焊接接头强度匹配和焊缝韧性指标综述.

焊接接头强度匹配和焊缝韧性指标综述.
焊接接头强度匹配和焊缝韧性指标综述.

焊接接头强度匹配和焊缝韧性指标综述

摘要:综述了焊接接头匹配的三种类型及其利弊。指出了对于强度较低的钢种,采用等强或超强匹配都是可以的,但对于高强度钢,超强匹配是不利的,等强匹配是可取的,若焊缝韧性明显降低,则采用低强匹配更为有利,它可以获得更大的韧性储备,改善抗断裂性能。关于焊缝韧性指标,根据使用的情况不同也有所不同。

1 焊接接头的强度匹配

长期以来,焊接结构的传统设计原则基本上是强度设计。在实际的焊接结构中,焊缝与母材在强度上的配合关系有三种:焊缝强度等于母材(等强匹配),焊缝强度超出母材(超强匹配,也叫高强匹配)及焊缝强度低于母材(低强匹配)。从结构的安全可靠性考虑,一般都要求焊缝强度至少与母材强度相等,即所谓“等强”设计原则。但实际生产中,多数是按照熔敷金属强度来选择焊接材料,而熔敷金属强度并非是实际的焊缝强度。熔敷金属不等同于焊缝金属,特别是低合金高强度钢用焊接材料,其焊缝金属的强度往往比熔敷金属的强度高出许多。所以,就会出现名义“等强”而实际“超强”的结果。超强匹配是否一定安全可靠,认识上并不一致,并且有所质疑。九江长江大桥设计中就限制焊缝的“超强值”不大于98MPa;美国的学者Pellini则提出,为了达到保守的结构完整性目标,可采用在强度方面与母材相当的焊缝或比母材低137MPa的焊缝(即低强匹配);根据日本学者佑藤邦彦等的研究结果,低强匹配也是可行的,并已在工程上得到应用。但张玉凤等人的研究指出〔3〕,超强匹配应该是有利的。显然,涉及焊接结构安全可靠的有关焊缝强度匹配的设计原则,还缺乏充分的理论和实践的依据,未有统一的认识。为了确定焊接接头更合理的设计原则和为正确选用焊接材料提供依据,清华大学陈伯蠡教授等人承接了国家自然科学基金研究项目“高强钢焊缝强韧性匹配理论研究”。课题的研究内容有:490MPa级低屈强比高强钢接头的断裂强度,690~780MPa级高屈强比高强钢接头的断裂强度,无缺口焊接接头的抗拉强度,深缺口试样缺口顶端的变形行为,焊接接头的NDT试验等。大量试验结果表明:

(1)对于抗拉强度490MPa级的低屈强比高强钢,选用具备一定韧性而适当超强的焊接材料是有利的。如果综合焊接工艺性和使用适应性等因素,选用具备一定韧性而实际“等强”的焊接材料应更为合理。该类钢焊接接头的断裂强度和断裂行为取决于焊接材料的强度和韧塑性的综合作用。因此,仅考虑强度而不考虑韧性进行的焊接结构设计,并不能可靠地保证其使用的安全性。

(2)对于抗拉强度690~780MPa级的高屈强比高强钢,其焊接接头的断裂性能不仅与焊缝的强度、韧性和塑性有关,而且受焊接接头的不均质性所制约,焊缝过分超强或过分低强均不理想,而接近等强匹配的接头具有最佳的断裂性能,按照实际等强原则设计焊接接头是合理的。因此,焊缝强度应有上限和下限的限定。

(3)抗拉强度匹配系数(Sγ)即焊接材料的熔敷金属抗拉强度与母材抗拉强度之比值,它可以反映接头力学性能的不均质性。试验结果表明,当Sγ≥0.9时,可以认为焊接接头强度很接近母材强度。因此,生产实践中采用比母材强度降低10%的焊接材料施焊,是可以保证接头等强度设计要求的。当Sγ≥0.86时,接头强度可达母材强度的95%以上。这是因为强度较高的母材对焊缝金属产生拘束作用,使焊缝的强度得到提高。

(4)母材的屈强比对焊接接头的断裂行为有重要的影响,母材屈强比低的抗脆断能力较母材屈强比高的接头抗脆断能力更好。这说明母材的塑性储备对接头的抗脆断性能亦有较大的影响。

(5)焊缝金属的变形行为受到焊缝与母材力学性能匹配情况的影响。在相同拉伸应力下,低屈强比钢的超强匹配接头的焊缝应变较大,高屈强比钢的低强匹配接头的焊缝应变较小。焊接接头的裂纹张开位移(COD值)也呈现相同的趋势,即低屈强比钢的超强匹配接头具有裂纹顶端处易于屈服且裂纹顶端变形量更大的优势。

(6)焊接接头的抗脆断性能与接头力学性能的不均质性有很大关系,它不仅决定于焊缝的强度,而且受焊缝的韧性和塑性所制约。焊接材料的选择不仅要保证焊缝具有适宜的强度,更要保证焊缝具有足够高的韧性和塑性,即要控制好焊缝的强韧性匹配。

对于强度级别更高的钢种,要使焊缝金属与母材达到等强匹配则存在很大的技术难度,既使焊缝强度达到了等强,却使焊缝的塑性、韧性降低到了不可接受的程度;抗裂性能也是显著下降,为了防止出现焊接裂纹,施工条件要求极为严格,施工成本大大提高。为了避免这种只追求强度而损害结构整体性能,提高施工上的可靠性,不得不把强度降下来,采用低强匹配方案。如日本的潜艇用钢NS110,它的屈服强度≥1098MPa;而与之配套的焊条和气保焊焊丝的熔敷金属屈服强度则要求

≥940MPa,其屈服强度匹配系数为0.85。采用低强匹配的焊接材料后,焊缝的含碳量及碳当量都可以降低,这将使焊缝的塑韧性得到提高,抗裂性能得到改善,给焊接施工带来了方便,降低了施工方面的成本。

另外,日本学者佐滕邦彦的一些试验数据表明〔2〕,只要焊缝金属的强度不低于母材强度的80%,仍可保证接头与母材等强,但是低强焊缝的接头整体伸长率要低一些。在疲劳载荷作用下,如不削除焊缝的余高,疲劳裂纹将产生在熔合区;但若削除焊缝的余高,疲劳裂纹将产生在低强度的焊缝之中。因此,关于低强焊缝的运用,应当结合具体条件进行一些试验工作为宜。

