沉箱重力式码头结构加固改造设计初探

沉箱重力式码头结构加固改造设计初探
沉箱重力式码头结构加固改造设计初探

沉箱重力式码头结构加固改造设计初探

发表时间:2018-03-21T13:21:43.957Z 来源:《防护工程》2017年第32期作者:林阳[导读] 使码头主体结构抗倾稳定性有所提高,沉箱前趾应力有所减小。靠船设施和码头前沿水域疏浚方面的改造内容与方案二基本相同。广东省航运规划设计院有限公司广东广州 510050 摘要:沉箱重力式码头是我国沿海港口中比较典型的码头结构形式之一,本文以某工程码头结构加固改造工程为例,初步探讨该类型码头进行结构加固改造的设计要点,并尝试提出对类似工程结构进行加固改造的注意事项。关键词:重力式码头;加固改造1工程背景

某码头原设计为2个5万t级集装箱泊位,先后于2000年和2006年竣工投产,岸线总长度640m,与相邻泊位一同沿规划前沿线顺岸布置。根据交通运输部关于加强码头结构加固改造工作的部署,以及港建设成为区域航运中心引致航运企业在相关航线上投入更大船型的形势,运营单位进一步提出了使该码头能够满足12万t级和15万t级集装箱船舶作业的设计要求。

现有码头结构型式为带卸荷板重力式沉箱结构,顶高程7.5m(本文高程均以当地理论最低潮面为基准),前沿底高程-13.3m,下部为10~100kg抛石基床,基床坐落在强风化岩上。抛石基床上安放预制钢筋混凝土沉箱,沉箱底宽8.5m,箱内下部抛填中砂,上部填10~60kg块石。沉箱上部为预制钢筋混凝土卸荷板。沉箱后设有10~100kg抛石棱体,棱体后依次设置二片石垫层和混合碎石倒滤层。码头上部为现浇钢筋混凝土胸墙,胸墙上安装1000kN系船柱、SUC1000HRS两鼓一板橡胶护舷。集装箱装卸桥前后轨道距离为30m,海侧轨道梁设在胸墙上,距码头前沿线3.0m,陆侧轨道梁下设有灌注桩基础。

2 沉箱重力式码头结构加固改造特点沉箱重力式码头由于结构基础应力首先直接传给上部地基,对上部地基和其下卧层都有较高的承载力要求。一般而言,墙身下需设抛石基床,基床厚度根据地基承载力要求确定。沉箱重力式码头结构加固改造一般均涉及码头前沿浚深,抛石基床常对码头前沿浚深形成制约条件,必须认真对待,一旦处理不好,将会造成严重后果。3总平面布置

按照现行行业标准的要求,12万t级和15万t级集装箱船舶所需码头泊位长度为427m,该码头2泊位岸线总长度640m,前沿线一致,水深条件相同,可以互相借用岸线,因此长度可满足靠泊一艘12万t级或15万t级集装箱船舶。现行行业标准中对设计船型主尺度有明确规定,考虑该港为集装箱中转港口,根据航线调查和到港实船统计,靠泊该码头的集装箱船舶均不可能达到满载状态,结合船型预测其运营吃水不超过14.0m。本次码头结构加固改造按照船舶运营吃水14.0m考虑,经核算,码头前沿底高程需由-13.3m浚深至-14.3m。现有码头前沿停泊水。

4.1方案一

在现有码头前方打设大直径钢筋混凝土钻孔灌注桩,桩基上设置承台与现有码头胸墙衔接,上面重新布置永久性的前轨道梁及配套预埋件,以及按15万t级以上集装箱船的靠泊需要设置系船柱和橡胶护舷舷等码头附属设施,相应前移后轨道梁,并对前沿水域进行疏浚。此方案是高桩码头结构和重力式结构的结合,最显著的特点是将码头前沿线前移。通过对前沿水域疏浚,码头前沿水深随之增加,而且由于新增承台的宽度可以调整,前沿水运疏浚几乎不触及现有重力式结构,整体安全性较好,水深调整幅度较大。

4.2方案二

在现有码头后方打设1~2排钢筋混凝土钻孔灌注桩,在灌注桩上紧挨原码头卸荷板浇筑混凝土墩台,使之成为卸荷板的延伸部分,对沉箱后方土压力起到减载作用,降低其对于现有码头结构的影响,并与沉箱一起承担上部荷载。码头前沿浚深至-14.3m时将部分挖除现有抛石基床前肩和边坡。为了保证码头前沿浚深后抛石基床的密实性和稳定性,拟在沉箱前趾下局部用C25不离析混凝土压浆以提高其整体性,同时控制基床开挖顶边线距沉箱前趾不得小于2m。根据上述限制条件对码头前沿浚深后,满足水深-14.3m处距码头前沿线的最小距离为4.2m左右,因此还必须采用相应的靠船结构来弥补靠泊点与胸墙间的距离。但大型漂浮型护舷、钢浮箱等靠船结构或设施的额外宽度又势必会影响装卸设施的作业范围和效率,故该方案实施后需要不断在以下两种状态下切换:一是超过原码头设计船型的集装箱船舶到港时为保证靠离泊安全而临时布放大型靠船结构或设施;二是原码头设计船型以内的集装箱船舶到港时,需要快速移除和存放大型靠船结构或设施,使用现有码头靠船设施作业,以提高作业效率。

4.3方案三

在现有码头卸荷板结构上方和胸墙后方开挖抛石棱体,对卸荷板和胸墙凿毛清洗后植筋,并浇筑混凝土块体,将胸墙、卸荷板与新浇筑钢筋混凝土块体形成整体结构,利用该结构的重量使码头整体结构重心后移;并对沉箱后方土压力起到减载作用,降低其对于现有码头结构的影响,使码头主体结构抗倾稳定性有所提高,沉箱前趾应力有所减小。靠船设施和码头前沿水域疏浚方面的改造内容与方案二基本相同。

