控制网的网型设计优化方案的

控制网的网型设计优化方案的
控制网的网型设计优化方案的

目录 ............................................................................................................. 错误!未定义书签。

...................................................................................................... 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

第二节 GPS定位技术的应用现状 (2)

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

第二章 GPS卫星全球定位系统 ............................................... 错误!未定义书签。

第一节 GPS卫星定位系统的组成 .................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

第二节 GPS卫星的导航定位信号 .................................... 错误!未定义书签。

一、概述 ............................................................. 错误!未定义书签。

二、 GPS信号接收机的组成及原理 .................. 错误!未定义书签。

第三节 GPS卫星定位原理 ................................................ 错误!未定义书签。

................................................................................. 错误!未定义书签。

二、 GPS几种定位方式 ...................................... 错误!未定义书签。

第四节 GPS导航定位误差 (15)

一、与GPS卫星有关的误差 (15)

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

...................................................................................................... 错误!未定义书签。

第一节影响GPS测量技术设计的因素 (15)

第二节 GPS网的布设 (16)

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

一、 WGS-84大地坐标系 (16)

二、 1954年北京坐标系 (16)

三、 1980年国家大地坐标系 (17)

四、新1954年北京坐标系 (17)

五、 GPS时间系统 (17)

...................................................................................................... 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

二、数据处理 (19)

...................................................................................................... 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................ 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

...................................................................................................... 错误!未定义书签。

...................................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

...................................................................................................... 错误!未定义书签。 ............................................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

............................................................................................... 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。

................................................................................. 错误!未定义书签。 ............................................................................................................. 错误!未定义书签。

...................................................................................................... 错误!未定义书签。

...................................................................................................... 错误!未定义书签。参考文献 .. (22)

致谢 (22)

第二节 GPS定位技术的应用现状

1.1 全球定位技术的概况

全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。[2]全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。

按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。

地面监控部分包括四个监控间、一个上行注入站和一个主控站。监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。主控站设在范登堡空军基地。它对地面监控部实行全面控制。主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。上行注入站也设在范登堡空军基地。它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。这种注入对每颗GPS 卫星每天进行一次,并在卫星离开注入站作用范围之前进行最后的注入。

全球定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。

1.2 GPS的特点

相对于经典的测量技术来说,GPS定位技术主要有一下特点:

1.观测站之间无需通视

这一优点既可大大减少测量工作的经费和时间,同时也使点位的选择变得更加灵活。

2.定位精度高

试验表明,目前在小于50km的基线上,其相对定位精度可达1×10~2×10,而在100~500km的基线上可达10~10。随着观测技术与数据处理方法的改善,可望在大于1000km的距离上,相对定位精度达到或优于10。

3.观测时间短

随着GPS系统的不段完善,目前20㎞以内相对静态定位,仅需15~20分钟;快速静态相对定位中,在流动站与基准站相距在15㎞以内时,流动站观测的时间只需1~2分钟;动态相对定位,出发时流动站观测1~2分钟,然后可随时定位,每站观测进需几秒。[2]

4.提供三维坐标

5.操作简便

6.全天候作业

因此,GPS定位技术的发展是对经典测量技术的一次重大突破。一方面,它使经典的测量理论与方法产生了深刻的变革;另一方面,也进一步加强了测量学与其他学科之间的相互渗透,从而促进了测绘科学技术的现代化发展。

1.3 GPS系统的应用前景

最初设计GPS的主要目的是用于导航、收集情报等军事目的。但后来得应用开发表明,GPS不仅可以达到上述目的,而且用GPS卫星信号能够进行厘米级甚至毫米级精度的静态相对定位,米级至亚米级精度的动态定位,亚米级至厘米级精度的速度测量何毫微秒级精度的时间测量。

用GPS信号可以进行海、陆、空、地的导航,导弹制导,大地测量和工程测量的精密定位,时间传递和速度测量等。在测绘领域,GPS定位定位技术已用于建立高精度的大地测量控制网,测定地球动态参数;建立陆地及海洋大地测量基准,进行高精度海陆联测及海洋测绘;监测地球板块运动状态和地壳形变;在工程测量方面,已成为建立城市与工程控制网的主要手段;在精密工程的变形监测方面,它也发挥着及其重要的作用;同时GPS定位技术也用于测定航空航天摄影瞬间相机的位置,可在无地面控制或仅有少量地面控制点的情况下进行航测快速成图,引起了地理信息系统及全球遥感监测的技术革命。

在日常生活方面事一个难以用数字预测的广阔的领域,手表式的GPS接收机,将成为旅游者的忠实导游。GPS将像移动电话、传真机、计算机互联网对我们生活的

影响一样,人们的日常生活将离不开它。

2 相对定位原理及GPS网优化设计简述

2.1 相对定位原理

由于在GPS绝对定位(或单点定位)中,定位

精度将受到卫星轨道误差、钟差及信号传播

误差等因素的影响,虽然其中一些系统性误

差可以通过模型加以削弱,但改正后的残差

仍是不可忽略的。GPS相对定位.也叫差分

GPS定位,是目前GPS测量中定位精度最高的

定位方法,它广泛地应用于大地测量、精密

工程测量、地球动力学的研究及精密导航中。

相对定位的概念:用两台接收机分别安置在基线的两个端点,其位置静止不动,同步观测相同的4颗以上GPS卫星,确定基线两个端点在协议地球坐标系中的相对位置.这种定位模式称为相对定位(见图2-1)。出于在测量过程中,通过重复观测取得了充分的多余观测数据,从而改善了GPS定位的精度。[2]

2.2 GPS网优化设计

GPS控制网的优化设计是实施GPS测量的基础性工作,它是在网的精确性、可靠性和经济性方面,寻求GPS控制网设计的最佳方案。根据GPS测量特点分析可知,GPS 网需要以一个点的坐标为定位基准,而此点的精度高低直接影响到网中各基线向量的精度和网的最终精度。同时由于GPS网的尺度含有系统误差以及同地面网的尺度匹配问题,所以有必要提供精度较高的外部尺度基准。

由于GPS网的精度与网的几何图形结构无关,且与观测权相关甚小,而影响精度的主要因素是网中各点发出基线的数目及基线的权阵。因此,提出了GPS

网形结构强度优化设计的概念,讨论增加的基线数目、时段数、点数对GPS网的精度、可靠性、经济效益的影响。同时,经典控制网中的三类优化设计,即网的加密和改进问题,对于GPS网来说,也就意味着网中增加一些点和观测基线,故仍可将其归结为对图形结构强度的优化设计。综上所述,GPS网的优化设计主要归结为两类内容的设计:

(1)GPS网基准化的优化设计。

(2)GPS网图形结构强度的优化设计,其中包括:网的精度设计能力的可靠性设计,网发现系统差能力的强度设计。

2.2.1 GPS控制网基准的优化设计

经典控制网的基准优化设计是选择一个外部配置,使得达到一定的要

求,而GPS网的基准优化设计主要是对坐标未知参数X进行的设计。基准选取的不同将会对网的精度产生直接影响,其中包括GPS网基线向量解中的位置基准的选择,以及GPS网转换到地方坐标系所需的基准设计。另外,由于GPS尺度往往存在系统误差,因此应提出对GPS网尺度基准的优化设计。

1).位置基准设计

研究表明,GPS基线向量解算中作为位置基准的固定点误差是引起基线误差的一个重要因素,使用测量时获得的单点定位值作为起算坐标,由于其误差可达数十米以上,所以选用不同点的单点定位坐标值作为固定点时,引起的基线向量差可达数厘米。因此,必须对网的位置基准进行优化设计。