2 焊缝的韧性指标问题

2.1 焊接接头强度匹配对焊缝韧性的要求

很多焊接结构的破坏事故是典型的低应力下发生的脆性断裂,断前在表观上几乎不发生明显的塑性变形。工程上的脆断事故,总是从存在宏观缺陷或裂纹作为“源”而开始的,它在远低于屈服应力的条件下,由于疲劳或应力腐蚀等原因而逐渐扩展,最后导致突然地低应力断裂。只要存在裂纹源,裂纹的扩展总是沿着韧性最差的部位进行。从这一点考虑,总希望焊接接头的最薄弱部位也要具有足够的韧性储备。陈伯蠡教授等人在研究高强钢焊缝强韧性匹配时得出,等强或接近等强匹配时所用的焊材,焊接接头最容易获得最优异的抗脆断性能。这是因为等强匹配时所用的焊材,不需要将其韧性提高到优于低强或超强匹配时所要求的韧性。而如欲使低强匹配或超强匹配的断裂达到等强匹配的抗断裂性效果,则要进一步改善焊材的韧性水平。降低焊材强度时,容易改善其韧性;而提高焊材强度时,大幅度地提高其韧性则有相当难度。由此可知,低强匹配比超强匹配更容易改善接头的抗脆断性能。故从抗脆性断裂方面考虑,超强匹配未必有利,在一定条件下,低强匹配反而是可行的。对于低强度钢,无论是母材还是焊缝都有较高的韧性储备,所以按等强原则选用焊接材料时,既可保证强度要求,也不会损害焊缝韧性。但对于高强钢,特别是超高强钢,其配套用的焊接材料韧性储备是不高的,此时如仍要求焊缝与母材等强,则焊缝的韧性水平就有可能降低到安全限以下,有可能出现因其韧性不足而引起脆断。此时,如适当降低焊缝强度而提高其韧性,将会更为有利。已有这方面的事故教训,某厂家容量10000t的油罐脆性破坏时,其强度和伸长率都是合格的,脆断主要是由于韧性不足引起的。

性的相关指标

目前采用最广泛的韧性判剧是V形缺口的夏比(Charpy)试样冲击吸收功,它是根据20世纪40年代初美国船体破坏事故的分析经验得出来的〔5〕。当时的船体均采用低碳沸腾钢,在事故温度下试验时,船体钢未断裂部位的冲击吸收功平均为21 J(15 ft-1 h),因此,认为可采用这一数值作为判剧来确定临界温度,即所谓VTr15判剧,后来又发展为平均冲击吸收功不小于27 J(20 fr-1b),且允许有一个试样低于此值,但不得低于21 J。1954年又出现了油船断为两半的事故,该船体钢为细晶粒钢或低合金钢,经英国劳埃德船级社调查分析得出,这类钢的V形缺口冲击吸收功低于47 J(35 fr-1b)时易于发生脆性断裂,因此提议以47 J冲击吸收功作为最低保证值。可见,在同样的使用条件和韧性下,高强度钢比低强度钢更易于断裂。为安全考虑,对于钢材冲击吸收功的要求,应随其强度的提高而作适当的提高。1978年挪威船级社在采油平台结构入级规范中给出了冲击吸收功要求值与屈服强度最低值之间的关系函数,写为数学公式即:

VET≥0.1σγ

(1)

式中VET──在规定试验温度时的冲击吸收功,J

σγ──最低屈服强度保证值,MPa。

1980年英国颁布的桥梁规程BS-5400中,不仅将焊缝韧性要求与屈服强度联系起来,而且还考虑了板厚δ的影响,其表达式为:

σγδ

VET≥─── ×

──

(2)

355 2

另有报导,对于大多数大型复杂结构,如桥梁、船舶、压力容器等,根据断裂力学原则,要求其结构材料的“韧强比”(RA)满足如下要求其中(韧性值为冲击吸收功,J,强度值为最低屈服强度保证值,MPa):

RA≥0.001 6δ+0.01

式中δ──板厚,mm。

近年来,中国船级社(CCS)参照国外各船级社(LR、NV、ABS、NK)的规范,对高强度钢用焊条、自动焊及半自动焊焊丝的熔敷金属强度和韧性作出的规定见表1。

表1 高强度钢用焊材的熔敷金属力学性能要求

屈服强度Re/MPa 抗拉强度Rm/MPa 伸长率A(%) 冲击温度T/℃冲击吸收功AkV/J ≥400 510~690 ≥22 0~-60 ≥47

≥460 570~720 ≥20-20~-

60 ≥47

≥500 610~770 ≥18-20~-

60 ≥50

≥550 660~830 ≥18-20~-

60 ≥55

≥620 720~880 ≥18-20~-

60 ≥62

≥690 770~940 ≥18-20~-

60 ≥69

该表中的数值与数学公式VET=0.1σγ,是相一致的,也是目前各国船级社都采用的。笔者认为,VET=0.1σγ的适用范围不是无限的,而是有一定限制的。表中所列的690MPa和-60℃下69 J的强韧性配合指标已经是上限范围了,再进一步提高强度和冲击功的双重要求将是难以实现的。这是金属材料本身的性能所决定的,强度和韧性是要相互制约的。

在焊缝韧性指标上,有的规范不是这样要求的,它对各种强度级别的焊缝,都要求相同的韧性水平。如潜艇用钢,按照日本防卫厅规格〔6、7〕,对各种强度级别的焊条或焊丝的熔敷金属,都要求-50℃下的冲击吸收功不小于27 J;其焊缝金属的屈服强度包括460,630,800和940MPa四个等级,其焊接方法适用于焊条电弧焊、埋弧焊、MIG焊等。除了对熔敷金属的冲击吸收功有指标要求外,对焊接接头还要进行落锤试验,根据屈服强度等级和试板厚度选用规定的打击功,要求在-50℃下不发生试样断裂。从这两个方面进行韧性考核应是更为科学的。

美国军标(MIL)对潜艇用焊接材料的韧性考核,有些方面与日本一致,但也有不同之处。对熔敷金属的韧性考核,早期也是采用夏比V形冲击试验,要求-50℃下的冲击吸收功不小于27,47或68 J,这些冲击吸收功的提高不是因为强度的提高而相应提高,它是根据焊接材料的韧性储备等因素来确定的。后来又改为动态撕裂试验(DT试验),常用的试样厚度约为16mm(5/8吋),试样的宽度和长度分别为41mm和180mm;对裂纹源缺口的加工有着更严格的要求。试验温度为30℉(约为0℃),撕裂功的最低值要求为610,645,680及780 J(450,475,500和575 ft-1b)。这些数值的确定也不是与强度的提高成线性关系,而与材料的韧性储备有直接关系,例如,屈服强度大于等于920MPa级的焊缝DT值要求645 J(475 ft-1b),而屈服强度大于等于700MPa级的焊缝,则要求其DT 值≥780 J(575 ft-1b)。曾有几年时间内,夏比V形冲击试验和动态撕裂试验两者并用,后来就只采用动态撕裂试验一种方法了。

在焊接接头的韧性考核方面与日本截然不同,美国采用的是爆炸试验〔8〕,试板厚度都为25mm(1吋)或38mm(1.5吋),对接焊后成为正方形,边长分别为510mm或640mm,焊缝在中心部位。试验温度为30℉(约为0℃),经过3次爆炸后,希望厚度减薄率达到7%,要求不产生碎片;