5改造方案比较5.1主要计算结果

沉箱码头计算书

任务要求: 码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。 一.拟定码头结构型式和尺寸 1. 拟定沉箱尺寸: 船舶吨级为20000吨,查规得相应的船型参数: 设计船型 总长 (m ) 型宽 (m ) 满载吃水 (m ) 183 27.6 10.5 即吃水为10.5米。 其自然资料不足,故此码头的前沿水深近似估算为: 1.1510.51 2.1D kT m ==?=, 设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。由于沉箱定 高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。 综上,选择沉箱尺寸为: 1310.214l b h m m m ??=??。 下图为沉箱的尺寸图:

2.拟定胸墙尺寸: 如图,胸墙的顶宽由构造确定,一般不小于0.8m,对于停靠小型河船舶的码头不小于0.5m。此处设计胸墙的顶宽为 1.0m。设其底宽为5.5m,检验其滑动和倾覆稳定性要否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性) 设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计

高水位时的抗倾稳定。 沉箱为现浇钢筋混凝土,其重度在水上为3 23.5/kN m ,水下为3 13.5/kN m ,则在设计高水位时沉箱的自重为: ()][()5.511 1.51 1 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.5 2 4.6 4.[{]62 }G -=?+???-?+?+?+-???()则 227.83G kN =。 自重G 对O 点求矩: G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =?+?-??+()() 。 考虑到有门机在前沿工作平台工作时,胸墙的水平土压力最大,此处门机荷载折算为线性荷 载为: 25010 178.5714 q kPa ?== 。 (此处近似用朗肯土压力进行验算)朗肯主动土压力系数: 224545350.()7)(=2Ka tan tan ?=-=-。 则其土压力分布如上图: 如上图,其各点的土压力强度为: ()()()()()01112=0.27178.5748.21; 10.2718 1.5178.5755.5; 120.2718 1.59.5 3.1178.5763.46. a b P Ka h q kPa P Ka h q kPa P Ka h h q kPa γγγγ+=?==+=??+==++=??+?+= 则其土压力为: ()()0.5 1.548.2155.50.5 3.155.563.46262.17E KN =??++??+=。 作用点至墙底的距离为: 221148.21 4.6 2.37.29 3.10.57.96 3.10.50.57.29 1.5 3.11 (())3=2.203y E m = ??+??+???+???+ 。则土压力对墙前O 点的弯矩值为: 262.17 2.2576.77M KN m =?=。 综上:G =733.56576.77M kN m M KN m >= ,即说明在高水位时胸墙能保持抗倾稳定。 即胸墙的尺寸为:顶宽为1.0m ,底宽为5.5m ,高为4.6m 。 则码头的结构形式及尺寸如图:

重力式码头沉箱的施工技术-2019年文档资料

重力式码头沉箱的施工技术 1.案例介绍 工作船码头及其附属措施工程主要建设内容为长度150m的工作船码头(5000吨级兼靠10000吨级船)、长度287m的护岸、长度30m的沉箱出运码头、约42000m2的沉箱预制厂及其他附属配套设施,该工程主要考虑为后期建设一个设计接卸能力为2200万吨/年的30万吨级的原油码头服务,码头总长度482m,为沉箱重力墩式结构。工作船码头前沿设计底标高为-8.5m,码头面设计标高为+5.0m,在工作船码头南侧设置4000吨沉箱出运码头,码头前沿设计底标高为-3.0m,码头面设计标高为+4.0m,均采用带卸荷板的重力式方块结构,分四层安装,最大预制块重178t。 2.本工程的沉箱预制及出运方案 2.1预制沉箱 在本工程施工建设中,分别使用A型、A’型、B型三种规格的沉箱。其中A型沉箱为码头标准段沉箱,沉箱的宽度为17.46m、高度为16.7m、长度为18.823m,每一个沉箱的重量为2557t,一共有49个沉箱。A’型沉箱和南护岸直立段以及码头南侧进行连接,和A型沉箱相比,将沉箱的后趾去掉了两米,然后去掉了后墙上方的牛腿,一个沉箱的重量大约为2538.4t,B 型沉箱的宽度为1.724m、高度为16.7m、长度为18.823m,每一

个沉箱的重量为2038.3t,沉箱数量为两个。所有的A型和A’型沉箱都由两个侧面板、前后板、16个舱格、3个纵隔墙和3个横隔墙构成,其中侧面板的厚度为0.35m、前后面板的厚度为0.4m,隔墙的总厚度为0.24m,沉箱的前后顶部不对称、左右对称,前后趾的宽度都为1m,使用C30混凝土进行沉箱的预制,沉箱顶部3.5m范围内为C35F250。如图1所示。2.2沉箱的运输在本工程中,每一个沉箱自重约为2600t,一共有52个沉箱。设计使用超高压气囊在沉箱场内对沉箱进行顶升、运移。在运输过程中,拟使用两艘拖轮带6300T浮船坞到下潜坑进行下潜。沉箱起浮出坞,然后使用拖轮将沉箱运输到作业现场。 2.3计算出运工艺参数 2.3.1布置卷扬机 布置卷扬机时,按照以下公式计算牵引力: 为了实现沉箱的陆上移动,在此预制场一共布置了四个8t 卷扬机,所有的卷扬机型号一致。通过上述计算可知,卷扬机的牵引力要达到或超过101.53t才可以实现沉箱的运移,那么就要个各台卷扬机的牵引力要等于或超过50.76t,而8t的卷扬机可以利用7倍或者9倍率的滑轮组来达到牵引力大小的基本要求,借助7倍率或者9倍率的滑轮机组可以将各台卷扬机的牵引力保持在56t或者72t,合力可以达到112t或者144t,牵引力大小可以满足使用要求。将两台8t卷扬机布置在预制场的东侧和西侧,利用捆绑在沉箱上的四滑轮组和捆绑在前拉地锚上的四滑轮