2).尺度基准设计

尽管GPS观测量本身已含有尺度信息,但由于GPS网的尺度含有系统误差,所以,还需要提供外部尺度基准。

GPS网的尺度系统误差有两个特点:一是随时间变化,由于美国政府的SA政策,使广播星历误差大大增加,从而对基线带来较大的尺度误差;另一个随区域变化,由区域重力场模型不准确引起的重力摄动造成。因此,如何有效地降低或消除这种尺度误差,提供可靠的尺度基准就是尺度基准优化问题。其优化有以下几种方案:

(1)提供外部尺度基准。对于边长小于50km的GPS网,可用较高精度的测距仪(

或更高)测量2—3条基线边,作为整网的尺度基准。对于大型长基线网,可采用SLR站的相对定位观测值和VLBI基线作为GPS网的尺度基准。

(2)提供内部尺度基准。在无法提供外部尺度基准的情况下,仍可采用GPS观测值作为GPS网的尺度基准,只是对作为尺度基准观测量提出一些不同要求,其尺度基准设计如下。

在GPS网中选一条长基线.对该基线尽可能多地长时间、多次观测,最后取多次观测段所得的基线的平均值,以其边长作为网的尺度基准。由于它是不同时期的平均值,尺度误差可以抵消。因此,它的精度要比网中其他短基线高得多,可以作为尺度基准。

以上讨论了GPS基线向量解其中位置基准以及GPS尺度基准的选择与优化问题。此外,GPS成果转换到地面实用坐标系中,还存在一个转换基准的选择问题,此处不再讨论。

2.2.2 GPS网的精度设计

精度是用来衡量网的坐标参数估值受观测偶然误差影响程度的指标。网的精度设计是根据偶然误差的传播规律,按照一定的精度设计方法,分析网中各未知点平差后预期能达到的精度,这常被称为网的统计强度设计与分析。一般常用坐标的方差——协方差阵来分析,也可用误差椭圆(球)来描述坐标点的精度状况,或用点之间方位、距离和角度的标准差来定义。

对于GPS网的精度要求,一般用网中点之间的距离误差来表示。其精度与网的点位坐标无关,与观测时间无明显的相关性(整周模糊度一旦被确定后),GPS网平差的法方程只与点间的基线数目有关,且基线向量的三个坐标差分量之间又是相关的,因此,很难从数学的角度和实际应用出发,建立使未知数的协因数阵逼近理想的准则矩阵。所以,目前较为可行的方法是给出坐标的协出数阵的某种纯量精度标准函数。设GPS网有误差方程

式中.l、v分别为观测向量和改正向量;X为坐标未知参数向量阵;P为观测值权

阵;为先验方差因子(在设计阶段取=1),m为观测基线数;n为待定点数。由最小二乘可得参数估值及其协因数阵:

优化设计中常用的纯量精度标准,根据其由构成的函数形式的不同的可表示成

不同的最优纯量精度标准函数。现在最常用的是求的轨迹,以次来表示纯量精度。

3 大同矿区GPS控制网设计实例

3.1 任务来源及工作量

大同矿区为全国最大的煤炭企业大同矿物局所属,并且预测煤炭储量丰富,工业前景可观。但是该矿区原有测量控制网为90年代建立,历经十几年的采矿影响,认为破坏及地貌变化,使原有控制点大部分失去控制作用,使得服务于日常生产的多项

测量工作难以正常进行,远远不能满足矿山生产和工程建设的需要。因此,该矿区急需建立新的测量控制网。

该网不但要满足日常采矿生产需要,而且还要顾及远景规划及预测区,控制面积约600 KM2,测量范围(如图3-1)为:

图3-1 已知点分布图

东至:550km(大同矿区独立坐标系)

南至:4415km

西至:534km

北至:4439km

3.2 测区概况

大同矿区位于山西省大同市西南,地跨大同、朔州两市,地处东经112度53分─113度12分,北纬39度55分─40度零8分,距市区12。5公里,辖区与大同市南郊区交叉,总面积约90平方公里,号称百里矿区。区内为平缓的丘陵地貌,西南高,东北低。尖口山最高,标高1835.9米,口泉沟最低,标高1093.6米。境内主要山脉有七峰山、鸡爪山、大钟山、马武山等;主要河流有口泉河、十里河,

均为季节性河流。该区厂矿企业主要分布在口泉─黑流水(口泉沟),马军营─燕子山(云岗沟)两条狭长的山沟里。

通往矿区的铁路有大同—王村、大同—燕子山两条矿区专用线,各煤矿集运站都分散在两条专用线周围。以横穿矿区东西向的109国道、沿矿区东侧穿行的南北向大运公路为骨干线,配以矿区内专用公路,交通十分方便。

矿区供水水源以第四系潜水为主,现有大同市的白马城水源地以及时庄水源地,供水量严重不足,需另找新的水源。矿区电源主要来自大同市第一热电厂和神头电厂。

矿区现有生产煤矿55处,其中国有重点煤矿18处,设计能力3645万吨/年。截至1996年末,大同矿区保有探明储量386。43亿吨,其中生产矿井保有储量77。41亿吨。

矿区原有国家二等三角网8个,经野外踏勘,发现有3个已明显被破坏或受采动影响;现只有代家沟、孙家沟、羊坊、怀仁、土台山5个点的标石保存完好(如图3-1)。设计采用的是比例尺为1:10000的大同矿区航摄地形图。1989年航摄,1992年成图,1994年缩编成图。地形图采用1985国家高程基准,等高距为5米。

3.3 布网方案

3.3.1 技术设计的依据与基准设计

1)技术设计的依据

2001年国家质量技术监督局发布的<<全球定位系统(GPS)测量规

范>>(CH2001-92)。

2)基准设计

GPS测量获得的是GPS基线向量,它属于WGS—84坐标系的三维坐标差,而实际需要的是国家坐标系或地方独立坐标系的坐标。因此需要结合测区概况和已有资料(图3-1),进行GPS网的基准设计。

根据大同矿区近期发展与远景规划相结合的战略目标,按照现阶段矿区建设的需要,采用大同矿区独立坐标系,中央子午线经度为112°30′,投影面与54北京坐标系相同而建立的坐标系统。

3.3.2 方案设计的技术分析

1)等级确定

根据中华人民共和国测绘行业标准《全球定位系统城市测量技术规程》、《煤矿测量规程》和大同矿区的具体情况,确定该测区可建立D级GPS网[10],有关技术要求见表3-1:

表3-1 基本技术要求

2)技术设计

I.时段设计

根据规范对D级网的要求,采用快速静态相对定位,时段长度根据边长而定,具体时间见表3-6。

GPS网的时段设计有点连式、边连式和网连式三种基本方法。点连式所构成的图形几何强度太弱;网连式布网冗赘,工作量太大;边连式布网有太多的非同步闭合条件,工作量适中。根据D级GPS网的要求我们采用边点结合的混合式布网方法。

II.观测方法

GPS网的观测采用载波相位快速静态相对定位模式,作业仪器采用4台Timble5700双频GPS接受机,它的标称精度可达5 mm±1ppm,满足精度要求。作业方法是:将GPS四套接收机设备分别安置在网中四边形的各个端点上,对基线边同步观测4颗卫星。这种模型的特点是:观测过的基线边构成一个闭合图形,便于观测成果的检验,从而提高观测成果的可靠性和GPS网平差后的精度。[9]