允许有穿过整个厚度的裂纹,但裂纹不应扩展到支撑区之内。美国军标将这种方法定为认可试验或鉴定试验,只有通过此种试验的焊接材料才能用于潜艇建造。一旦试验被通过,只要焊接材料的焊芯成分、药皮配方和原材料、制造技术和工艺等不作改变,就不再进行此项试验,只进行熔敷金属的韧性检验(夏比V形或动态撕裂试验),而且这种韧性检验的目的主要是控制焊接材料的质量稳定性。故熔敷金属的吸收功可以认为是控制焊材产品质量的相对判剧。当某种焊接材料用于船舶、桥梁、压力容器、车辆、高架建筑等具体结构时,应根据结构的特征、受力情况(是静载还是动载、低周疲劳还是高周疲劳)、环境条件等,提出具体要求,有的还要求作特殊的评定试验,同时将其符合安全要求的熔敷金属韧性指标确定下来。既不是韧性指标越高越好,也不可为了降低成本而降低对韧性的要求。用钢材的韧性指标来要求焊接材料也不完全是合理的,因为钢材经焊接之后,其热影响区中的粗晶区因晶粒明显长大,使韧性大幅度下降,所以为了保证热影响区有好的韧性,应该对母材韧性有更高的要求。

目前,国内外的焊接材料标准都是由焊接材料标准化机构制定出来的。高强钢用焊接材料的强度级别虽然不完全一致,但各种强度级别下的熔敷金属韧性指标是相同的,主要有两个体系〔9〕:一是欧洲体系,冲击吸收功要求≥47 J;太平洋周围国家,如美国、中国、日本、韩国等,则采用另一个体系,即冲击吸收功要求大于27 J。2000年以后,国际标准化组织(ISO)同时认可了这两个体系,将其按A、B两个体系并列于同一个标准之中。如 ISO18275-2005,ISO16834-2006和ISO18276-2005,分别是高强钢用的焊条、实心焊丝和药芯焊丝系标准,在这3个标准的A体系中统一把熔敷金属的屈服强度划分成如下5个等级,即550,620,690,790和890MPa级;而熔敷金属的冲击吸收功不随强度等级变化,它是一个固定数值,即A体系要求AkV≥47J;B体系要求AkV≥27 J。但是,在同一个冲击功条件下又分成若干个试验温度,通常有+20,0,-20,-30,-40,-50,-60,-70和-80℃。可根据结构的使用温度或对韧性储备的要求来选择试验温度,以满足对韧性的不同需要。例如,在我国南方江河中运行的船舶,其使用环境温度较高,可选用较高的试验温度;在北方江河中运行的船舶,其使用环境温度较低,应选择较低的试验温度。有些结构承受动载荷或疲劳载荷,与同一地区只承受静载荷的结构相比,可采用相同强度的焊材,但在韧性方面应有更大的储备,以保证动载荷或疲劳载荷下仍能安全运行,这时一定要选择在更低的试验温度下能满足47 J或27 J冲击吸收功要求的焊接材料。

3 结论

在焊接接头强度匹配方面,对于低强度的钢种,可采用等强或超强匹配;对于高强度的钢种,宜采用等强或低强匹配,超强匹配是不利的。在焊缝韧性指标方面,有如下几种情况,一种是随着焊缝强度的提高对韧性的要求也提高;另一种是对各种强度级别的焊缝都要求相同的冲击吸收功,但试验温度是变化的,产品的使用条件越苛刻,相对应的试验温度越低;还有一种是对冲击吸收功和试验温度的要求都相同,但还要对焊接接头进行落锤或爆炸等试验,并以此作为认可试验。

从塑料制品的改性理解韧性和刚性

从塑料制品的改性理解韧性和刚性 “刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。可以看出,“刚度”越大的物体,越不容易发生变形(表现在伸长率很小);“柔度”越大的物体越容易发生变形(表现在伸长率较大)。一种理想状态,物体的刚度趋近于无穷大(或者物体受力作用其变形小到可以忽略的程度),我们就称该物体为刚体。在力学分析时,可以不考虑其自身形变。因此,刚性是反映物体形变难易程度的一个属性。韧性的材料比较柔软,物性表的拉伸断裂伸长率、抗冲击强度较大;硬度、拉伸强度和拉伸弹性模量相对较小。而刚性材料它的硬度、拉伸强度较大;断裂伸长率和冲击强度就可能低一些;拉伸弹性模量就较大。弯曲强度反应材料的刚性大小,弯曲强度大则材料的刚性大,反之则韧性大。在ASTMD790弯曲性能标准试验方法中说,这些测试方法适合于刚性材料也适合于半刚性材料。未说它适合于韧性材料,所以韧性很大的弹性体是不会去测试弯曲强度的。var cpro_id = "u1293258"; 以上说的韧性和刚性与测试的力学性能关系是相对的。可能会出现意外。例如用玻纤增强塑料后,它的刚性变大,但也可能出现拉伸强度和冲击强度都增加的可能。在冲击,震动荷载作用下,材料可吸收较大的能量产生一定的变形而不破坏的性质称为韧性或冲击韧性。建筑钢材(软钢)、木材、塑料等是较典型的韧性材料。路面、桥梁、吊车梁及有抗震要求的结构都要考虑材料的韧性。刚性和脆性一般是连在一起的。脆性是指当外力达到一定限度时,材料发生无先兆的突然破坏,且破坏时无明显塑性变形的性质。脆性材料力学性能的特点是抗压强度远大于抗拉强度,破坏时的极限应变值极小。砖、石材、陶瓷、玻璃、混凝土、铸铁等都是脆性材料。与韧性材料相比,它们对抵抗冲击荷载和承受震动作用是相当不利的。

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

焊接接头的几何形状和焊接符号

第四单元 焊接接头的几何形状和焊接符号 目录 简介--------------------------------------------------------------------------------2 焊接接头--------------------------------------------------------------------------2 焊接符号--------------------------------------------------------------------------27 辅助符号--------------------------------------------------------------------------30 焊缝符号的标注-----------------------------------------------------------------33 关键术语及定义-----------------------------------------------------------------78

第四单元 焊接接头几何形状及焊接符号 简介 确定焊接的技术要求是设计的一部分,或是项目工程师职责的一部分。然而,制造人员仍然有责任准确的将图纸要求转化为生产工艺,并准备这些接头。在日 常工作交流中,焊接接头的术语就显得非常重要。准确 地应用术语可以使焊接人员很方便地将装配和焊接过程中 的问题向有关人员提出来。焊接接头术语与辅助的焊接符 号、数据及尺寸之间有着直接的关系。焊接检验员很有必 要掌握以便于沟通。 焊接接头 焊接接头共有五种形式,对接,角接,T形,搭接和 端接接头。如图4.2所示,这五种基本接头形式都有一定 的焊缝和焊缝符号与之对应。根据不同的接头设计,每种 接头形式又形成各种不同的焊缝,并且这些焊缝与每种接 头形式很接近。接头设计确定了其形状,尺寸和结构。 在图4.1的AWS A3.0 (1994 版) 标准术语和定义中 增加了卷边接头和铰接焊接接头。图4.3,卷边接头是五 种基本接头形式中的一种,其形成的焊缝接头中至少要有 一组成件是卷边形状。铰接焊接接头是“有另一工件跨越 对接接头并分别焊接在要被连接的工件上” (见图4.4)。 图4.1-AWS A3.0,标准焊接术语及定义 形成一个接头的每个工件叫焊接件(或焊件),并分为三类,对接焊件,非对接焊件,铰接焊件。图4.4和4.5对每种焊件都有描述。 对接焊件是用一个对接件防止另一焊接件沿垂直壁厚方向移动。例如,对接接头的两个焊件都是对接焊件,T型接头或角接接头中的一个焊接件就是对接焊件。非对接焊件就是一接头焊件可沿垂直其壁厚方向任意移动。例如,搭接接头的两个焊件都是非对接焊件,T型接头或角接接头中的一个焊件就是非对接焊件。 铰接焊件就是跨在对接接头上的工件。图4.4中给出了两个实例,用于连接对接接头的铰接。 焊缝的形式是用接头的几何形状来表示的。接头的几何形状就是焊前的截面尺寸及形状。从截面方向上看一接头时,每个焊件的端部形状常常与其焊缝形式及符号相似。图4.6给出了用于焊接制造中焊缝常见的端部形状。从图4.7到4.11提供的截面图中可发现焊缝符号与各种端部形状组合之间的关系。各种不同端部形状的组合也形成了各种不同的接头形状,即形成了如图4.2所示的五种基本接头形式的各种情况。其它的一些焊缝形式和坡口设计可用它们的结构或者成形的形状来表示,这些形状包括端部的形状或是表面制备的形状。