沉箱吊装计算书

中交第一航务工程局有限公司 沉箱吊装受力计算书 工程名称:中委合资广东石化2000吨/年重油加工工程产品码头项目部 计算内容:沉箱吊装 审核:校核:计算:

1、沉箱重心计算 图1-1沉箱断面图 图1-2沉箱平面图 表1-2沉箱材料和体积矩计算表

沉箱重量:M=ρV=2.5×198.3=495.75t 沉箱重心:Xc= 1258.95/198.3=6.35m Yc =1110.09/198.3=5.60m 2、沉箱吊装计算 1)主钢丝绳受力计算 沉箱受力简化入图: 2250 2450 F1 F2 G 图1-3隔墙受力简化图 起吊后方块处于平衡状态, 根据受力平衡可得出:F 1+F 2=1.3G ,1.3为动力荷载系数,G=4850KN.............① 根据力矩平衡可得出: 设前沿每根钢丝绳拉力为F 前,后沿每根拉力为F 后,根据力矩平衡得 2.25F 1=2.45F 2...............................................② 解由①、②式得 F 1=3290KN ;F 2=3015KN 根据吊装采用4点吊按3点吊计算可以得出单根销子单侧受力: F 前=F 1/3=1097KN ;F 后=F 2/3=1005KN 因前侧吊孔受力较大,且前后墙所用钢丝绳用同一行型号,故只对前墙钢丝绳进行验算。 钢丝绳安全系数取5,采用公称抗拉强度为1770MPa 的6×37钢丝绳。 五金手册得公称抗拉强度为1770MPa 的6×37纤维芯钢丝绳直径100mm 的在5倍安全系数下容许拉力为5840KN ,满足要求。 2)销子受力计算 销子采用Q345直径210mm 的圆钢。

港口水工建筑物复习思考题

《港口水工建筑物》复习思考题 第一章码头结构型式和荷载 1、码头由那些部分组成?各部分主要作用是什么? 2、码头按结构型式分类有那些型式?它们各有什么优缺点?按断面型式分又有那些?他们各自的最佳适用条件是什么? 3、作用的分类有那些?作用的标准值如何确定? 4、作用效应组合的原则是什么? 5、堆货的影响因素及分区? 6、门机荷载的取值原则? 7、火车荷载的取值原则及加载规定? 8、系缆力、撞击力产生的因素有那些?在计算中主要考虑什么因素,如何计算? 9、库仑、朗肯理论的适用条件是什么?各种情况下土压力如何计算? 10、推导杨森公式,计算储仓压力。 11、什么叫地震荷载,考虑地震荷载的一般规定是什么?地震荷载有那些? 第二章重力式码头 1、重力式码头的组成部分及各部分的作用式什么? 2、重力式码头基础的型式及其适用条件是什么? 3、抛石基床的作用,型式、适用条件是什么?基槽底宽如何确定? 4、为什么抛石基床顶面要预留沉降量?有些什么要求? 5、重力式码头为什么要设置变形缝?位置如何考虑? 6、胸墙有何要求?其底部高程怎样确定? 7、图示墙后抛石棱体的几种型式,各种型式有何特点? 8、图示可分层倒滤层的构造,倒滤层的作用是什么? 9、计算土压力时填料容重按什么原则选取? 10、地面使用荷载考虑哪几种布置情况,并指出各布置型式的验算内容。 11、重力式码头一般计算内容有那些?考虑荷载有那些? 12、试说明重力式码头在稳定性验算怎样考虑船舶荷载荷波浪力? 13、用图说明合力与前趾距离ξ>B/3,eB/6时基床应力如何计算?上述情况相应的地基应力如何计算?规范对ξ和基床应力有什么规定?为什么? 14、块体码头断面设计的原则有那些?为什么说采用俯斜墙、卸荷板和减压棱体结构时有减小土压力作用? 15、当采用俯斜墙衡重式断面时,垂直合力作用点距后趾a,对非岩基a≮B/3,岩石地基a

大型桁架模板受力计算(版)

中交第一航务工程局第五工程有限公司 模板受力计算书 (胸墙模板) 单位工程:锦州港第二港池集装箱码头二期工程计算内容:胸墙模板计算 编制单位:主管:计算: 审批单位:主管:校核:

锦州港第二港池集装箱码头二期工程 胸墙模板计算书 一、设计依据 1.中交第一航务工程勘察设计院图纸 2.《水运工程质量检验标准》JTS257-2008 3.《水运工程混凝土施工规范》JTJ268-96 4. 《组合钢模板技术规范》(GB50214-2001) 5. 《组合钢模板施工手册》 6. 《建筑施工计算手册》 7. 《港口工程模板参考图集》 二、设计说明 1、模板说明 在胸墙各片模板中,1#模板位于码头前沿侧,浇筑胸墙高度为3.15m,承受的侧压力最大,同时胸墙外伸部分的重量也由三角托架来承受,因此选取1#模板来进行计算。 1#模板大小尺寸为17.9m(长)×3.15m(高)。采用横连杆、竖桁架结构形式大型钢模板 面板结构采用安装公司统一的定型模板,板面为5mm钢板制作,背后为50×5竖肋。 内外横连杆采用单[10制作,间距为75cm; 桁架宽度为650cm,最大水平间距75cm,上弦杆采用背扣双[6.3,下弦杆为双∠50×50×5,腹杆为方管50×5。 2、计算项目 本模板计算的项目 ⑴模板面板及小肋 ⑵模板横连杆的验算。 ⑶模板竖桁架的验算。 ⑷模板支立的各杆件的验算。