3.3.3 GPS网的设计及施测方法

1) GPS网的设计

I.设计原则

① GPS网一般应采用独立观测边构成闭合图形,如三角形、多边形或附合线路,以增加检核条件,提高网的可靠性。

②GPS网作为测量控制网,其相邻点间基线向量的精度,应分布均匀。

③GPS网点应尽量与原有地面控制点相结合。重合点一般不少于3个(不足时应联测),且在网中分布均匀,以可靠地确定GPS网与地面之间的转换参数。

④GPS网点应考虑与水准点重合,而非重合点,一般应根据要求以水准测量(或相当精度的测量方法)进行联测,或在网中布设一定密度的水准联测点。

⑤为了便于GPS的测量观测和水准联测,减少多路径影响,GPS网点一般应设在视野开阔和交通便利的地方。

⑥为了便于用经典方法联测或扩展,可在GPS网点附近布设一通视良好的方位点以建立联测方向,方向点与观测站距离一般应大于300米。

⑦GPS网必须由非同步独立观测边构成若干个闭合环或附和线路。各级GPS网中每个闭合环或附和线路中的边数应符合表3-2的规定。

表3-2 最简独立闭合环或附和线路边数的规定[7]

II 方案设计(图中1-20为同步环)

图3-2 方案设计一

图3-3 方案设计二

3.3.4 方案比较

A 基本特征值比较

根据R. A sany 提出

的公式计算GPS网的

主要特征值:

C= nm/N

式中C为观测时段

数,n为网的总点数, m 为每点设站数,N为接受机数。在网中:

总基线数: J总=C*N*(N-1)/2

必要基线数:J必= n-1

独立基线数:J独=C*(N-1)

多余基线数:J多=C*(N-1)-(n-1)[2]

总体可靠性指标=J多/J独

计算的两个方案的主要特征值见表3-3:

表3-3 两个方案的主要特征值

B 设计方案比较

两个设计方案都以大同矿区为重点,布设GPS控制网,在重点发展区域网点密度稍大。方案一采用点连接和边连接的混合连接形式,构成异步环和复测边,异步环具有良好的自检能力,能有效地发现观测成果的粗差,确保网的可靠性,复测边连接时几何强度较高。方案二是在方案一的基础上,也采用边点混合连接方式,但较方案一的连接方式不同,方案设计的指导思想是在满足精度的基础上,尽量减少人力、物力、财力。

C 成本比较

成本取决于网点总数和重复设站率,设一台接收机观测一期的平均费用为C,则总费用为:

f=C*S*m

由于方案设站数多,数据处理平差费多,方案一比方案二多花费大约1万元。

D 精度比较

对于两种方案的精度,因为点位相差不大,边长也相差不大,所以两种方案的精度也相差不大。

利用相邻点间弦长精度计算公式:

[2]

式中, ---GPS基线向量的弦长中误差(mm),亦即等效距离误差;

a---GPS接受机标称精度中的固定误差(mm);

b---GPS接受机标称精度中的比例误差系数(ppm);

d---GPS网中相邻点间的距离(km)。

可计算出,方案一最弱边边长相对中误差为1/5.2×10,平均边长相对中误差为1/6.9×10;方案二最弱边边长相对中误差为1/5.2×10,平均边长相对中误差为1/6.86×10,两者几乎无差别,且都符合四等城市测量规范的要求。

E 效率比较

一个GPS网中,在测量点数、GPS接收机数和平均重复设站次数确定后,完成该测量所需的理论最少观测期数就可以确定。但是,当按照某个具体的布网方式和观测作业方式进行作业时,要按要求完成整网的测量,所需的观测期数与理论上的最少观测期数会有所差异,理论最少观测期数与设计的观测期数的比值,称之为效率指标(e)。[2]

设GPS网中点的个数为n,用m台接收机进行观测,则该网的最少观测期数为

[11]

如重复设站率以R表示,则理论观测期数为

R≥2

网的效率指标定义如下:

式中,是理论设计效率,是实际效率,e是总效率。

根据以上公式,可计算出方案一的可靠性为:

=0.6, =1,e=0.6

方案二的可靠性为:

=0.63, =1,e=0.63

显然,方案二的可靠性比方案一略好。

从以上分析可以看出,方案二比方案一花费少,技术指标相差不大,精度都能满足要求,所消耗的人力、物力、财力、时间都比方案一少,所以,方案二比方案一要优,故本设计选择方案二。

3.3.5 所选方案的精度分析

根据所选方案的独立基线边构成的GPS网成图(图3-4),统计出该网中有38个控制点,其中5个为已知;57条基线。

第四节 GPS导航定位误差

一、与GPS卫星有关的误差

第一节影响GPS测量技术设计的因素

(完整版)GPS控制网的优化设计毕业设计

GPS控制网的优化设计

GPS控制网的优化设计 摘要 优化设计是最优化理论和方法在设计中的应用,力求以最低的成本、最高的效率达到最优的目标。本文通过一系列的分析,对控制网的优化方法进行分析,说明可行性。 为了解决控制网优化设计问题,本论文分两大部分,GPS网的优化设计和GPS网的精度和可靠性,在 GPS网形设计中,首先根据工程的特点和GPS网设计规范的要求,大致确定网的规模,用图论和树的有关算法推导出GPS网形中点、边、异步环之间的关系,然后给出一种生成网形的算法,自动生成初步网形,并用模拟法在顾及精度和可靠性准则下对初步网形进行优化设计,确定最终网形,并按最小路径方法生成观测方案。 关键词: GPS控制网,优化设计,精度,可靠性 OPTIMIZING DESIGNING OF CONTROL NETWORK

ABSTRACT The optimization design is a application of the most optimizative theory and method in the design. It is design of GPS control network’s methods by a series of analysis. This paper consists of two parts: Optimizing designing of GPS control network and the Precision and Reliability of GPS network. When designing a GPS control network ,its scale should be predicted as the project requested and the GPS surveying standard disciplined. According to the relationship among GPS points , edges and nonsynchronous loops, we can use an algorithm of Graphic Theory to produce a network when given the number of points and the maximum edges of each nonsynchronous loop, after being modified by using simulate optimizing method we can draw the ultimate network, then the observation plan can be gained by using the best way algorithm. KEYWORDS:gps control network, optimizing designing, precision, reliability

施工控制网的布设

海南省红岭灌区工程东干渠土建施工第Ⅰ标段 施工控制网布设 批准: 审核: 编制:

中国水利水电第十一工程局有限公司红岭灌区工程东干I标施工项目部 2016年2月28日 一、工程概况 东灌区系统的控灌面积为131.84万亩,其中新增灌溉面积78.96万亩,保灌面积 40.57 万亩,改善灌溉面积 12.31 万亩。渠首由总干渠分水闸分水,设计流量为 40.0m3/s,加大流量 46 m3/s,灌溉定安、琼海、文昌和海口等 4 个市县的24 个镇与 8 个农场区域内的耕地。渠首设计水位为 125.537m,加大水位为125.778m,渠道底高程为 122.025m。 东干渠设 3 条分干渠、20 条支渠、2 条水库补水渠、1 个水库补水口及 15条干斗等 42 个分(补)水口,分别设置相应的分水闸控制流量,干渠全长145.93km。 本工程第1标段为桩号 0+000~27+551 段是连接 1#渡槽首端至 16#渡槽渐变段首端的渠段,全长 27.551km,设计流量为 40m3/s,加大流量 46.0m3/s。本段渠系共布置有渡槽14座、倒虹吸1座、暗涵1座、隧洞1座、节制泄水闸3座、分水闸 2 座等渠系建筑物。 二、控制网布设原则 2.1平面控制网原则 2.1.1各级GPS网一般逐级布设,在保证精度、密度等技术要求时可跨级布设。 2.1.2各级GPS网的布设应根据其布设目的、精度要求、卫星状况、接收机类型和数量、测区已有的资料、测区地形和交通状况以及作业效率等因素综合考虑,按照优化设计原则进行。 2.1.3各级GPS网最简异步观测环或附合路线的边数应不大于表1的规定。 表1 2.1.4各级GPS网点位应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。 2.1.5各级GPS网按观测方法可采用基于A级点、区域卫星连续运行基准站网、临时连续运行基准站网等的点观测模式,或以多个同步观测环为基本组成的

