曲线的切线与空间曲面的切平面 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ? ??===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 ) ()() ()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=-- 也可以写为 010********)()() ()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=--- 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 ) () ()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点 )(),(),((000t z t y t x A 的法平面,法平面方程为 ))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x 如果空间的曲线C 由方程为 )(),(x z z x y y == 且)(),(0' 0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 ) () ()()(100000x z x z z x y x y y x x '-= '-=- 法平面方程为

数学实验教程实验6(空间曲线与曲面

实验6 空间曲线与曲面 实验目的 1.学会利用软件命令绘制空间曲线和曲面 2.通过绘制一些常见曲线、曲面去观察空间曲线和曲面的特点 3.绘制多个曲面所围成的区域以及投影区域。 实验准备 1.复习常见空间曲线的方程 2.复习常见空间曲面的方程 实验内容 1.绘制空间曲线 2.绘制空间曲面:直角坐标方程、参数方程 3.旋转曲面的生成 4.空间多个曲面的所围成的公共区域以及投影区域 软件命令 表6-1 Matlab 空间曲线及曲面绘图命令 实验示例 【例6.1】绘制空间曲线 绘制空间曲线sin ,cos ,x at t y at t z ct ===,在区间09t π≤≤上的图形,这是一条锥面螺旋线,取a=10,c=3。

【程序】: t=0:pi/30:9*pi; a=10; c=3; x=a*t.*sin(t); y=a*t.*cos(t); z=c*t; plot3(x,y,z,’mo ’) 【输出】:见图6-1。 图6-1 空间曲线的绘制 【例6.2】利用多种命令绘制空间曲面 绘制二元函数 22 2 2 sin x y z x y += +在区域:99,99D x y -≤≤-≤≤上的图形。 【程序】:参见Exm06Demo02.m 。 【输出】:见图6-2。 图 6-2 绘制空间曲面 【例6.3】绘制Mobius 带 Mobius 带的参数方程为 122122 cos sin cos ,[0,2],[,] sin u u x r u y r u r c v u v a b z v π=??==+∈∈??=?,, 其中,,a b c 为常数,绘制其图形。

曲面与空间曲面的归纳

曲面与空间曲线的总结

曲面与空间曲线一.曲面及其方程: 1.曲面方程的一般概念: 定义:若曲面上的点的坐标(x,y,z) 都满足方程F(x,y,z)=0, 而满足此方程的点都在曲面上,则称此方程为 该曲面的方程,而曲面称为此方程的‘图形’。 例1:求与A(2,3,1)和B(4,5,6)等距离的点的运动规迹。 解: 设M(x,y,z)为动点的坐标,动点应满足的条件是 |AM|=|BM|由距离公式得 此即所求点的规迹方程,为一平面方程。 2.坐标面及与坐标面平行的平面方程: ①坐标平面xOy 的方程:z=0 ②过点(a,b,c)且与xOy 面平行的平面方程:z=c 222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x 整理得 631044=-++z y x

③坐标面yOz 、坐标面zOx 以及过(a,b,c)点且分别与之平行的平面方程:x=0; y=0; x=a; y=b 3. 球面方程: ①球面的标准方程:以M0(x0,y0,z0)为球心,R 为半径 的球面方程为 (x-x0)2+(y-y0)2+(z-z0)2=R2 ②球面的一般方程: x2+y2+z2+Ax+By+Cz+D=0 球面方程的特点:平方项系数相同;没有交叉项。 例2:求x2+y2+z2+2x-2y-2=0表示的曲面 解:整理得: (x+1)2+(y-1)2+z2=22 故此为一个球心在(-1,1,0),半径为2的球。 4.母线平行于坐标轴的柱面方程: 一般我们将动直线l 沿定曲线c 平行移动所形成的轨迹 称为柱面。其中直线l 称为柱面的母线,定曲线c 称为柱面 的准线。本章中我们只研究母线平行于坐标轴的柱面方程。 此时有以下结论: 若柱面的母线平行于z 轴,准线c 是xOy 面上的一条曲线,其方程为F(x,y)=0,则该柱面的方程为F(x,y)=0; 同理,G(x,z)=0,H(y,z)=0在空间中分别表示母线平行于y 轴和x 轴的柱面。 分析:母线平行于坐标轴的柱面的特点为:平行于某轴,则在其方程中无此坐标项。其几何意义为:无论z 取何值,只要满足F(x,y)=0,则总在柱面上。 几种常见柱面:x+y=a 平面; 2 22a y x =+圆柱面