模板计算 1、混凝土侧压力计算 混凝土对模板的最大侧压力: Pmax = 8K S +24K t V 1/2=8×2.0+24×1.33×0.57? =40.1kN/m 2 式中: Pmax ——混凝土对模板的最大侧压力 Ks ——外加剂影响系数,取2.0 Kt ——温度校正系数 10℃时取Kt =1.33 V ——混凝土浇筑速度50m 3 /h ,取0.57m/h 砼坍落度取100mm ==倾倒侧P P P max 40.1+6×1.4=48.5 kN/m 2取50KN/ m 2 其中倾倒P 为倾倒砼所产生的水平动力荷载,取6kN/㎡×1.4=8.4kN/㎡。 2、板面和小肋验算 ⑴板面强度验算 取1mm 宽板条作为计算单元,计算单元均布荷载 q=0.05×1=0.05 N/mm q 5mm 钢板参数:I=bh 3/12=300×5×5×5/12=3125mm 4 ω= bh 2/6=300×5×5/6=1250mm 3 q=0.05×300=15 N/mm σ=M/ω=0.078 ql 2/ω=0.078×15×3002/1250=85 N/mm 2<[σ]=215 N/mm 2 f max =K f ×Fl 4 /B 0=0.00247×0.05×3004 /2358059=0.43mm <300/500=0.6mm , 钢板满足要求 其中K f 为挠度计算系数,取0.00247 B 0为板的刚度,B0=Eh 3x /12(1-γ2)=2.06×105×53/12(1-0.32)=2358059 γ钢板的泊松系数,取0.3 h 为钢板厚度,h=5mm

沉箱码头稳定验算和内力计算

码头稳定性验算 (一)作用效应组合 持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用) 持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用) 短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用) 不考虑地震作用去1 (二)码头延基床顶面的抗滑稳定性验算 根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定 应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。 01 ()()E H E qH P B G E V E qV u BU d E E P G E E P f γγγψγγγγψγγ++≤ +++ 应考虑波浪作用,波浪力为主导可变时: ()()f E P E G E P E qV E Bu u V E G d qH E B P H E ψγλγγ γψγγγ γ+++≤ ++1 o 短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算 f P G P Bu u G B p )(0λλλλ-≤ 式中:o γ——结构重要系数,一般港口取1.0; E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40 ψ——作用效应组合系数,持久组合取0.7; V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值; W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值; qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值; RV P ——系缆力垂直分力的标准值; G γ——结构自重力的分项系数,取1.0;