GPS工程控制网的优化设计

GPS工程控制网的优化设计 由于GPS测量精度高、效率高、灵活性强,其应用越来越广泛。文章结合实际工程,通过两次布设网点,并经过严密的计算。得出只要在建立GPS工程控制网时充分考虑布设条件及网形的几何结构,并严格按照规定观测,认真处理观测数据,最后所得的精度就一定有所提高。 标签:GPS工程控制网;网点布设;网形结构;精度提高 Abstract:Because of its high precision,high efficiency and flexibility,GPS has been used more and more widely. The paper is based on actual projects,written by setting up the net point twice which is set through accurate calculation. It is concluded that as long as the GPS engineering control network is established,the layout conditions and the geometric structure of the network are fully considered,the observation data are strictly observed,and the observation data are seriously handled,the accuracy of the final result is supposed to be improved. Keywords:GPS engineering control network;spot layout;mesh structure;accuracy improvement 1 研究目的和意义 自从全球定位系统(GPS)问世以来,已经在导航定位、授时、测速等方面发挥了巨大的作用,尤其是GPS技术在测量上的广泛应用,使测量技术发生了一次大的革命。使用GPS技术布设控制网已是国内采用的主要手段之一,GPS 控制网可大致分为2类:一类是国家或区域性的高精度的GPS控制网;另一类是局部性的GPS控制网,它包括城市或矿区控制网以及各类工程控制网。 与传统方法相比,GPS控制网不论是在布网方案,还是在平差的数学模型方面都有许多不同之处。因此,研究如何根据GPS原理和作业特点制定GPS的布网方案,对减少外业观测劳动强度、提高观测质量和成果的精度等具有重大的意义。 2 工程概况 本文涉及的工程是某镇农业综合治理测量项目。测区占地面积约 3.2km2,由于已知控制点距离项目区较远,测区通视困难,决定采用GPS控制测量。为了体现控制网点的布设对精度的影响,本项目分别进行了两次测量,通过对两次测量进行比较,从而得出在布设GPS控制网时应注意的一些事项。 3 GPS工程控制网布设中点位的选择 GPS工程控制网的布设原则上和大地控制网的布设是一致的,但也有区别。

防尘网工程施工设计方案

一.工程概况 本工程为永城煤电控股集团热电厂灰场防风抑尘工程,工程位于电厂院,本工程由灰场配电室、灰场防风抑尘网、储灰场及场运输道路喷洒降尘系统组成。 配电室长度4.8米,宽度3.9米,高度为4米,地面以下基础为钢筋混凝土条形基础,基础上部为砖混结构,屋面为钢筋混凝土现浇屋面。 防风抑尘网总长度661米,防尘网钢架及网总高度12米,基础为钢筋混凝土独立基础,立面安装挡风板,挡风板形式为三峰开孔镀锌钢板,峰高75mm,板宽810mm板材厚度为1mm,开孔率大于35%。独立基础上部设立两个基础柱用来安装挡风抑尘墙钢桁架,基础柱截面尺寸为450㎜×450㎜,基础混凝土强度为C30混凝土,基础垫层混凝土强度等级C15,基础底面标高为-2m。基础上部为门式钢结构,两边为直径114*4mm及152*5.5mm 厚钢管柱,钢柱中间距为2米,基础与柱连接为预埋板地锚螺栓连接。 储灰场及场运输道路喷洒降尘系统又分部喷洒降尘系统和道路喷洒降尘系统两部分,两部分不同时工作。本系统所用管道均为外热镀锌钢管,钢管分明装和地埋两种安装方式。 二.施工目标 为确保安全生产和工程施工质量,我们科学地组织土建、安装工程的交叉作业,精心施工,严格履行合同,确保实现如下目标:(一)成本目标:加强成本控制,注意节约,实现保本微利。 (二)质量目标:合格标准争达优良。 (三)工期目标:计划开工时间年月日,竣工时间年月日,工程历时天。

(四)安全施工目标:确保施工安全,做到无工伤、无事故,千人负伤率为0。 (五)文明施工目标:确保文明施工,达到综合考评优良标准。 三.施工管理及部署 (一)施工管理 本工程按项目法组织施工,实行项目经理终身责任制。由施工过城郊选煤厂挡风抑尘墙同样工程的庆功任经理目负责人,梁心想任项目技术负责人。我项目部将该工程列为重点项目,组织精兵强将,高效善战人员组成项目管理班子,投入精良的施工装备,采用先进的工艺技术,建立完善的各种保证体系,充分发挥项目部的主观能动性。 (二)施工部署 为做到科学管理,均衡施工,保证工程质量和施工进度,我们根据现场实际情况,针对不同情况进行施工部署。 (三)主要施工机械计划主要施工机械计划表

控制网优化设计复习题

1 GPS卫星定位的基本原理 GPS卫星定位的基本原理,就是把卫星视为“飞行”的控制点,在已知其瞬时坐标的条件下,以GPS卫星和用户接收机天线之间的距离为观测量,进行空间距离后方交会,从而确定用户接收机天线所处的位置。 2 在进行载波相位定位时,在不同观测时段,载波可以分别划分为那几个阶段 3 坐标系之间的坐标转换过程 举例:WGS—84大地坐标系至80平面直角坐标系: 方法一:先将WGS—84大地坐标系转换成WGS—84空间直角坐标系,再将WGS —84大地坐标系,利用七参数(三个平移参数,三个旋转参数,一个尺度变换参数)转变成80空间直角坐标系,在将80空间直角坐标系转换成80大地坐标系,通过高斯投影,输入相应中央子午线经度L0,将其转换成80平面直角坐标系。 方法二; 通过高斯投影,输入相应中央子午线经度L0,先将WGS—84大地坐标系转换成WGS—84平面直角坐标系,再利用四参数(两个平移参数,一个旋转参数,一个缩放参数)将WGS—84平面直角坐标系转化成80平面直角坐标系。 4 GPS网络数据处理的基本过程 设置参数,选择椭球,导入数据,数据修正,基线解算,检核基线质量,无约束平差,无约束平差质量检核,约束平差(改变坐标基准,输入控制点),质量检核,导出数据 5 GPS控制网优化设计的分类处理方法 GPS控制网优化设可以参照传统控制网优化设计进行分类处理: 零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确定最优坐标系统的优化设计。对于区域GPS网来说,主要确定控制网的投影面和投影带,一般要考虑现有坐标系统的利用及其两种坐标系统的转换。 一类设计:即控制网图形设计,是在约定网的精度和观测方案的情况下,求得最佳点位的优化设计。研究表明,尽管GPS对网形设计要求不十分严格,但是网形仍然影响着最后成果的精度。GPS网图形设计主要考虑连接方式:即边连接,点连接,重复设站比率,重测基线比率等。 二类设计:即观测方案的最佳选择。选择观测方案主要反映在选星计划,行车路线,观测时间和数据处理方法等内容。 三类设计:用GPS改造现有控制网的最优设计。主要考虑在什么地方加测GPS基线向量,加则多少。在设计时主要计算各种方案的经费、精度和可靠性。 6 GPS网络数据处理精度控制指标 一基本精度指标:各级GPS网测量精度用相邻点弦长标准差 二基线解算质量控制指标:1 基线本身限制, 2 网限制:(1)同一时段观测值的数据剔除率应小于10%。