焊接接头与坡口形式

焊接接头和坡口形式 焊接接头形式可分为:对接接头、T形接头、角接接头和搭接接头。 一、对接接头 将两块钢板对在一起焊接,称为对接;一块钢板卷成圆筒后对在一起焊接,也属对接。对接接头容易焊透,受力情况好,应力分布均匀,联接强度高,因而焊接接头质量容易保证。 为了保证焊接质量,必须在焊接接头处开适当的坡口。坡口的主要作用是保证焊透,此外,坡口的存在还可形成足够容积的金属液熔池,以便焊渣浮起,不致造成夹渣。坡口的几何尺寸必须设计好,以便减少金属填充量、减少焊接工作量和减少变形。 对接接头形式如图2-14所示。对于钢板厚度在6 mm以下的双面焊,因其手工焊的熔深可达4 mm,故可以不开坡口,如图2-14(a)所示。 对于厚度在6-40 mm 的钢板,可采用如图2-14(b)所示的V 形坡口,进行双面焊。在无法进行双面焊时,也可采用带垫板(厚度≥3mm)的单面焊。由于垫板的存在,不易被烧穿。

当板厚为12-60mm时,可采用如图2-14(c)示的X形坡口。在板厚相同的情况下,采用X形坡口可减少焊条金属量二分之一左右,而且焊件的变形及所产生的内应力相应小些,因此它多用于厚度较大并变形要求较小的工件。X形坡口有对称的;还有不对称的,即一侧深另一侧浅。较浅的一侧焊接工作量小些 图2-14(d)(e)分别为单U形坡口及双U形坡口,这类坡口的填敷金属量均较V形坡口少些,焊件变形也较小,但其坡口加工较困难,故一般只在较重要的焊接结构时采用。 当对接的两块钢板厚度不相等时,为了防止焊接时薄的一边金属过热,而厚的一边金属难于熔化的现象,避免焊不透或烧穿;为了减少由于接头处厚度不等、刚度不一而产生焊接变形与裂纹的可能性,应采用如图2-15所示的厚度过渡开坡口的形式。

焊接接头及坡口形式

焊接接头及坡口形式 一、 接头的分类 接头是由两个或两个以上零件用焊接方法连接的,焊接 结构通常由若干个焊接接头组成。 型接头(十字) 端接接头 在结构中的作用: (1)工作接头:工作力的传递; (2)联接接头:更主要的作用是作焊接的办法使更多的焊接连接成整体,起连接作用。通常不做强度计算。 (3)蜜封接头:防止泄漏是其主要作用。 1.对接接头 搭接接头角接接头

从受力的角度看,受力状况好,应力集中程度小,材料消耗少,变形也较小。往往在接头开坡口。 2.T型和十字接头 将相互垂直的焊件用角焊缝边接起来的接头,分焊透、 不焊透两种,接头焊透,要根据坡口的T型和十字接头承受 动载能力而定,不焊透的T型和十字接头承受力是不周的。 3.搭接接头。 是指两个焊接部分重叠在一起。搭接接头应力分布不均 匀,强度较低。 4.角接头 是指两个焊件的端面构成大于30。、小于是135。夹角,用焊接连接起来的接头。 5.端接接头 是指将两构件重叠放置或两焊件之间的夹角不大于 30°,用焊接边接起来的接头。 二、坡口的形式和坡口尺寸 1.坡口的形式 主要是保证焊接接头的质量和方便焊接、使焊缝根部焊 透。 选用何种坡口形式,主要取决于焊接的方法、焊接的位置、焊件的厚度、焊缝熔透要求。

选择坡口应注意如下问题: 1)坡口的加工条件; 2)可焊接性; 3)焊接材料的消耗生产成本; 4)焊接变形如何; 常用的坡口形式: 1)I型 2)V型 3)双丫型 4)U型 5)双丫形 2.坡口的作用 1)确保焊接电源深入到坡口根部间隙处; 2)操作清除焊渣; 3)调节熔敷金属比例,提高焊接接头综合性能; 3.坡口的加工 加工方法的选择: (1)剪边:用剪板机剪切加工; 工亦£頊

(完整word版)焊接接头的种类及接头型式

焊接接头的种类及接头型式 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于18 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—2规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—8所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。 图1—8 不同厚度板材的对接 (a)单面削薄,(b)双面削薄

表1-2 (二)角接接头 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—9。这种接头受力状况不太好,常用于不重要的结构中。 图1—9 角接接头 (a)I形坡口;(b)带钝边单边V形坡口 (三)T形接头

一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—1 0。 图1—10 T形接头 (四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—11。 图1—11 搭接接头 (a)I形坡口,(b)圆孔内塞焊;(c)长孔内角焊 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—11。

焊缝基本知识

焊缝基本常识 一、焊接接头及类型 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,示于图1。其中以对接接头和T形接头应用最为普遍。 二、焊缝坡口基本形式 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形坡口、带钝边单边V形坡口等,见图2。

三、坡口几何尺寸的参数及作用 1)坡口面,焊件上所开坡口的表面称为坡口面,见图3。 2)坡口面角度和坡口角度,焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹角称为坡口角度,见图4。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料,并降低劳动生产率。 3)根部间隙,焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。 4)钝边,焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。 5)根部半径,U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。 四、Y形、带钝边U形、双Y形三种坡口各自的优缺点 当焊件厚度相同时,三种坡口的几何形状见图5。 Y形坡口:1)坡口面加工简单。2)可单面焊接,焊件不用翻身。3)焊接坡口空间面积大,填充材料多,焊件厚度较大时,生产率低。4)焊接变形大。 带钝边U形坡口:1)可单面焊接,焊件不用翻身。2)焊接坡口空间面积大,填充材料少,焊件厚度较大时,生产率比Y形坡口高。3)焊接变形较大。4)坡口面根部半径处加工困难,因而限制了此种坡口的大量推广应用。 双Y形坡口:1)双面焊接,因此焊接过程中焊件需翻身,但焊接变形小。2)坡口面加工虽比Y形坡口略复杂,但比带钝边U形坡口的简单。3)坡口面积介于Y形坡口和带钝边U形坡口之间,因此生产率高于Y形坡口,填充材料也比Y形坡口少。 五、常用的垫板接头形式及优缺点 在坡口背面放置一块与母材成分相同的垫板,以便焊接时能得到全焊透的焊缝,根部又不致被烧穿,这种接头称为垫板接头。常用的垫板接头形式有:I形带垫板坡口、V形带垫板坡口、Y形带垫板坡口、单边V形带垫板坡口等见图6。