重力式码头沉箱安装施工技术的问题和措施

重力式码头沉箱安装施工技术的问题和措施 发表时间:2016-12-16T10:21:29.803Z 来源:《基层建设》2016年28期10月上作者:路晓明 [导读] 摘要;随着我国城市化进程的不断加快重力式码头沉箱所起到的作用越来越明显深入的对其进行研究不仅能有效的满足我国当前水运市场船舶大型化的需求同时还能很好的增强港口的市场竞争力进而促进我国城市化进程的快速发展。 中国港湾工程有限责任公司 100027 摘要;随着我国城市化进程的不断加快重力式码头沉箱所起到的作用越来越明显深入的对其进行研究不仅能有效的满足我国当前水运市场船舶大型化的需求同时还能很好的增强港口的市场竞争力进而促进我国城市化进程的快速发展。就目前而言重力式码头的建设正朝着大型化、深水化的趋势发展使得原有的重力式码头已无法满足我国高速发展的市场经济斯以做好每个工程项目的施工设计方案、完善施工人员的施工工艺进而保障码头和相关配套设备的工程的质量具有十分重要的意义。本文通过分析重力式码头沉箱安装施工的关键技术及施工问题提出了相应的处理措施,以促进我国各港口路的工作效率。 关键词:重力式码头;沉箱安装;施工技术;安装问题;预防措施 重力式结构在我国的码头有广泛分布,频繁使用让其在我国目前的终端研究和分析具有非常重要的价值。它是预制沉箱码头的重要组成部分,整体质量和码头的质量对工程质量的密切关系也是一个重要的参考。目前,我国船舶工业取得了巨大的成就,现以实际工程为例对重力式码头沉降施工技术进行探讨,以阐述重力式码头沉箱安装施工技术研究的主要问题、主要内容。 1.工程概况 供拖轮、引航船、交通艇、海事巡逻船等专用的某工作船码头结构采用重力式沉箱结构。下部基础采用基槽开挖和抛石基床,上部结构为预制矩形沉箱、卸荷板和现浇胸墙、面层,结构断面。 码头范围内岩面标高为-26m~-18.00m。岩面呈北高南低、东西两段高中间低的走势。在岩面较低区域,土层以-12.00m左右标高为界;上层为淤泥质黏土,下层为粉质黏土混砂砾,含水量小于26%,可作为抛石基床的持力层。由于码头范围内岩面起伏较大,根据地质的不同,基槽开挖需分别进行炸礁和挖泥。基槽开挖标高为-7.50m~-12.00m;炸礁边坡坡度为1∶0.5,挖泥边坡坡度陆侧为1∶1.5,海侧坡度为1∶5。为了确保码头质量,在施工过程中主要对基床开挖、沉箱预制、基床抛石及整平、沉箱安装、抛石棱体抛填和上部结构施工质量进行了严格控制。 2.重力式码头沉箱的施工要点 (1)基槽与基床的施工要点 重力式码头主要是利用自身重力来维持整个码头的稳定性能,经过对大量码头进行研究之后我们得出码头必须建造在称重能力大的地基之上并对其注入的击数需要在以上,以保障码头地基的绝对安全。如果码头表层的地基承重能力无法满足预定的要求我们还需要利用更换地基或者复合地基的方式对其进行加固。具体施工过程主要是依据不同的下卧硬层埋置深度和均匀程度,采用不同的施工工艺针对性的清除地基表层软土层,并进行换填粗砂、开山石、块石等作业对其进行再次加固。此外我们还可以采用夯实整平与抛石基床相结合的方式提高整个工程的基面可靠性能,进而保障整个工程项目的质量安全。 (2)沉箱的施工要点 在对沉箱进行预制时我们需要根据施工场地自身的条件,利用专业的预制场对其进行针对性的预制。例如对沉箱进行浇筑时,我们除了可以采用一次立模连续浇筑工艺之外还可以选用分段爬模、翻模预制等施工工艺我们只有根据具体的施工环境采取不同的施工工艺,才能在减少资源消耗的同时增强沉箱的后期质量此外,我们在选择沉箱的堆放场地时需要保持整个堆放地基的平整性最大限度的确保沉箱的质量安全。对沉箱进行浮运时我们还要综合分析施工场地的气候、潮汐、航道深度等因素并将沉箱进行严格的加封仓盖,以确保整个运输过程在绝对安全的环境下进行。在对沉箱进行填仓时,身为施工人员的我们还需要做到增加沉箱的重量减少其产生的位移角度。 (3)沉箱岸壁的施工要点 很多沉箱岸壁都存在一定的安装缝和沉降缝,所以对其进行施工时我们需要做到在墙后利用整体倒滤层以及在沉箱的缝隙之间安置倒滤层等方式从而减少路面产生开口、龟裂的现象。 3. 重力式码头沉箱安装的施工技术 (1)布置沉箱盲板 通过四角隔舱盲板来控制前后高差,设置完高差后,还要将注水速度控制在一个稳定的范围内,这样沉箱才能平稳地下沉。 (2)存放沉箱 沉箱存放区域和安装位置距离有500m最为合适,距离太远则需要时间拖运,过近则对其工序的施工造成影响。如果已经有泊位投入使用,要注意不能影响船舶靠泊操作。在拟储存前,需要进行水深测量,储存区域的高程达到较高水位时,只要能满足沉箱浮游稳定吃水这个条件就可以了。在存放点到放置点这片水域水深要达到一定的深度,确保沉箱拖运时不会出现差错。建议对存放区域进行夯实整平,保证沉箱底面平整且防止沉箱底部带有淤泥。以上两种沉箱浮游稳定吃水在8m范围内,沉箱储存场地抛填高程在-7m左右,水位较高时水不会淹没沉箱,避免起浮沉箱作业进度赶不上。 (3)基床整平结果的分析 顺岸式码头多留有斜坡,由于沉箱高度差的存在,必须严格把控基床平整的质量。根据实际高度预留0.5%斜坡。实际操作时,基床的实际高程与设计值会存在误差,要认真分析基床平整的检测结果,将此作为安装控制基础上的前后高差的重要依据。 (4)沉箱起浮 在外在环境允许的情况下,方可起浮沉箱。要提前计算最大抽水量,便于选择潜水泵和发电机。潜水电泵在仓内布置应合理。抽水过程中,经常检查水位和水位差,发现水位相差过大,要及时进行调整,避免起升后浮起事故的发生。 4.重力式码头沉箱安装施工中的常见问题分析 近年来,随着我国水运市场的快速发展,使得我国重力式沉箱码头建设施工呈现出大型化、深水化的发展趋势,与此同时,人们对重力式沉箱码头的施工要求也越来越高,使其必须在短期内完工,这就迫使重力式沉箱码头施工面临着工期紧、任务重的现状,从而导致重

沉箱重力式码头课程教学设计计算书

目录 第一章设计资料 ------------------------------------- 3 第二章码头标准断面设计------------------------ 5 第三章沉箱设计 ------------------------------------- 11 第四章作用标准值分类及计算----------------- 15 第五章码头标准断面各项稳定性验算------- 44

第一章设计资料 (一)自然条件 1.潮位: 极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m; 设计低水位:+1.2m;施工水位:+2.5m。 2.波浪: 拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。 3.气象条件: 码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。 4.地震资料: 本地的地震设计烈度为7度。 5.地形地质条件:

码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。根据勘探资料,码头所在地的地址资料见图1。 图一 地质资料 (二) 码头前沿设计高程: 对于有掩护码头的顶标高,按照两种标准计算: 基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m (三) 码头结构安全等级及用途: 码头结构安全等级为二级,件杂货码头。 (四) 材料指标: 拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。