无线网络工程施工管理和技术方案设计说明

无线网络工程施工管理及技术方案

1.工程概况 本工程施工项目包括:线路安装、设备安装、设备调试。该工程首先要充分了解大楼系统结构,系统安装连接,保证不破坏原有装修,整体性能优良,安装工艺合理,使用操作灵活高效;本工程因使用环境要求严格,因而对其工程施工质量较高的要求,工程质量应以达到优良质量水平为目标,在计划编制、技术应用、施工机具、劳动力安排、质量监控等方面,需要通过科学管理,精心组织,周密安排,优化资源搭配,采取有效措施保证工程萁和质量,让业主得到最优的施工技术,最短的施工工程工期,最好的工程质量和最高的社会效益,短平快志完成任务。 工程实施计划 1.1.工程组织结构 无线网络的建设是一项系统工程,不仅仅是无线网络的顺利搭建,还包含和第三方的主机、操作系统、网络设备、各种应用软件等的联调,为了保障工程的进度和质量,保障“*********”无线网络项目的顺利完成,也为了使用户有效管理和维护软、硬件系统,我们建议双方成立一个项目实施小组,包括项目经理、技术经理、供应链经理、客户经理、实施工程师、研发协调经理、客户代表,共同完成这一无线网络工程。双方分别委派负责人负责本工程项目总体规划,统筹制订工作计划、协调工作步骤和节奏及有关在实施过程中和调试过程中重大事件的决策,对工程进行全面监控

和管理。 具体工作职责如下: :**** 项目职务:项目经理 公司职务:技术总监 项目职责:项目的总体协调与负责,公司工程人员的调配。 :*****项目职务:客户经理 公司职务:销售经理 项目职责:制定该网络工程项目商务实施方案,跟踪项目的执行情况,检查项目的执行质量,负责与用户的协调工作。 :****项目职务:技术经理 公司职务:售前部经理 项目职责:该项目的总体技术负责,同时负责该项目环境收集、技术方案的设计与编写,实施目标咨询等。 :*** *** ***** ***项目职务:实施工程师 项目职责:负责项目设备及软件安装、调试、割接、测试、验收、售后服务等管理及技术服务工作,负责技术文档资料的编制与整理。 1.2.项目工程进度列表

最新工程测量 课程设计 控制网优化设计

工程测量课程设计控制网优化设计

工程控制网优化设计 —科傻软件的使用分析 作者:王震阳 20094176 指导教师:吴兆福 专业名称:测绘工程09-1班 2020年11月23日

一、可傻软件介绍 (3) 二、兼容的数据格式 (4) 三、导入观测数据 (18) 四、绘制沉降分析图 (20) 五、设置线条颜色 (30) 六、设置阈值 (31) 七、生成数据报告 (32) 八、生成Excel报表 (37) 九、保存与打开 (40) 十、关注、留言 (41) 十一、附录:部分功能实现的代码 (42)

一、可傻软件介绍 科傻系统(COSA)是“地面测量工程控制与施工测量内外业一体化和数据处理自动化系统”的简称,包括COSAWIN和COSA-HC两个子系统。COSAWIN在IBM 兼容机上运行。 COSAWIN系统除具有概算、平差、精度评定及成果输出等功能外,还提供了许多实用的功能,如网图显绘、粗差剔除、方差分量估计、贯通误差影响值计算及闭合差计算等。 该系统不同于其它现有控制网平差系统的最大特点是自动化程度高,通用性强,处理速度快,解算容量大。其自动化表现在通过和COSA子系统COSA-HC相配合,可以做到由外业数据采集、检查到内业概算、平差和成果报表输出的自动化数据处理流程;其通用性表现在对控制网的网形、等级和网点编号没有任何限制,可以处理任意结构的水准网和平面网,无须给出冗余的附加信息;其解算速度快,解算容量大表现在采用稀疏矩阵压缩存储、网点优化排序和虚拟内存等技术,在主频166MHZ的586微机上,解算500个点的平面和水准控制网不到1分钟;在具有20MB剩余硬盘空间的微机上,可以解算多达5000个点的平面控制网。图1(程序主界面)

控制网优化设计

控制网优化设计 一、GPS 卫星定位的基本原理 GPS 定位时,把卫星看成是“飞行”的已知控制点,利用测量的距离进行空间后方交会,便得到接收机的位置。卫星的瞬时坐标可以利用卫星的轨道参数计算。 二、在进行载波相位观测时,在不同观测时段,载波可以划分为哪几部分? 首次观测值0 0)(~φ?Fr = 后继量测值)()(~φφ? Fr Int += 通常表示为)()(~0 0φφ?Fr Int N N ++=+=Φ 三、坐标系之间的转换过程 四、GPS 网数据处理的基本过程 1、数据传输 2、建立坐标系统 1)打开TGO 软件,功能—Coordinate System Manager ,进入坐标系统管理器。 2)增加椭球,输入椭球名称、长半轴、扁率 3)增加基准转换(Molodensky ),创建新的基准转换组。 4)增加坐标系统组 5)选择投影方式:横轴墨卡托投影 6)文件保存退出 3 、新建项目 1)新建项目 2)选择模板(Metric 米制单位模板). 3)改变坐标系统,选择需要的坐标系统。 4、导入静态观测数据(*.dat 或RINEX)数据 1)文件/导入 2)修改测站名,天线高度,天线类型,测量方法。 5、处理Timeline 6、处理GPS 基线 7、GPS 网的无约束平差 1)平差—基准—WGS-84,进行无约束平差。 2)查看网平差报告。看迭代平差是否通过;如果不通过,选择“交替的”加权策略 3)再次进行平差,直到通过为止。 8、网的约束平差 1) 平差—基准—当地投影基准。 2)然后点击观测值,加载水准面模型,输入已知点坐标。 3)点击平差,进行网的约束平差。 9、成果输出 五、GPS 控制网优化设计的分类处理方法 零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确

施工测量控制网技术设计方案

技术资料 附件2 向家坝水电站 引水发电系统土建及金属结构安装工程 (合同编号:XJB/0184) 测量控制网技术方案 水电七局向家坝项目部 二零零六年五月九日

向家坝水电站引水发电系统控制网技术方案 一、工程概述 1、1向家坝水电站引水发电系统工程简介 向家坝水电站是金沙江梯级开发中的最后一个梯级,位于四川省 与云南省交界处的金沙江下游河段,坝址左岸下距四川省宜宾县的安边镇4km 宜宾市33km右岸下距云南省的水富县城1.5km。工程开发任务以发电为主,同时改善航运条件,兼顾防洪、灌溉,并具有拦沙和对溪洛渡水电站进行反调节等综合作用。工程枢纽建筑物主要由混凝土重力挡水坝、左岸坝后厂房、右岸地下引水发电系统及左岸河中垂直升船机等组成。 本标的主要内容为右岸引水发电系统工程、右岸EL288.00m?384.00m坝基开挖与支护工程、排沙洞工程、施工支洞工程、右岸310m 混凝土生产系统工程的设计、建设与运行等。 本合同工程计划于2006年4月1日开工,要求2012年6月30 日全部完工。本合同主要工程量:土石方明挖4645075帛,土石方填筑230997用,石方洞挖1639190帛,混凝土970531^钢筋制安62030.06t.喷混凝土44867斥。 二、控制网的设计依据 2、1设计依据 2、1、1、2003年1月9日发布的《水电水利工程施工测量规范》 (DL/T5173-2003)。