论强度和韧性

论强度和韧性 提高材料的强度是几个世纪以来材料研究的核心问题。迄今为止强化材料的途径可以分为四个类型:固溶强化、第二相弥散强化、加工强化和晶粒细化强化。这些强化技术的实质是通过引入各种缺陷(点缺陷、线、面及体缺陷等)阻碍位错运动,使材料难以产生塑性变形而提高强度。但材料强化的同时往往伴随着塑性或韧性的急剧下降,造成高强度材料往往缺乏塑性和韧性,而高塑性材料的强度往往很低。长期以来这种材料的强韧性“倒置关系”成为材料领域的重大科学难题。 强度是材料在外力作用下抵抗永久变形和断裂的能力,根据Griffith 脆性断裂理论,强度与弹性模量、断裂表面能、微裂纹尺寸有关。而韧性是材料在断裂难题和制约材料发展的重要瓶颈。前吸收能量和进行塑性变形,即阻止裂纹扩展的能力。对于一般陶瓷来说,增韧势必会影响其强度,比如陶瓷颗粒间结合越强越难发生裂纹的偏折、裂纹桥接等。颗粒增韧、微裂纹增韧、纤维增韧都在一定程度上降低了强度,因为这些在陶瓷内部可以说是一种缺陷,通过这种缺陷来诱导裂纹的传播方向释放断裂能。只能说在陶瓷强度满足使用要求的基础上来提高其断裂韧性。 影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量的研究。从对材料的变形及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。其中E是非结构敏感,与微观结构有关,但对单相材料,微观结构的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。所以强化措施大多从消除缺陷和阻止其发展着手。增韧就是提高材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。但大多数陶瓷材料缺乏塑性

焊接接头强度与韧性的计算

焊接接头强度匹配和焊缝韧性指标综述 1 焊接接头的强度匹配 长期以来,焊接结构的传统设计原则基本上是强度设计。在实际的焊接结构中,焊缝与母材在强度上的配合关系有三种:焊缝强度等于母材(等强匹配),焊缝强度超出母材(超强匹配,也叫高强匹配)及焊缝强度低于母材(低强匹配)。从结构的安全可靠性考虑,一般都要求焊缝强度至少与母材强度相等,即所谓“等强”设计原则。但实际生产中,多数是按照熔敷金属强度来选择焊接材料,而熔敷金属强度并非是实际的焊缝强度。熔敷金属不等同于焊缝金属,特别是低合金高强度钢用焊接材料,其焊缝金属的强度往往比熔敷金属的强度高出许多。所以,就会出现名义“等强”而实际“超强”的结果。超强匹配是否一定安全可靠,认识上并不一致,并且有所质疑。九江长江大桥设计中就限制焊缝的“超强值”不大于98MPa;美国的学者Pellini则提出〔1〕,为了达到保守的结构完整性目标,可采用在强度方面与母材相当的焊缝或比母材低137MPa的焊缝(即低强匹配);根据日本学者佑藤邦彦等的研究结果〔2〕,低强匹配也是可行的,并已在工程上得到应用。但张玉凤等人的研究指出〔3〕,超强匹配应该是有利的。显然,涉及焊接结构安全可靠的有关焊缝强度匹配的设计原则,还缺乏充分的理论和实践的依据,未有统一的认识。为了确定焊接接头更合理的设计原则和为正确选用焊接材料提供依据,清华大学陈伯蠡教授等人承接了国家自然科学基金研究项目“高强钢焊缝强韧性匹配理论研究”。课题的研究内容有:490MPa级低屈强比高强钢接头的断裂强度,690~780MPa级高屈强比高强钢接头的断裂强度,无缺口焊接接头的抗拉强度,深缺口试样缺口顶端的变形行为,焊接接头的NDT试验等。大量试验结果表明: (1)对于抗拉强度490MPa级的低屈强比高强钢,选用具备一定韧性而适当超强的焊接材料是有利的。如果综合焊接工艺性和使用适应性等因素,选用具备一定韧性而实际“等强”的焊接材料应更为合理。该类钢焊接接头的断裂强度和断裂行为取决于焊接材料的强度和韧塑性的综合作用。因此,仅考虑强度而不考虑韧性进行的焊接结构设计,并不能可靠地保证其使用的安全性。 (2)对于抗拉强度690~780MPa级的高屈强比高强钢,其焊接接头的断裂性能不仅与焊缝的强度、韧性和塑性有关,而且受焊接接头的不均质性所制约,焊缝过分超强或过分低强均不理想,而接近等强匹配的接头具有最佳的断裂性能,按照实际等强原则设计焊接接头是合理的。因此,焊缝强度应有上限和下限的限定。

焊接接头基本形式及尺寸

表1焊接接头基本形式及尺寸 序号接头 类型 坡口 形式 图形 焊 接方 法a 焊件厚 度 (mm) 接头结构尺寸 适用范 围 b ( mm) P (mm ) R ( mm) 1 对 接 Ⅰ 形 D s Q s R b M z <3 ≤3 8~16 8~16 —— 1 ~2 1 ~2 ~1 ~1 —— 容器 和一般钢结 构 2 对 接 V 形 D s Q s R b M z ≤6 ≤16 16~20 16~20 30 °~ 35° —b ~2 1~ 2 7 7 — 各类 承压管子,压 力容器和中、 薄件承重结 构 3 对 接 U 形 D s W s ≤60 10 °~ 15° — 2 ~5 ~2 5 中、厚 壁汽水管道4 对 接 双 V 形 水 平 管 D s W s >16 30 °~ 40° 8 °~ 12° 2 ~5 1~ 2 5 中、厚 壁汽水管道 表1(续) 序 号 接 头类 型 坡 口 形 式 图形 焊 接方 法a 焊件 厚度 (mm) 接头结构尺寸 适用 范围 b ( mm) P (mm ) R ( mm)

5 对 接 双 V 形 垂 直 管 D s W s c >16 1= 35°~ 40° 2= 20°~ 25° 1= 15 °~ 20° 2= 5 °~ 10° 1 ~4 1~ 2 5 中、 厚壁汽水 管道 6 对 接 综 合形 D s W s >60 20 °~ 25° 5 ° 2 ~5 25 厚 壁汽水管 道 7 对 接 X 形 D s M z >16 >20 30 °~ 35° — 2 ~3 ~1 2~ 4 7 — 双 面焊接的 大型容器 和结构 8 对 接 封 头 D s W s 管径 不限 同厚壁管坡口加工要求 汽 水管道或 联箱封头 9 对 接 堵 头 D s W s 直径 ≥ 23 同厚壁管坡口加工要求 汽 水管道或 联箱堵头 1 0T 型接 管 座 D s W s 管径 ≤ 76 50 °~ 60° 30 °~ 35° 2 ~3 1~ 2 按 壁厚 差取 汽 水、仪表取 样等接管 座 1 1T 型接 管 座 D s W s 管径 76~ 133 50 °~ 60° 30 °~ 35° 2 ~3 1~ 2 — 一 般汽水管 道或容器 的接管座 或接头 表1(续) 序号接 头类型 坡 口 形 式 图形 焊 接方 法a 焊件 厚度 (mm) 接头结构尺寸 适用 范围 b ( mm) P (mm ) R ( mm)

金属材料机械性能的指标及意义(优.选)

金属材料机械性能的指标及意义 材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。 (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2(国外用Re表示)和抗拉强度σb(国外用Rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σD。 (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。 (3)韧性韧性是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值αk表示。Αk值或αk 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。 (4)硬度硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 在断裂力学基础上建立起来的材料抵抗裂纹扩展断裂的韧性性能称为断裂韧性。(Kic,Gic) 常用的35CrMo在850℃油淬,550℃回火后,机械性能如下: σb≥980MPa;σs≥835 MPa;δ5≥12%;ψ≥45%;AK≥63J; 而高级优质的35CrMoA的性能应该更加优良稳定。 最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改 1 / 1word.