曲面与空间曲线的方程

第 2 章曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及 表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面 曲线方程的区别; ( 2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: § 1 曲面的方程 普通方程: 1 定义:设工为一曲面,F(x, y, z) =0为一三元方程,空间中建立了坐标系以后, 若工上任一点P(x,y,z)的坐标都满足F(x,y, z)=0,而且凡坐标满足方程的点都在曲 面工上,则称F (x, y, z) =0为工的普通方程,记作 2:F (x, y, z) =0. 不难看出,一点在曲面2上〈一〉该点的坐标满足工的方程,即曲面上的点与其 方程的解之间是一一对应的???》的方程的代数性质必能反映出2的几何性质。 2 三元方程的表示的几种特殊图形:空间中任一曲面的方程都是一三元方程,反之,是否任一三 元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1 ° 若F( x, y, z) =0 的左端可分解成两个(或多个)因式F1( x, y, z) 与F2 (x, y, z)的乘积,即 F (x, y, z)= F i (x, y, z) F2 (x, y, z),贝U F (x , y , z) =0〈一〉F i (x , y , z) =0 或F2 (x , y , z) =0 ,此时 F( x y z) =0 表示两叶曲面1与 2 它们分别以F1( x y z) =0 F2( x y z) =0 为其方程此时称F(x y z)=0 表示的图形为变态曲面。如 F(x,y,z) xyz 0 即为三坐标面。 2 0方程F(x,y,z) (x2 y2 z2) x i2 y 2 2 (z 3)2 0 仅表示坐标原点和点( i 2 3) 3 °方程F(x, y,z) 0可能表示若干条曲线如 F(x, y,z) (x2 y2)(y2 z2) 0 即表示z 轴和x 轴 °方程F(x, y,z) 0不表示任何实图形如 4

空间曲面与空间曲线学习总结

面及其方程 一曲面方程的概念 空间曲面可看做点的轨迹,而点的轨迹可由点的坐标所满足的方程来表达。因此,空间曲面可由方程来表示,反过来也成立。 为此,我们给出如下定义: 若曲面 S与三元方程 F x y z (,,) 0 (1) 有下述关系: 1、曲面 S上任一点的坐标均满足方程(1); 2、不在曲面 S上的点的坐标都不满足方程(1)。 那么,方程(1)称作曲面 S的方程,而曲面S称作方程(1)的图形。 下面,我们来建立几个常见的曲面方程。 【例1】球心在点 ) , , ( z y x M ,半径为R的球面方程。

解:设M x y z (,,)是球面上的任一点,那么M M R 0=, 即: ()()()x x y y z z R -+-+-=020202 ()()()x x y y z z R -+-+-=0202022 (2) (2)式就是球面上任一点的坐标所满足的方程。 反过来,不在球面上的点 ''''M x y z (,,),'M 到M 0的距离M M R 0'≠, 从而点 'M 的坐标不适合于方程(2)。 故方程(2)就是以 M x y z 0000(,,)为球心,R 为半径的球面方程。 若球心在原点,即 M x y z O 0000000(,,)(,,)=,其球面方程为 x y z R 2222++= 【例2】设有点A (,,)123和B (,,)214-,求线段AB 垂直平分面π 的方程。 解:所求平面π是与A 和B 等距离的点的几何轨迹,设M x y z (,,)是所求平面上任意 的一点,则 AM BM = 即: ()()()()()()x y z x y z -+-+-=-+++-123214222222