2、1、2、中国长江三峡工程开发总公司向家坝工程建设部颁发 的《向家坝工程施工测量管理细则》。 2、1、 3、XJB/0184标段有关施工设计图。 2、1、4、施工组织设计 2、1、5、《水利水电工程测量规范》 2、1、6、国家技术监督部门颁发的有关测量规范 三、施工控制网的布设和控制点的埋设 3、1施工控制网的布设 向家坝水电站引水发电系统测量控制网拟在三峡总公司向家坝工程建设部测量中心提供的首级控制网和加密控制网的基础上布设适合于本标段施工的三等加密控制网。共布设:三条附合导线,一条闭合导线,排沙洞附合导线。平面控制按照三等级布设,高程按四等水准测量布设;困难条件下也可以按四等级光电三角高程测距布设。其余工作面可以从此五条主干导线上引支导线进行施工放样,但尽可 能附合在主干导线上。 目前本标段的地面施工测量控制网点密度已经基本满足前期施工的需要。考虑到工程质量和以后施工放样的方便,对于引水系统工程中的进水口隧洞部分和厂房系统部分,要在业主提供三角基准网点和水准基准网点的基础上进行加密,加密的控制网的工作基点(永久工作基点)应在进水口和出水口各布设一个单三角,中间用导线连接。采用三等精度,以边角网观测方法进行加密,每个点应进行三维坐标的观测。高程工作基点在进水口和出水口各布设一

施工控制网的优化设计_顾利亚

施工控制网的优化设计 顾利亚 岑敏仪 (西南交通大学 测量工程系 成都 610031) 【摘 要】 根据施工控制网的特点,提出了用解析法进行控制网优化设计的新方法,介绍了在平 均可靠率和精度的约束下使用0-1规划进行网形设计的算法。实例验证,精度函数增量的“A ”标准和“E ” 标准均可作为控制网图形设计的目标函数。【关键词】 优化设计;0-1规划;测量控制网【分类号】 T P 391.41;T U 198 根据作业的过程,通常将施工控制网的优化设计划分为四个阶段,即:零类设计、一类设计、二类设计和三类设计。零类设计是控制网参考系或基准的设计问题,它包括数据处理的方法和坐标系的选择,不同用途的控制网选择不同的数据处理方法。由于施工控制网要考虑相对点位的精度问题,因此零类设计通常采用传统的习惯做法。一类设计是控制网的网形设计问题,是在预定测量精度的前提下,确定最佳的点位概略坐标和联系方式。控制点的设计位置,主要受施工放样的需要及地形和设备条件的制约,有些因素目前还很难用数学的方式表示。而控制网的图形(即控制点之间的联系方式)对网的图形强度影响较大,它是一类设计的主要研究内容,亦是本文的核心内容。二类设计是控制网在图形固定的前提下,寻求最佳的精度配置,它是控制网优化设计的热点问题。三类设计则是对已有控制网的改善,它一般要包含零类、一类和二类设计。 施工控制网优化设计的作用,是使所求解的控制网的图形和观测纲要在高精度、高可靠性及低成本意义上为最优。本文针对施工控制网设计的特点,在其图形设计中建立求解模型,使求出的图形和观测纲要同时满足预先规定的优化设计指标。 1 优化设计指标 控制网的优化设计指标包括精度、可靠性和经济费用指标。精度指标一般通过精度约束函数来满足。可靠性分为内部可靠性和外部可靠性,常用的指标有:观测量的多余观测分量、可发现粗差的下界值、外部可靠性尺度等。这些指标均对某些特定的条件有显著作用。根据施工控制网的特点,其可靠性指标可用平均可靠率来表示[1] r 0=r /n (1) 式中,r 为多余观测数,n 为总观测数。 控制网的费用标准一般可用下式表示 收稿日期:1996-10-08 顾利亚:女,1956年生,讲师。 第32卷第2期1997年4月 西南交通大学学报 JOU RNAL OF SOU THWEST JIAOT ONG UNIVERSITY Vo l.32N o.2A pr. 1997

工程控制网模拟计算分析与优化设计

一、目的与要求 1.通过实践环节,培养运用本课程基本理论知识的能力,学会分析解决工程技术问题;加深对课程理论的理解和应用,提高工程测量现场服务的技能。 2.掌握工程测量地面控制网模拟设计计算的基本理论和方法,对附合导线进行设计、模拟计算、统计分析和假设检验,对结果进行分析,发现附合导线存在的问题,提出相应得对策,通过与边角网模拟计算结果的比较,加深对地面控制网的精度和可靠性这两个重要质量指标的理解。 3.掌握基于观测值可靠性理论的控制网优化设计方法,能根据工程要求独立布设地面控制网并进行网的模拟优化设计计算。 4.掌握COSA系列软件的CODAPS(测量控制网数据处理通用软件包)的安装、使用及具体应用。 二、内容与步骤 2.1附合导线模拟计算 2.1.1模拟网的基本信息 网类型和点数:附合导线、全边角网,9个控制点。 网的基准:附合导线为4个已知点、全边角网取1个已知点和1个已知方向。 已知点坐标:自定 待定点近似坐标:自定 边长:全边角网1000 ~ 1500m 左右,附合导线 400~ 500m 2.2计算步骤 1.人工生成模拟观测方案设计文件“导线数据.FA2”在主菜单“新建”下输入等边直伸导线的模拟观测数据,格式按照 COSA2 的规定输入,另存为“导线数据.FA2”。文件如下: 1.8,3,2 D1,0,1261.778,671.640

D2,0,997.212,1086.813 D3,1,1242.007,1542.800 D4,1,1027.823,2001.479 D5,1,1258.483,2496.456 D6,1,1071.641,2921.460 D7,1,1226.964,3367.157 D8,0,1031.118,3795.525 D9,0,1114.036,4306.353 D2 L:D1,D3 S:D3 ………… 2.主菜单“设计”栏的下拉菜单,有三项子菜单项,单击“生成正态标准随机数”,将弹出一对话框,要求输入生成随机数的相关参数。第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数;第二个参数即“随机数个数”只能选200,400或500,即最多可生成500个服从(0,1)分布的正态随机数。系统对所生成的随机数按组进行检验,检验通过就存放在RANDOM.DAT文件中。该文件中的随机数用于网的模拟计算时生成在给定精度下的模拟观测值。 3.生成平面网初始观测值文件“导线数据.IN2”单击“生成初始观测值文件”,选择“平面网”,在弹出的对话框中选择文件“导线数据.FA2”,则自动生成初始观测值文件“导线数据.IN2”。如下: 1.800,3.000, 2.000,1 D1, 1261.778000, 671.640000 D2, 997.212000, 1086.813000 D8, 1031.118000, 3795.525000 D9, 1114.036000, 4306.353000 D2 D1,L,0.0000 D3,L, 119.155092 D3,S, 517.543047 D3 D2,L,0.0000 D4,L, 233.153520 D2,S, 517.537413 D4,S, 506.224731

GPS控制网的优化设计

徐州师范大学本科毕业设计(论文)(2007届) 题目: GPS控制网的优化设计 英文题目: Optimization design of GPS control network 作者: xianrenqiu_1(请来信说明姓名) 1 GPS的基础知识 GPS是全球定位系统(Global Positioning System)的英文缩写,它是随着现代化科学技术的发展而建立的第一代精密卫星定位系统。本章主要介绍GPS卫星定位系统发展的概况、特点、以及GPS定位技术的应用前景。 1.1 全球定位技术的概况 全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS 以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。[2]全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。 按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。 地面监控部分包括四个监控间、一个上行注入站和一个主控站。监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。主控站设在范登堡空军基地。它对地面监控部实行全面控制。主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这