赤湾胜宝旺重力式码头沉箱的施工技术要点探讨

赤湾胜宝旺重力式码头沉箱的施工技术要点探讨 摘要:我国水运事业正在快速发展,各地港口码头的规模在不断扩大。由于重 力式沉箱码头较为耐用,地面荷载变化及水平荷载承受能力较大,在我国沿海港 口中普遍应用。本文根据赤湾石油基地胜宝旺项目对港口重力式码头的施工技术 要点进行分析,望有些许参考价值。 关键词:重力式码头;沉箱预制;技术要点 1.赤湾胜宝旺重力式码头概述、概况 1.1重力式码头整体结构相对稳定,有很强的载荷承受能力,运用于地质基 础较弱的地区进行码头施工建设较为合适。重力式码头依据墙身结构可以分为沉 箱码头、方块码头、大直径圆筒码头等类型。码头主要是为船舶提供停靠以及货 物装卸服务,需要使用各种大型机械设备,具有的较高水平稳固性的重力式码头,得到广泛应用。 1.2本工程位于深圳港赤湾港区胜宝旺,工程规模:本工程包括一个胜宝旺1000t级驳船泊位(结构按照1.5万t级预留),水工主体结构采用重力式沉箱结构,单件沉箱重力174吨,段长50.8m;采用高桩墩台结构作为共高桩结构与重 力式结构的过渡段,过渡段长度为33.2米,Φ1.2m基桩。主要结构型式:沉箱结构、抛石斜坡式结构、道堆基础结构和排水及供电管线。重力式沉箱结构段:段 长50.8m,码头前沿底部标高设计为-6.09m,顶部高程4.41m。主体以沉箱为基础,单体重量为174吨;抛石基床厚度7m,底标高-13m,沉箱上部胸墙使用混 凝土现浇,胸墙上设管沟。 2.赤湾胜宝旺重力式码头施工技术要点 2.1开挖基槽施工 在基槽挖泥施工过程中,重力码头的基础部位作用较为突出,其质量水平直 接影响到工程的耐久性与稳定性,因此作业时必须严格按设计要求进行施工,确 保挖泥的深度与宽度符合标准,误差必须控制在范围内,超宽波动反应控制在2 米之内,超深不小于0.3米,根据工程实际情况选择合适的挖泥船。施工、设计、建设与监理单位四方共同对基槽工序进行验收,验收内容主要包含平面位置尺寸、基槽水深、宽度、边坡等。合理利用超声波测试仪,测深精度控制范围在十厘米内,施工单位先对基床底部原状土进行自检,符合标准要求后再报与监理工程师 进行复查,符合图纸标准要求即算完成施工,倘若现场土样存在问题,监理方应 与相关设计人员在现场进行最终的土样鉴别。 2.2抛石基床施工 在基坑开挖后,应先派潜水员到现场勘查作业,看是否有淤积现象,应确保 石材的质量符合技术设计标准,并与底座紧密配合,将底座压到一定的宽度和厚度。基床厚度应压实,每层厚度应为1至2米。在压实施工前,应先进行夯实过程,以确定夯击的频率和能量。在完成坚实的基础床后,应组织相关人员进行夯实,然后合理的检查和检查夯实的紧密性和均匀性。基床抛石过程中需按地基沉 降量预留。 2.3预制沉箱施工 在重力式码头沉箱预制方法主要有吊放式、船坞式、滑道式、挖掘式。具体 工序为:钢筋施工→模板施工→浇筑施工→养护。沉箱混凝土浇筑需在施工过程

沉箱重力式码头课程设计计算书

目录 第一章设计资料------------------------------------- 3 第二章码头标准断面设计------------------------ 5 第三章沉箱设计------------------------------------- 11 第四章作用标准值分类及计算----------------- 15 第五章码头标准断面各项稳定性验算------- 44

第一章设计资料 (一)自然条件 1.潮位: 极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m; 设计低水位:+1.2m;施工水位:+2.5m。 2.波浪: 拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。 3.气象条件: 码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。 4.地震资料: 本地的地震设计烈度为7度。 5.地形地质条件: 码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m。根据勘探资料,码头所在地的地址资料见图1。 图一地质资料

(二)码头前沿设计高程: 对于有掩护码头的顶标高,按照两种标准计算: 基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m)=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m)=6.50+(0~0.5)=6.50~7.00m (三)码头结构安全等级及用途: 码头结构安全等级为二级,件杂货码头。 (四)材料指标: 拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。 (五)使用荷载: 1.堆货荷载: 前沿q1=20kpa;前方堆场q2=30kpa。 2.门机荷载: 按《港口工程荷载规范》附录C荷载代号Mh-10 -25 设计。 3.铁路荷载: 港口通过机车类型为干线机车,按《港口工程荷载规范》表7.0.3-2中的铁路竖向线荷载标准值设计。 4.船舶系缆力: 按普通系缆力计算,设计风速22m/s。

毕业设计---5万吨级散货码头设计

毕业设计(论文)铁山港5万吨级散货码头设计 学生姓名: 学号:2008 班级: 专业:港口航道与海岸工程 指导教师: 2012 年6 月

铁山港50000吨级散货码头设计 摘要 铁山港区距北海市近40公里,距合浦县城廉州镇40多公里,距自治区首府南宁市250公里,距广东省湛江市约150公里,距海南省首府海口市124海里。铁山港区是西南最便捷的出海通道之一,是广西以及大西南连接广东、福建陆路经济走廊的重要交通枢纽。 本设计主要根据铁山港自然条件、运营、船型等资料,设计若2个5万吨级散货泊位。主要设计内容包括:对码头环境进行分析,包括地理、水文、气候、风况等进行分析;对码头进行总平面布置,包括码头陆域、水域的平面布置及生产生活辅助区布置;对散货泊位进行装卸工艺流程的设计,确定码头的主要经济技术指标;对码头进行结构设计,包括方块、沉箱方案的拟定及比较,最终确定为沉箱方案,进行结构计算和配筋计算。 关键词:总平面布置;装卸工艺;结构设计;配筋计算

THE DESIGA OF TIESHAN PORT’S 50000DWT BULK TERMINAL ABSTRACT Tieshan port is nearly 40 kilometers away from Beihai City, the distance between the city of Hepu County is about 40 kilometers, 250 km away from Nanning, capital of the autonomous and Zhanjiang City (Guangdong Province) about 250 km away. From the capital of Hainan Province,Haikou City,the distance is 124 miles. Tieshan port is the most convenient access to the sea southwest of Guangxi and the Big Southwest, is connected to land in Fujian, Guangdong Economic Corridor of important traffic hub. According to the native condition opertion factor and transport means, this project will design four ten thousad ton class berths, one of them is used for the bulk cargo. Cheif design content: the analysis to mative tendition of harbour, which include geography hydrdogy, weather, wind etc; The overall plan design covers the surfowe design of the wharfs land and water. The living assistance arrangement etc: The design of cargo-handing technology tarft flow program of bunk cargo berth, which is used for determining key index sign of the economy technique; Construction design including the determination and comparion coutrete block and contrete caisson plan; The later choosed, along with structure caulation and steels arranging accout. Key word:Overall plan arrangement; Cargo-handing technology; Construction design; Steels arranging account