第二章轨迹与方程

第二章轨迹与方程 学习目标 1.进一步理解曲线和方程的关系,会写出平面曲线的矢量式(坐标式)参数方程,能将曲线的参数方程与普通方程进行互化,认识一些常见平面曲线的方程及形状。 2.理解曲面方程的概念,能根据曲面上点的特征性质来导出曲面的方程。3.初步理解柱面的概念,知道母线平行于坐标轴的柱面方程。 4.理解空间曲线的一般方程、参数方程的概念,会求一些简单的空间曲线的一般方程和参数方程。 A:掌握 1:基本概念:平面曲线的矢量式参数方程,曲面的一般方程和参数方程(坐标式和矢量式),空间曲线的一般方程和参数方程(坐标式和矢量式)。 母线平行于坐标轴的柱面,空间曲线对坐标面的射影柱面及空间曲线在三坐标面上的射影。 2:基本方法 ①根据轨迹条件用矢量方法求平面曲线和空间曲线(圆柱螺旋线、圆锥螺旋 线)的参数方程。 ②根据轨迹条件求曲面的一般方程和用矢量方法求曲面(球面、圆柱面)的 参数方程。 ③将曲线、曲面的参数方程化为一般方程。 ④二次柱面简图的画法。 ⑤求空间曲线对坐标面的射影柱面和它在三坐标面上的射影。 3:基本理论 ①三元二次方程表示球面(包括点球面、虚球面)的充要条件的证明及球心、 半径的求法 ②母线平行于坐标轴的柱面方程的特征及证明 B:理解 将平面曲线和空间曲线的一般方程化为参数方程的常规方法。 教材分析 本章的学习重点是曲面及空间曲线的一般方程和参数方程(坐标式和矢量式)的定义,以及根据轨迹条件建立曲面的一般方程和参数方程、建立空间曲线的参数方程。 本章的学习难点是用矢量方法建立曲线和曲面的矢量式的参数方程。 在本章的学习中建议注意以下几个问题: 1:在学习轨迹与方程的对应关系时,必须弄清楚为什么要满足两个条件。 2:学习空间曲面的一般方程时应指出F(x,y,z)=0未必表示一个曲面,它可以表示多个曲面、空间曲线、空间点虚曲面,例如方程xyz=0表示三个坐标面, 方程表示一直线 方程表示一点(1,-1,2) 方程表示虚曲面

第二章第二节曲面的参数方程

第二章 曲面论 第二节 曲面的参数方程 一、 曲面的参数方程 设曲面∑是由显式 D y x y x f z ∈=),(),,( 所表示。 设),,(z y x 是曲面∑上的点,记向量),,(z y x r = ,则它们可构成一一对应。 于是曲面∑上的点可以用向量值函数 D y x y x f y x r ∈=),()),,(,,( 来表示, 也可以写为参数形式 ?????===),(, ,y x f z y y x x D y x ∈),(。

一般地,设3),(R v u r r ∈= ,其中参 数?∈),(v u ,这里?是2R 中的一 个区域。 我们称由3),(R v u r r ∈= , ?∈),(v u ,所构成的3R 中点集∑为一张参数曲面,(即曲面∑,可以表示为参数方程表示的点集。) 记为?∈=∑),(),,(:v u v u r r ,(1) 把(1)用分量表示出来,就是 ?? ???===),(),(),,(v u z z v u y y v u x x ,?∈),(v u (2) 通常,我们称(1)是曲面∑的向量方程,而(2)是曲面∑的参数方程。 显然方程(1)和(2)之间的转换是直截了当的,所以我们可以认为(1)与(2)是一回事。

二、 几个用参数方程表示的常见 曲面 例1 平面的参数方程, 设30000),,(R z y x p ∈= 是一个固定的点, ),,(321a a a a = 与),,(321b b b b = 是自0p 出发的两个不平行的向量。这时,由a 与b 张成的平面可以用向量方程, 20),(,R v u b v a u p r ∈++= 来表示; 写成分量表示为 v b u a x x 110++=, v b u a y y 220++=, v b u a z z 330++=,