施工控制网技术设计书

水利职业技术学院新校区 施工控制网及施工测量 技术设计书 批准单位:申报单位 审批意见:总工: 2011年月日 主要设计人: 2011年月日 审批人: 目录 一、测区概况 二、设计及作业依据 三、已有资料情况 四、平面坐标系统、高程系统和基本等高距 五、各等级控制点埋、密度

六、基础控制测量 七、图根控制测量 八、保证质量主要措施和要求 九、成果资料的整理与上交 为提高工程测量技术专业大三学生综合运用测量知识、测量仪器、测量规的能力,在本学期安排本实习,主要容有:测区踏勘、施工控制网的布设与施测等实习任务。 一、测区概况 本工程区位于省崇州市羊马镇永和大道6号占地面积854.3余亩,建筑面积261490平米,测区建筑及草坪较多,地势较为平坦,地区大气能见度良好,交通便利,给测量带来便。测区气候较好,照射充足,年降水量不多,大多集中在春夏两季,全年平均气温已七、八月份最高。测区的北门外便是永和大道。

二、设计及作业依据 1.GJJ8—99《城市测量规》 2.GB12898—91《三、四等水准测量规》 3.CJJ73—97《全球定位系统城市测量技术规程》 三、已有资料情况 1、水院新校区1:1000地形图; 2、水院新校区控制点成果表; 3、水院新校区控制点点之记。 4、水院新校区规划图 四、平面坐标系统、高程系统和基本等高距 1.平面坐标采用1954年北京坐标系。 2.高程系统采用1985高程基准。 3.基本等高距,1:500地形图为0.5m, 1:2000地形图为1m。 五、各等级控制点埋、密度 1.由于学院灾后重建不久,对于新校区出于保护以及满足教学要求,在造标埋时应注意:选点应该尽量在稳定坚实的混凝土路面上,做到不影响行人车辆以及校园美观。同时兼顾点位的长期保存性,以

推荐-苗家坝施工测量控制网技术设计 精品 精品

白龙江苗家坝水电站 施工测量控制网技术设计 1.工程规模和测区概况 白龙江苗家坝水电站位于甘肃省文县境内,距下游已建成的碧口水电站31.5km。苗家坝水电站工程的主要任务是发电。预可研初拟的低坝方案正常蓄水位为800m,共安装三台90MW水轮发电机组,总装机容量270MW,设计年发电量9.3亿k W·h,水库总库容2.5亿m3。工程规模属二等大(2)型。枢纽由拦河砼面板堆石坝(最大坝高114m,趾板置于覆盖层上)、左岸排沙泄洪洞与导流洞采用“龙抬头”形式结合的溢洪洞、引水发电系统及岸边式厂房等组成。 苗家坝水电站工程区地理坐标为:东经105°02′、北纬32°54′,工程范围内现有一条简易公路沿白龙江左岸可以到达施工区,白龙江右岸只有人行小路可以通行,整个工程施工区内没有交通桥,总体交通极为不便。2.平面控制网和高程控制网的精度指标 2.1控制网测量的作业依据 根据苗家坝水电站的地形、地貌和主要水工建筑物的各种特征(坝体类型、建材类别);根据《关于苗家坝水电站变形网及水准网设计有关要求的通知》,依据以下水电测量规程规范进行作业: 《水利水电工程测量规范》(SL 197—97) 《水利水电工程施工测量规范》(SL 52—93) 《国家一、二等水准测量规范》(GB 12897—91) 《工程测量规范》(GB50026—93)

《国家三角测量规范》(GB/T17942) 《混凝土坝安全监测技术规范》(DL/T5178—20XX) 2.2 控制网点的精度指标 根据苗家坝水电站的整体规模,以及其地形情况和施工控制网需控制的范围,为保证该工程枢纽施工的整体精度,依据规范中的有关规定,拟定该控制网的精度指标见表一。 拟定的控制网精度指标 3 平面控制网 3.1 平面控制网的选点 平面控制网点布设的位置和密度依据能够满足该工程施工测量工作的需要,并顾及所构成的网形应有足够的几何强度,宜采用边角网一次布设,网中图形不宜过于复杂,但应具有足够的多于观测条件,网边倾角要小,并高出地面或障碍物1.5m以上,并结合该电站工程施工区的地形地貌,在室内图上技术设计的基础上,进行野外实地踏勘比较,最终选定点位。所选点位既要考虑到地基的稳定性,又要便于埋石和施工测量工作的实施,且能长期保存、使用。 3.2 平面控制网点的造埋 根据国家《水利水电施工测量规范》中有关平面控制网点观测墩建造规格和埋设深度的规定,结合各点位处的地质条件及当地的气候情况,在参考国内同类型观测墩建造规格的基础上,我们拟定以下埋设规格,详见附图2《施工测量控制网平面桩点结构图》。

浅谈施工控制网的优化设计

浅谈施工控制网的优化设计 摘要:在工程施工阶段,施工控制网能有效保证各建筑物轴线之间的相对关系、相对稳定及相对精度,对工程的定线放样起控制作用,因此施工控制网的精度显得异常重要。为使施工控制网的作用发挥到最大,施工控制网的优化设计尤为重要,它能为工程建设节约成本,提高效率。因此通过运用合理技术手段更加完善的优化施工控制网成为我们共同努力的目标。 关键词:施工控制网、精度、设计、优化、 跟据作业的过程,通常将施工控制网的优化设计划分为四个阶段,即:零类设计,一类设计、二类设计和三类设计。零类设计是控制网参考系或基准的设计问题,它包括数据处理的方法和坐标系的选择,不同用途的控制网选择不同的数据处理方法。由于施工控制网要考虑相对点位的精度问题,因此零类设计通常采用传统的习惯做法。一类设计是控制网的网形设计问题,是在预定测量精度的前提下,确定最佳的点位概略坐标和联系方式控制点的设计位置,主要受施工放样的需要及地形和设备条件的制约,有些因素目前还很难用数学的方式表示。而控制网的图形(即控制点之间的联系方式)对网的图形强度影响较大,它是一类设计的主要研究内容。二类设计是控制网在图形固定的前提下,寻求最佳的精度配置,它是控制网优化设计的热点问题。三类设计则是对已有控制网的改善,它一般要包含零类、一类和二类设计。 施工控制网优化设计的作用,是使所求解的控制网的图形和观测纲要在高精度、高可靠性及低成本意义上为最优。针对施工控制网设计的特点,求出图形和观测纲要同时满足预先规定的优化设计指标。 一、优化设计指标 控制网的优化设计指标包括精度、可靠性和经济费用指标。精度指标一般通过精度约束函数来满足。可靠性分为内部可靠性和外部可靠性,常用的指标有:观测量的多余观测分量、可发现粗差的下界值、外部可靠性尺度等。控制网最终的优化结果,是各个阶段优化设计的总和。因此,在各个阶段的优化设计上不必强求同时满足精度、可靠性和费用指标,而最后的优化设计结果中达到这三项指标便可。因此,首先利用控制刚的完全观测图形,在一定的平均可靠率和精度约束下,解算出最佳的观测图形,然后在此图形设计的基础上求解满足精度约束条件、费用最省的观测方案,这样,分两步将控制网图形与观测纲要优化设计用解析法直接求解。 二、算例 有一座九孔三联连续粱的特夫桥粱,其控制同的完全观测图形如附图2-1所示。OD、BE为长约680m的基线边,完全观钡I量为28个,必要观测量为l5个。设放样桥墩的方向测设中误差为l0㎜。其控制网能满足相邻墩台和连续梁两端墩台同的距离中误差小于±l0㎜的精度要求,可求出满足精度要求的等精度