材料力学性能复习题基本概念1抗拉强度18韧性金属试样拉

材料力学性能复习题 一、基本概念 1、抗拉强度(18):韧性金属试样拉断过程中最大应力所对应的应力。 2、弹性模量(3):弹性模量是产生100%弹性变形所需要的应力。 3、弹性比功(4):弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 4、包申格效应(6):金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。 5、屈服强度(10):用应力表示的屈服点或下屈服点就是表征材料对微量塑性变形的抗力,即屈服强度。 6、低温脆性(59):体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢,在试验温度低于某一温度k t 时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。 7、蠕变断裂(162):由蠕变变形而最后导致金属材料的断裂称为蠕变断裂。 8、疲劳极限南国梨(98):当循环应力水平降低到某一临界值时,试样可以经无限次应力循环也不发生疲劳断裂,故将对应的应力称为疲劳极限。 9、松弛稳定性(167):金属材料抵抗应力松弛的性能。 10、应变硬化(15):金属材料有一种阻止继续塑性变形的能力,这就是应变硬化性能。 11、断裂韧度(70):I K 是决定应力场强弱的一个复合力学参量,当I K 增大达到临界值时,也就是在裂纹尖端足够大的范围内应力达到了材料的断裂强度,裂纹便失稳抗展而导致材料断裂。这个临界或失稳状态的I K 值记作IC K 或C K ,称为断裂韧度。 12、过载持久值(102):金属材料抵抗疲劳过载损伤的能力,用过载损伤界或过载损伤区表示,过载损伤界与疲劳曲线高应力区直线段各应力水平下发生疲劳断裂的应力循环周次称为过载持久值。 13、蠕变(162):所谓蠕变,就是金属在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。 14、陶瓷(191):陶瓷材料通常是金属与非金属元素组成的化合物。 15、缺口敏感度(46):金属材料的缺口敏感性指标用缺口试样的抗拉强度bn σ与等截面尺寸光滑试样的抗拉强度b σ的比值表示,称为缺口敏感度。 16、冲击韧性(57):冲击韧性是指材料冲击载荷作用下吸收塑性变形功和断裂功的能力。 17、应力腐蚀断裂(128):应力腐蚀断裂是在应力和化学介质的联合作用下,按特有机理产生的断裂。 二、力学性能 1、(165)MPa 100500 10000/1=σ 表示:材料在500℃温度下,10000h 后总伸长率为1%的蠕变极限为100MPa 。 2、(51)500 HBW 5/750 表示:用直径5mm 的硬质合金球在7.355kN (750×9.80665)试验力下保持10~15s 测得的布氏硬度值为500。

焊缝形式及形状尺寸

焊缝形式及检验 (一)焊缝形式 焊缝按不同分类方法可分为下列几种形式: (1)根据GB/T 3375—94的规定,按焊缝结合形式,分为对接焊缝、角焊缝、塞焊缝、槽焊缝和端接焊缝五种: 1)对接焊缝:在焊件的坡口面间或一零件的坡口面与另一零件表面间焊接的焊缝, 2)角焊缝:沿两直交或近直交零件的交线所焊接的焊缝。 3)端接焊缝:构成端接接头所形成的焊缝。 4)塞焊缝:两零件相叠,其中一块开圆孔,在圆孔中焊接两板所形成的焊缝,只在孔内焊角焊缝者不称塞焊。

5)槽焊缝:两板相叠,其中一块开长孔,在长孔中焊接两板的焊缝,只焊角焊缝者不称槽焊。 (2)按施焊时焊缝在空间所处位置分为平焊缝、立焊缝、横焊缝及仰焊缝四种形式。 (3)按焊缝断续情况分为连续焊缝和断续焊缝两种形式。 断续焊缝又分为交错式和并列式两种(图1—16),焊缝尺寸除注明焊脚K外,还注明断续焊缝中每一段焊缝的长度l和间距e,并以符号“Z”表示交错式焊缝。 图1—16 断续角焊缝

(a)交错式 (b)并列式 (4 )焊接方法 (二)焊缝的形状尺寸 焊缝的形状用一系列几何尺寸来表示,不同形式的焊缝,其形状参数也不一样。 熔焊接头的组成 经熔焊所形成的各种接头都是由焊缝、熔合区、热影响区及其邻近的母材组成,见下图。

(1)焊缝(2)熔合线(3)热影响区(4)母材 焊缝起着连接金属和传递力的作用,它是焊接过程中由填充金属和部分母材熔合后疑固而成,其性能决定于两者熔合后成分和组织。 热影响区是母材受焊接热的影响(但未熔化)而发生金相组织和力学性能变化的区域。焊后热影响区上有可能产生脆化、硬化和软化的不利现象。 焊缝各部分名称 1.焊缝宽度

焊接接头强度匹配和焊缝韧性指标综述.