§7.4.1-3空间曲面和空间曲线

§7.4空间曲面和空间曲线 本节以两种方式来讨论空间曲面: (1)已知曲面的形状,建立这曲面的方程; (2)已知一个三元方程,研究这方程的图形。 7.4.1球面与柱面 (一)球面 空间中与一定点等距离的点的轨迹叫球面。 求球心在点),,( z y x M ,半径为R 的球面方程。 设),,(z y x M 为球面上的任一点,则有R M M = ,即 R z z y y x x =-+-+-222)()()( ,化简得: 2222)()()(R z z y y x x =-+-+- 。 ① 满足方程①,因此,方程①是球面的方程。 当0=== z y x 时,即球心在原点的球面方程为 2 222R z y x =++。 ② 例1.指出方程05642222=+--+++z y x z y x 表示何种曲面。 解:9415964412222+++-=+-++-+++z z y y x x , 22223)3()2()1(=-+-++z y x ,方程表示以)3 ,2 ,1(-为球心,3为半径的球面。 (二)柱面 动直线L 沿给定曲线C 平行移动所形成的曲面,称为柱面。动直线L 称为柱面的母线,定曲线C 称为柱面的准线。 y

现在来建立以xoy 面上的曲线C :? ??== . 0, 0),(z y x F 为准线,平行于L z 轴的直线 设) ,,( z y x M 为柱面上任一点,过 M 作平行于轴的直线 z ,交xoy 面于点 ) 0 , ,( y x M ,由柱面定义可知点上必在准线C M 。故有0),(= y x F 。由于 M M 与点点有相同的横坐标和纵坐标,故的坐标点 M 也必满足方程 0),(=y x F 。反之,如果空间一点) ,,( z y x M 满足方程0),(=y x F ,即0 ),(= y x F ,故 ) ,,( z y x M 且与轴平行的直线 z 必通过 上的点准线C ) 0 , ,( y x M ,即) 0 , ,( y x M 在过) 0 , ,( y x M 的母线上,于是) ,,( z y x M 必在柱面上,因此方程0),(=y x F 表示平行于轴的柱面 z 。 一般地 方程0) ,(=y x F 表示母线轴的柱面平行于 z ; 方程0) ,(=z y H 表示母线轴的柱面平行于 x ; 方程0) ,(=z x G 表示母线轴的柱面平行于 y 。 以二次曲线为准线的柱面称为二次柱面。 例如:方程2 2 2 a y x =+表示圆柱面;方程 12 22 2=+ b y a x 表示椭圆柱面; 方程12 2 22 =- b x a y 表示双曲柱面;方程Py x 22=表示抛物柱面。 y 22 a y = x x y 1 2 2=b y

曲面与空间曲线的方程

第2章 曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定 义及表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有 关平面曲线方程的区别; (2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: §1 曲面的方程 一 普通方程: 1 定义:设Σ为一曲面,F (x ,y ,z )=0为一三元方程,空间中建立了坐标系以后, 若Σ上任一点P (x ,y ,z )的坐标都满足F (x ,y ,z )=0,而且凡坐标满足方程的点都在曲面Σ上,则称F (x ,y ,z )=0为Σ的普通方程,记作 Σ:F (x ,y ,z )=0. 不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质。 2 三元方程的表示的几种特殊图形: 空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的 一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1° 若F (x ,y ,z )=0的左端可分解成两个(或多个)因式F 1(x ,y ,z ) 与F 2(x ,y ,z )的乘积,即F (x ,y ,z )≡F 1(x ,y ,z )F 2(x ,y ,z ),则 F (x ,y ,z )=0〈═〉F 1(x ,y ,z )=0或F 2(x ,y ,z )=0,此时 F (x ,y ,z )=0表示两叶曲面1∑与2∑,它们分别以F 1(x ,y ,z )=0,F 2(x ,y ,z )=0为其方程,此时称F (x ,y ,z )=0表示的图形为变态曲面。如 0),,(=≡xyz z y x F 即为三坐标面。 20方程()()[] 0)3(21)(),,(222222=-+-+-++≡z y x z y x z y x F 仅表示坐标原点和点(1,2,3) 3°方程0),,(=z y x F 可能表示若干条曲线,如 0))((),,(2 222=++≡z y y x z y x F 即表示z 轴和x 轴 4°方程0),,(=z y x F 不表示任何实图形,如