探讨重力式沉箱码头施工

探讨重力式沉箱码头施工 大型重力式沉箱码头施工过程中很容易引发一些施工质量问题,一旦问题出现,施工技术人员必须严肃认真对待,并且在此前提下采取有效措施积极进行工程抢救,不能把问题置之不理。为了能够进一步提高大型重力式沉箱码头的施工质量,施工技术人员必须从实际出发,每一个施工的基础步骤都不容忽视,严把施工质量关,唯有这样方能在整个工程中获得最大的收益及经济收益。 标签重力式码头;施工过程;问题;质量控制 1.引言 重力式码头是一种很特殊的码头类别,重力式码头在性能上不仅可以防冻防冰,还可以承受较大的荷载。重力式码头的硬度很大,多年也不会龟裂,它能灵活适应集中荷载、超载以及装卸技术的各种变化,并且最重要的一点是,重力式码头施工技术较为简单便捷,施工成本低。重力式码头当中使用率最高的结构形式当属沉箱,而在各类沉箱当中最常用的就是小型沉箱。常用的小型沉箱一般在预制场进行预制,然后通过起重船吊运安装。相对来说,预制沉箱的总质量以及沉箱的安装正位相对简单,对于施工人员来说解决这些问题是没有难度的。可是,对于体积质量较大的沉箱来说,它们往往是在半潜驳上进行预制,而且这过程中的预制质量和安装正位是很难被解决的。 2.大型重力式沉箱码头施工过程的质量问题 最近几年,随着水运市场的覆盖面越来越大,水运市场的施工船舶也正向大型化跨步发展,我国的大型重力式沉箱码头的建设施工也不断飞速发展,并且越来越趋向大型化以及深水化。在这一转变过程中,人们对大型重力式沉箱码头的建设过程也相应提出了更高的要求,即施工时间必须足够短。可是这样一来,不少施工质量问题也相应地出现,其中最为突出的质量问题以及它们所特有的特征如下所示: (1)沉箱的分层浇筑接缝地方缓慢渗水,导致沉箱的抗腐蚀性下降,极易被腐蚀物质所腐蚀,从而进一步降低了沉箱出运浮游的稳定性。 (2)基槽开挖施工完成后,由于回淤速度过快且无法得到有效控制,导致回淤的沉积物厚度过大,不符合相关的施工规范标准。 (3)在基床抛石及夯实过程终止完成之后,会发现基床抛石的标高和夯实的标高与施工设计图上设置的标高相差较大;而且在此之后,由于淤积物和沉积物过多,使得潜水员不能正常进行施工作业,无法整平基床。 (4)基床整平施工完成之后,发现所补抛的厚度过厚,导致沉箱安装之后会出现超出施工设计的预留沉降量,容易导致沉箱发生滑移现象。

华北水院沉箱码头设计

第一章港口设计基本资料 一.港口 港口是具有水陆联运设备和条件,供船舶安全进出和停泊的运输枢纽。是水陆交通的集结点和枢纽,工农业产品和外贸进出口物资的集散地,船舶停泊、装卸货物、上下旅客、补充给养的场所。由于港口是联系陆腹地和海洋运输(国际航空运输)的一个天然界面,因此,人们也把港口作为国际物流的一个特殊结点。 在中国沿海港口建设重点围绕煤炭、集装箱、进口铁矿石、粮食、陆岛滚装、深水出海航道等运输系统进行,特别加强了集装箱运输系统的建设。政府集中力量在、、、、、和等多个港口建设了一批深水集装箱码头,为中国集装箱枢纽港的形成奠定了基础;煤炭运输系统建设进一步加强,新建成一批煤炭装卸船码头。同时,改建、扩建了一批进口原油、铁矿石码头。到2004年底,沿海港口共有中级以上泊位2500多个,其中万吨级泊位650多个;全年完成集装箱吞吐量6150万标准箱,跃居世界第一位。一些大港口年总吞吐量超过亿吨,港、港、港、港、港、港、港、港八个港口已进入集装箱港口世界50强。

二.沉箱码头设计基本资料 某港口根据发展需要,拟建一个2000DWT的钢铁码头,共3个泊位。该工程为顺岸式平面布置形式。经过方案比选,决定采用重力式沉箱码头形式。沉箱填料采用块石,沉箱后填料采用块石、中砂,沉箱顶面以上填中砂。 (1).船型 规划设计时按以下设计船型考虑 (2).结构安全等级 结构安全等级为二级 (3).自然条件 1.水文条件

施工水位:2.0m;设计风速(取台风过境情况时最大风速):V x=V y=25m/s;水流速度:V=1.5m/s;波浪高度:H1%=2.40m/s;波浪周期:T=3.3s 2.地质资料 码头所在地为淤泥粘土地基,地基承载力设计值[σ]=240kPa;码头设抛石机床,抛石机床承载力设计值[σr]=600kPa。 混凝土沉箱与抛石基床摩擦系数设计值为f=0.60;抛石基床与地基摩擦力系数设计值为f=0.38。 3.地震基本烈度为6级。 (4).码头面荷载 1.堆货荷载:q=30kPa,距码头前沿 2.6m,共3m。 2.门机荷载 荷载代号:M n-3-25,最大起重量10t,最大幅度25m,自重145t,轨距10.5m,支腿纵距10.5m,荷载250kN。 (5).材料重度标准值