焊接接头强度匹配和焊缝韧性指标综述 摘要:综述了焊接接头匹配的三种类型及其利弊。指出了对于强度较低的钢种,采用等强或超强匹配都是可以的,但对于高强度钢,超强匹配是不利的,等强匹配是可取的,若焊缝韧性明显降低,则采用低强匹配更为有利,它可以获得更大的韧性储备,改善抗断裂性能。关于焊缝韧性指标,根据使用的情况不同也有所不同。 1 焊接接头的强度匹配 长期以来,焊接结构的传统设计原则基本上是强度设计。在实际的焊接结构中,焊缝与母材在强度上的配合关系有三种:焊缝强度等于母材(等强匹配),焊缝强度超出母材(超强匹配,也叫高强匹配)及焊缝强度低于母材(低强匹配)。从结构的安全可靠性考虑,一般都要求焊缝强度至少与母材强度相等,即所谓“等强”设计原则。但实际生产中,多数是按照熔敷金属强度来选择焊接材料,而熔敷金属强度并非是实际的焊缝强度。熔敷金属不等同于焊缝金属,特别是低合金高强度钢用焊接材料,其焊缝金属的强度往往比熔敷金属的强度高出许多。所以,就会出现名义“等强”而实际“超强”的结果。超强匹配是否一定安全可靠,认识上并不一致,并且有所质疑。九江长江大桥设计中就限制焊缝的“超强值”不大于98MPa;美国的学者Pellini则提出,为了达到保守的结构完整性目标,可采用在强度方面与母材相当的焊缝或比母材低137MPa的焊缝(即低强匹配);根据日本学者佑藤邦彦等的研究结果,低强匹配也是可行的,并已在工程上得到应用。但张玉凤等人的研究指出〔3〕,超强匹配应该是有利的。显然,涉及焊接结构安全可靠的有关焊缝强度匹配的设计原则,还缺乏充分的理论和实践的依据,未有统一的认识。为了确定焊接接头更合理的设计原则和为正确选用焊接材料提供依据,清华大学陈伯蠡教授等人承接了国家自然科学基金研究项目“高强钢焊缝强韧性匹配理论研究”。课题的研究内容有:490MPa级低屈强比高强钢接头的断裂强度,690~780MPa级高屈强比高强钢接头的断裂强度,无缺口焊接接头的抗拉强度,深缺口试样缺口顶端的变形行为,焊接接头的NDT试验等。大量试验结果表明: (1)对于抗拉强度490MPa级的低屈强比高强钢,选用具备一定韧性而适当超强的焊接材料是有利的。如果综合焊接工艺性和使用适应性等因素,选用具备一定韧性而实际“等强”的焊接材料应更为合理。该类钢焊接接头的断裂强度和断裂行为取决于焊接材料的强度和韧塑性的综合作用。因此,仅考虑强度而不考虑韧性进行的焊接结构设计,并不能可靠地保证其使用的安全性。 (2)对于抗拉强度690~780MPa级的高屈强比高强钢,其焊接接头的断裂性能不仅与焊缝的强度、韧性和塑性有关,而且受焊接接头的不均质性所制约,焊缝过分超强或过分低强均不理想,而接近等强匹配的接头具有最佳的断裂性能,按照实际等强原则设计焊接接头是合理的。因此,焊缝强度应有上限和下限的限定。 (3)抗拉强度匹配系数(Sγ)即焊接材料的熔敷金属抗拉强度与母材抗拉强度之比值,它可以反映接头力学性能的不均质性。试验结果表明,当Sγ≥0.9时,可以认为焊接接头强度很接近母材强度。因此,生产实践中采用比母材强度降低10%的焊接材料施焊,是可以保证接头等强度设计要求的。当Sγ≥0.86时,接头强度可达母材强度的95%以上。这是因为强度较高的母材对焊缝金属产生拘束作用,使焊缝的强度得到提高。 (4)母材的屈强比对焊接接头的断裂行为有重要的影响,母材屈强比低的抗脆断能力较母材屈强比高的接头抗脆断能力更好。这说明母材的塑性储备对接头的抗脆断性能亦有较大的影响。

焊缝和焊接接头的相关知识

焊缝和焊接接头的概念 焊缝和焊接接头是两个不同的概念,通常考虑较多的是焊接接头焊接接头对焊缝是一个包含关系。 焊缝是焊肉形状,接头是焊件的连接形式。 对接接头可能焊肉是角焊缝,角接接头可能焊肉是对接焊缝。 按焊缝本身截面形式不同,焊缝分为对接焊缝和角焊缝。 ●对接焊缝:按焊缝金属充满母材的程度分为焊透的对接焊缝和未焊透的对接焊缝。焊透的对接焊缝 简称对接焊缝。 ●角焊缝:连接板件板边不必精加工,板件无缝隙,焊缝金属直接填充在两焊件形成的直角或斜角的 区域内。 ●对接焊缝定义:在焊件的坡口面间或一零件的坡口面与另一零件表面间焊接的焊缝。 ●角焊缝定义:沿两直交或近直交零件的交线所焊接的焊缝。 基本上区别这两种,可以用有没有倒坡口来确定,有坡口的是对接焊缝,没有的是角焊缝; 也非尽然,如图所示——利用零件厚度与另一零件间形成的填充结构,这时应结合GB/T3375-94定义进行判别属于对接焊缝还是角焊缝,上图标识的是对接焊缝。

角焊缝和对接焊缝 1、焊接接头型式主要有对接接头、T形接头、角接接头、搭接接头4种,其次还有十字接头、 卷边接头、端接接头、锁底接头、套管接头等。 ◆对接接头:两焊件表面构成大于或等于135o,小于或等于180o夹角的接头。 ◆角接接头:两焊件端部构成大于30o、小于135o夹角的接头。 2、焊件经焊接后所形成的结合部分,即填充金属与熔化的母材凝固后形成的区域,称为焊缝。 焊缝型式分为对接焊缝(坡口焊缝)和角焊缝。 对接焊缝:在焊件的坡口面间或一焊件的坡口面与另一焊件端(表)面间焊接的焊缝,称为对接焊缝,(ASME法规称坡口焊缝)。 角焊缝:两焊件结合面构成直交或接近直交所焊接的焊缝,称为角焊缝如果一个焊接接头即有对接焊缝,又有角焊缝,这样的焊缝称为组合焊缝 对接接头的焊缝形式可以是对接焊缝,也可以是角焊缝或组合焊缝,但以对接焊缝居多。 有的对接接头的焊缝形式是角焊缝,有的角接接头的焊缝形式是对接焊缝(详见 GB/T3375-94标准)

焊接接头形式和焊缝符号

焊接接头型式和焊缝符号 焊接接头即用焊接方法联结的接头。它由焊缝、熔合区和热影响区组成。 一、焊接接头型式 在手工电弧焊中,由于焊件厚度,结构形状以及对质量要求的不同、其接头型式也不相同。 根据国家标准 GB 9 85一8 0规定,焊接接头的型式主要可分为四种,即对接接头、角接接头、搭接接头、T形接头)如图1-11所示。 图1-11焊接接头的基本类型 a)对接接头b)角接接头c)搭接接头d)T形接头 1.对接接头两焊件端面相对平行的接头称为对接接头,如图1-11a 所示。这种接头能承受较大的载荷,是焊接结构中最常用的接头。 2.角接接头两焊件端面间构成大于30°,小于135°夹角的接头称为角接接头,如图1-11b所示。角接接头多用于箱形构件,其焊缝的承载能力不高,所以一般用于不重要的焊接结构中。 3.搭接接头两焊件重叠放置或两焊件表面之间的夹角不大于30°构成的端部接头称为搭接接头,如图1-11C所示。搭接接头的应力分布不均匀,接头的承载能力低,在结构设计中应尽量避免采用塔接接头。 4.T形接头一焊件端面与另一焊件表面构成直角或近似直角的接头

称为T形接头,如图1-11d所示。,这种接头在焊接结构中是较常用的,整个接头承受载荷、特别是承受动载荷的能力较强。 二、坡口形式 根据设计或工艺的需要,在焊件的待焊部位加工成一定几何形状 的沟槽称坡口。 1、坡口的作用其主要作用是为了保证焊缝根部焊透,使焊接热源能深入接头根部,以保证接头质量。坡口还能起到调节基本金属与填充金属比例的作用。 2、坡口的尺寸名称及标注坡口的主要尺寸名称及标注方法如图1-12所示。钝边是为了防止烧穿,钝边尺寸要保证第一层焊缝焊透。根部间隙在打底焊时,能保证报部焊透。坡口角度是用来使电弧能深入焊缝的根部,使得钝边焊透,且便于清渣,以获得美观的焊缝。 3、常见的坡口形式手工电弧焊常见的波口形式见表1-2。 4、焊接坡口的选择焊接坡口的选择一般遵循以下原则: ①能够保证工件焊透,(手弧焊熔深一般为2~4mm),且便于焊接 操作。如在容器内部不便焊接的情况下,要采用单面坡口即在容 器的外面焊接。 ②坡口形状应容易加工。 ③尽可能提高焊接生产率和节省焊条。 ④尽可能减小焊后工件的变形。