空间曲线的切线与空间曲面的切平面之欧阳光明创编

第六节空间曲线的切线与空间曲面 的切平面 欧阳光明(2021.03.07) 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ???===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 也可以写为 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为 如果空间的曲线C 由方程为 且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 法平面方程为

如果空间的曲线C 表示为空间两曲面的交,由方程组 确定时,假设在),,(000z y x A 有0),(),(≠??=A z y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组 ? ??==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数 有)(),(0000x z z x y y ==,) ,(),(1,),(),(1x y G F J dx dz z x G F J dx dy ??-=??-=。于是空间的曲线C 在 点),,(000z y x A 的切线是 即 法平面方程为 类似地,如果在点),,(000z y x A 有0),(),(≠??A y x G F 或0),(),(≠??A x z G F 时,我们得到的切线方程和法平面方程有相同形式。 所以,当向量 时,空间的曲线C 在),,(000z y x A 的切线的方向向量为r 例6.32 求曲线θθθb z a y a x ===,sin ,cos 在点()πb a ,0,-处的切线方程. 解 当πθ=时,曲线过点()πb a ,0,-,曲线在此点的切线方向向量为 {}{}b a b a a ,,0|,cos ,sin -=-=πθθθ, 所以曲线的切线方程为 b t z z a t y y t x x )()(0)(000-=--=-.

第二章第一节曲面的概念显式方程和隐式方程表示

第二章曲面的表示与曲面论 第一节曲面的显式方程和 隐式方程 一、由显式方程表示的曲面 设2R D?是有界闭区域,函数 :连续。我们称函数f的图 f→ D R 像 z y R z f x f ∈ = G∈= x : ,( } y ),, ),(), y x (3D {( ) 为一张曲面,它展布在D上,称这 个曲面是由显式方程 , =) z∈ (), , ( y f D y x x 所确定的。 ∑表示一个曲面。 通常用 二、几种常见的曲面 例1 在空间直角坐标系中,中心 a、在xy平面 在坐标原点、半径为 上方的那个半球面(称为上半球面),它的显式方程为

222y x a z --=,D y x ∈),(, 其中 }:),{(222a y x y x D ≤+=,即D 是xy 平面上以原点为中心、半径为a 的圆盘。 显然,下半球面的方程为 222y x a z ---=,D y x ∈),(; 同样可给出左半球面、右半球面的方程式。 例2 点集 }1,0,,:),,{(=++≥z y x z y x z y x 是3R 中的一块等边三角形。这块曲面有显式表达 y x z --=1,D y x ∈),(, 其中}1,0,:),{(≤+≥=y x y x y x D 。 例 3 由方程axy z =,2),(R y x ∈, (常数0>a ),所确定的曲面称为双曲抛物面。 由于这曲面在在xy 平面的上的,第一、第三象限中,在xy 平面的上

方,而在第二、第四象限中是在xy 平面的下方,因此在原点)0,0,0(的近旁,曲面呈鞍的形状,俗称马鞍面。 例4 旋转曲面的方程 1设想在xz 平面上有一条显式曲线)0(),(b x a x f z ≤≤≤=。 如果固定z 轴不动,让xz 平面绕着z 轴旋转 360,那么这一条曲线就扫出一张曲面,称之为旋转曲面∑。 设∑∈),,(z y x ,它在过点),0,0(z 平行于xy 平面的平面上,以),0,0(z 为中心,半径为r 的圆周上()(r f z =), 222r y x =+, 于是得这个旋转曲面∑的方程为):(),(222222b y x a D y x f z ≤+≤+=。

相关文档
最新文档