控制测量项目施工设计方案

控制测量项目施工设计方案 二〇一七年五月九日 目录

1 概述 (1) 1.1项目背景 (1) 1.2作业区自然环境 (1) 1.3项目内容及完成期限 (1) 1.4作业区点位示意图 (2) 2 资料来源 (2) 3 作业依据 (2) 4 测量指标 (3) 4.1、GNSS控制网对精度和密度 (3) 4.2、GNSS观测基本技术要求 (3) 4.3、四等水准测量的主要技术要求 (3) 5 软件和硬件配置 (4) 5.1硬件配置 (4) 5.2软件配置 (4) 6 施工流程 (5) 6.1、施工控制测量工艺流程图 (5) 6.2、GNSS控制网的布网形式 (6) 6.3、四等水准测量模式 (6) 6.4、选点基本原则 (6) 6.5、埋石基本原则 (7) 6.6、GNSS观测注意事项 (8) 6.7、四等水准观测注意事项 (8) 6.8、GNSS数据处理 (9) 6.9、GNSS数据平差计算 (9) 6.10、水准数据处理 (10) 6.11、水准数据平差计算 (10) 7工作进度 (16) 8人员安排 (16) 9质量保证措施 (17) 9.1、质量控制原则 (17) 9.2、质量检查内容 (17) 9.3、项目进度控制措施 (18) 9.4、生产安全保密保障措施 (18) 10提交成果 (18)

1 概述 1.1项目背景 开发区成立于1992年3月,2010年4月升级为国家级开发区。锦州滨海新区是辽宁沿海经济带开发的重点区域,由原经济技术开发区、龙栖湾新区、建业经济区整合而成。我院受***所托完成***控制测量项目,本项目的完成将推动滨海新区城市规划建设速度,为全区大力发展临港工业、为建设现代滨海新城增添了强大后劲。 1.2作业区自然环境 滨海新区坐落于锦州市的南部渤海辽东湾北岸,北连接松山新区,南拥滔滔渤海,东接凌海市,西邻葫芦岛市南票区高桥镇。地理坐标位于北纬40度48分、东京120度43分。滨海新区属暖温带半湿润气候,大气环流以西风带和副热带系统为主,为大陆性季风区。四季分明,降水集中、季风明显、风力较大。年平均气温为7.8~9.0℃,年无霜期为144~180天。年平均降水量为567毫米。 1.3项目内容及完成期限 在测区范围内拟布设7个三等GNSS控制点、8个四等GNSS控制点,平面控制网采用分级布网的方式进行三等、四等GNSS网的施测,高程控制网采用四等水准的测量方式。上述内容按合同(JKCG2017-C009)及[服务磋商]2017-C009规划局控制测量磋商文件要求(合同签订后30个日历日内完成设计内容;并验收合格视为

测量控制网的最优化设计问题及其实现

测量控制网的最优化设计问题及其实现 邓加娜 (西南电力设计院四川成都东风路十八号 610021) 摘要:本文简要介绍了测量控制网的最优化设计问题,阐述了确定必要观测的原则和最优地选取多余观测的方法,并结合实例,给出了具体实现方法。 关键词:测量控制网,最优化设计,GPS,必要观测,多余观测 1.优化设计的目的 随着市场经济和体制改革的深入,用户对测绘产品的要求已不仅仅停留在高质量、高速度上,同时要求更低的消耗,力求以最少的成本投入来获得给定精度的测绘产品,这种需求趋势在面向市场的招投标工程中体现得尤为显著。 如何对占测绘工程外业工作量1/3的控制网进行优化设计,使其既能满足用户的精度要求,又能使成本投入得到有效的控制,并力求最低消耗,以提高项目效益,是一个很值得研究、并具有实际利用价值的课题。它对合理地组织生产、降低观测成本、缩短项目工期、减少外业工作量和劳动强度、提高作业效率和经济效益等方面,均具有及其重要的普遍意义和长远利用价值。我们在若干工程中对此课题进行了研究和实践,取得了一些成效,给出了在计算机软件辅助下的解决方案和实现方法,在此提出,共业内同行商榷。 2.优化设计的分类 一般而言,测量控制网的优化设计问题分为两类:一类是在给定控制点精度要求的约束条件下(通常称为目标函数),力求使观测成本为最低,称为一类优化;二是在观测条件有限的约束条件下,力求使控制点精度为最高,称为二类优化。这里提及的观测条件是指人员设备的配置、测回数的多少、必要观测和多余观测的选择、最优权的配置等一切与测量控制网有关的支出,是取得满足给定精度的测绘产品所需的全部测量成本。显然,一类优化问题在控制工程成本中更具

矿大控制网技术设计书

工程测量控制网技术设计说明书 姓名: 学号: 班级: 指导教师:

灯湖矿区控制网设计书 一、灯湖矿区控制网设计任务通知书 XX测绘队: 矿区位于XX省XX煤田东北域。本矿区已列入国家经济建设计划,准备进行重点开发。根据建设计划,首先需施测80平方公里的1:2000地形图。图一为该矿区1:50000地形图,其中虚线范围为1:2000测图区。 为了加快建井速度,需在竖井间进行对向掘进,最大贯通距离为3km,矿井最大单翼长度5km,井深一般不超过800m。 为满足矿山设计、建井、生产三阶段测绘各种比例尺地形图、井巷贯通以及工业场地施工测量的需要,应在全矿区建立统一的具有足够精度密度的平面控制网与高程控制网。要求你队在任务通知书下达后一周内完成控制网技术设计,一月内完成建网任务。 XX省煤炭管理局年月日 二、测区概况简述 1.地理概况 本测区中心位置为。测区地面高程为+30~+244m。位于XX省XX县境内,属于华东丘陵地带,南部及中部为山地。其上林木繁茂,不利通视,其余为平原,密布村庄和厂矿,建筑群遍地,影响观测。灯湖位于测区东部,湖面开阔,中有大堤。 2.交通情况 测区内有铁路支线通过,公路四通八达,村间大道可行汽车,交通方便。 3.气候情况 测区地处华东近海地区,气候宜人。全年平均降雨量为1040mm,雨量集中于6、 7、8三个月份。全年平均气温+15℃,夏季气温较高,一般为30℃左右,冬季有雪, 但不寒冷,最低温度为-5℃,冻土线深度为0.1m。全年平均风力为2~3级,夏季略受台风影响。宜于野外作业时间为3~11月份,年平均作业时间利用率为21天/月。 4.居民及居民点 测区内地少人多,人口稠密,多为汉族,少数民族为回族。测量作业所需人力、物力、财料及食宿均可就地解决。 5.作业目的及任务范围 矿区位于XX市东北域,煤藏量为100亿吨。要求于2014年XX月之前,完成建网任务和提交1:2000和1∶1000地形图。在全矿区建立统一的具有足够精度密度的平面控制网与高程控制网。另外,为贯通工程需布设一个专用控制网,要求两近井点横向相对中误差小于30mm。矿区的测图总面积约为80km2。 三、已有测绘成果资料及其分析利用 1.三角网成果及其精度 测区内及附近有国家二等网点三个:玉山、太山、广具山。系1959年由XX测绘队施测,作业所依据的规范为《一、二、三、四等三角测量细则》(1958年)。三点标石保存完好。坐标系统为1954年北京坐标系,三度分带,中央子午线为11°。 该二等网的主要情况如下: (1)三角形(二等)平均边长8.3km。 (2)最小求距角42.1°。

相关文档
最新文档