一文看懂塑料的韧性、刚性、抗冲击性

一文看懂塑料的韧性、刚性、抗冲击性 刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。“刚度”越大,越不容易发生变形;“柔度”越大,越容易发生变形。韧性好的材料比较柔软,拉伸断裂伸长率、抗冲击强度较大,而硬度、拉伸强度和拉伸弹性模量较小。 从以上叙述可以看出,刚度和韧性呈对立态,但对经过改性的塑料制品而言,两者会相互依存。例如用玻纤增强塑料后,它的刚性变大的同时,可能出现拉伸强度和冲击强度都增加。 如何提高塑料韧性 通过对塑料制品的测试发现,提高基体树脂的韧性有利于提高增韧塑料的增韧效果。增韧的途径很多,比如增大基体树脂的分子量,使分子量分布变得窄小,或者控制是否结晶以及结晶度、晶体尺寸和晶型等方法提来高韧性。 如何区分塑料常用的增韧剂? 橡胶弹性体增韧 EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所有塑料树脂的增韧改性; 热塑性弹性体增韧

SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂; 核-壳共聚物及反应型三元共聚物增韧 ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工程塑料以及耐高温高分子合金增韧; 高韧性塑料共混增韧 PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径; 其它方式增韧 纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等。

焊接接头形式有哪些【汇总】

焊接接头形式有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接接头 焊接接头是指两个或两个以上零件要用焊接组合的接点。或指两个或两个以上零件用焊接方法连接的接头,包括焊缝、熔合区和热影响区。熔焊的焊接接头是的由高温热源进行局部加热而形成。焊接接头由焊缝金属、熔合区、热影响区和母材金属所组成。 焊接接头形式是由相焊的两焊件相对位置所决定的,主要有对接接头、搭接接头和角接接头等。对接接头所形成的结构基本上是连续的,能承受较大的静载荷和动载荷,是焊接结构中最完善和最常用的结构形式。搭接接头、角接接头所形成的焊缝都是角焊缝,承压后,角焊缝及其四周应力状态比较复杂。所以锅炉、压力容器的主体焊接接头中不采用搭接接头和角接接头。 接头形式一般根据焊缝在结构中的受力状态及部位选择。对锅炉、压力容器上的焊接接头形式主要有以下要求: (1)锅炉、压力容器主要受压元件的主焊缝(锅筒、炉胆和集箱的纵向和环向焊缝,封头、管板和下脚圈的拼接焊缝等)应采用全焊透的对接接头形式。 (2)对于额定蒸汽压力大于或即是3.82MPa的锅炉,集中下降管管接头与筒体的连接必须采用全焊透的接头形式。对于额定蒸汽压力大于或即是9.81MPa的锅炉,管子或管接头与锅筒、集箱、管道角焊连接时,应在管端或锅筒、集箱、管道上开坡口,以利焊透。

(3)当凸形封头与筒体的连接因条件限制不得不采用搭接时,应双面搭接,搭接的长度不应小于封头厚度的3倍,且不应小于25mm。 (4)当必须采用角焊结构时,要选用公道的焊接坡口形式,尽量双面焊接,保证焊透。在任何情况下,焊角尺寸都不得小于6mm。对平封头和管板,还应采用必要的加强结构。(5)压力容器接管(凸缘)与筒体(封头)、壳体连接,平封头与筒体连接,有下列情况之一的,原则上采用全焊透形式:介质为易燃或毒性程度为极度危害和高度危害的压力容器;作气压试验的压力容器;第三类压力容器;低温压力容器;按疲惫准则设计的压力容器;直接受火焰加热的压力容器。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

焊接接头强度匹配和焊缝韧性指标综述

焊接接头强度匹配和焊缝韧性指标综述 焊接接头强度匹配和焊缝韧性指标综述 摘要:综述了焊接接头匹配的三种类型及其利弊。指出了对于强度较低的钢种,采用等强或超强匹配都是可以的,但对于高强度钢,超强匹配是不利的,等强匹配是可取的,若焊缝韧性明显降低,则采用低强匹配更为有利,它可以获得更大的韧性储备,改善抗断裂性能。关于焊缝韧性指标,根据使用的情况不同也有所不同。 1 焊接接头的强度匹配 长期以来,焊接结构的传统设计原则基本上是强度设计。在实际的焊接结构中,焊缝与母材在强度上的配合关系有三种:焊缝强度等于母材(等强匹配),焊缝强度超出母材(超强匹配,也叫高强匹配)及焊缝强度低于母材(低强匹配)。从结构的安全可靠性考虑,一般都要求焊缝强度至少与母材强度相等,即所谓“等强”设计原则。但实际生产中,多数是按照熔敷金属强度来选择焊接材料,而熔敷金属强度并非是实际的焊缝强度。熔敷金属不等同于焊缝金属,特别是低合金高强度钢用焊接材料,其焊缝金属的强度往往比熔敷金属的强度高出许多。所以,就会出现名义“等强”而实际“超强”的结果。超强匹配是否一定安全可靠,认识上并不一致,并且有所质疑。九江长江大桥设计中就限制焊缝的“超强值”不大于98MPa;美国的学者Pellini则提出,为了达到保守的结构完整性目标,可采用在强度方面与母材相当的焊缝或比母材低137MPa的焊缝(即低强匹配);根据日本学者佑藤邦彦等的研究结果,低强匹配也是可行的,并已在工程上得到应用。但张玉凤等人的研究指出〔3〕,超强匹配应该是有利的。显然,涉及焊接结构安全可靠的有关焊缝强度匹配的设计原则,还缺乏充分的理论和实践的依据,未有统一的认识。为了确定焊接接头更合理的设计原则和为正确选用焊接材料提供依据,清华大学陈伯蠡教授等人承接了国家自然科学基金研究项目“高强钢焊缝强韧性匹配理论研究”。课题的研究内容有:490MPa级低屈强比高强钢接头的断裂强度,690~780MPa 级高屈强比高强钢接头的断裂强度,无缺口焊接接头的抗拉强度,深缺口试样缺口顶端的变形行为,焊接接头的NDT试验等。大量试验结果表明: (1)对于抗拉强度490MPa级的低屈强比高强钢,选用具备一定韧性而适当超强的焊接材料是有利的。如果综合焊接工艺性和使用适应性等因素,选用具备一定韧性而实际“等强”的焊接材料应更为合理。该类钢焊接接头的断裂强度和断裂行为取决于焊接材料的强度和韧塑性的综合作用。因此,仅考虑强度而不考虑韧性进行的焊接结构设计,并不能可靠地保证其使用的安全性。

相关文档
最新文档