重力式码头施工组织设计

目录 1编制说明 (1) 1.1编制说明 (1) 1.2编制依据 (1) 2工程概况 (2) 2.1工程概述 (2) 2.2工程主体结构图 (2) 2.3主要工程数量 (2) 3工程管理目标 (2) 3.1质量目标 (2) 3.2安全、环保目标 (3) 3.3工期目标 (3) 3.4文明施工及其他目标 (3) 4工程特点分析 (3) 4.1工程施工特点分析 (3) 4.2自然条件特点分析 (4) 4.3工程风险评估 (8) 5施工总平面布置 (8) 5.1施工总平面布置说明(仓库搅拌站、道路、生活区、办公区、水电)8 5.2施工总平面图 (9) 5.3临时用地、用水、用电计划 (9) 6总体施工方案 (9) 6.1施工总体安排:工程开工后,以引桥18#墩为施工起点,自引桥向码头施工。根据工程需要划分施工段,各分项工程按分段依次流水施工。 码头主体施工流程如下:测量放线→基槽挖泥、炸清礁→基床抛石、夯实、整平→沉箱预制、安装→沉箱内回填→预制盖板安装(现浇盖板)→预制构件安装(现浇上部结构)→码头附属设施施工→竣工验收9

6.2施工总流程图 (11) 7主要分项施工方法 (11) 7.1基槽与港池炸礁工程施工 (11) 7.2基槽、港池及码头后方挖泥 (22) 8施工进度计划 (27) 8.1计划编制说明 (27) 8.2施工进度计划图 (27) 9施工测量 (28) 9.1平面及高程测量控制标准 (28) 9.2平面及高程测量方案 (28) 9.3沉降、位移观测点设置及观测计划 (30) 10试验检测(试验项目、频率、开始结束时间) (31) 11施工技术计划 (31) 11.1典型施工计划(6000t沉箱出运安装) (31) 11.2技术总结编写计划(套箱—施工时间,上报审批时间) (31) 11.3声像工作计划(5分钟录像片—施工过程和主要工艺细部) (31) 12质量工作计划 (31) 12.1分部、分项工程划分(码头-泊位;路基—1-3km;隧道、桥每座) (1) 12.2质量组织机构(项目经理、总工、质量员、工程技术员、材料员、试验员、测量、工区、劳务分包负责人) (32) 12.3质量管理措施(质量控制点—难度大、工艺复杂;分项工程占重要位置;新工艺、新材料、新结构;工人操作不熟练) (34) 13职业健康安全、环境保护措施 (35) 13.1组织机构 (35) 13.2主要危险源辨识清单及安全措施 (36) 13.3施工专项安全措施 (42) 14文明施工措施 (57) 15工程用料使用计划 (62) 15.1主要工程材料需用计划 (62)

码头施工施工组织设计

第一章编制范围、依据及原则 1.1 编制范围 本施工组织设计的编制范围为秦皇岛港101#、102#泊位主体加固改造工程,主要工程内容为101#泊位更换护舷;102#泊位拓宽,新建靠船平台及相应配套设施,对两泊位沉箱及胸墙破损进行修复。值班室土建、电气及采暖、工艺管道、管线等支架砼墩制作。 1.2 编制依据 1.秦皇岛港101#、102#泊位主体加固改造工程施工招标文件 2. 秦皇岛港101#、102#泊位主体加固改造工程施工图纸及其设计说明文件 3.《水运工程测量规范》(JTJ) 4.《重力式码头设计与施工规范》(JTS); 5.《水运工程质量检验标准》(JTS) 6.《港口工程地基规范》(JTS) 7.《水运工程混凝土施工规范》(JTs202-2011) 8.《给排水管道工程施工及验收规范》(GB); 9.《工业金属管道工程施工及验收规范》(GB); 10.《现场设备工业管道焊接工程施工及验收规范》(GB); 11.《石油化工有毒,可燃介质管道工程施工及验收规范》(SH); 12.《石油化工设备和管道涂料防腐蚀技术规范规范》(SH); 13.《压力管道规范》(GBT20801.1-2006); 14.《建筑桩基技术规范》(JGJ) 15.《水运工程施工安全防护技术规范》Jts 16. 国家和地区颁布的其它有关技术法规和规范 17. 本单位施工船机设备性能及在该区域施工经验。 1.3 编制原则 本施工组织设计是根据我公司类似工程的施工经验和本工程特点,综合考虑工程质量、工期及造价等因素的基础之上,采用合理的施工工艺及船机设备,组

织各工序紧密衔接平行流水和交叉作业编制而成。为确保施工安全、工程质量、环境保护和工期目标的实现,为此我们编制的施工组织设计遵循以下原则。 1.3.1质量控制原则 “百年大计,质量第一”,质量是企业的生命,我们本着对业主高度负责的责任心和使命感,严格按照设计文件,遵照有关技术规范、技术标准及质量检验标准组织施工,大力加强质量管理,服从业主和监理工程师的指导与监督,本工程质量目标达到招标文件要求的质量等级。 1.3.2工期控制原则 我单位充分认识到本工程工期的紧迫性,在施工中将采用项目法施工,建立健全项目内部各级责任制,做到层层分解、责任到人、奖罚分明,充分调动全体员工的积极性。加强现场人、机、料的科学调度,重点保障关键线路上各工序的施工进度,确保整个工程在业主要求的总工期内完成。 1.3.3文明施工原则 “坚持文明生产,创造文明工地”是我们的一贯追求,在本工程施工中,我们将使文明生产伴随施工生产的全过程。保证严格执行当地政府的有关法律、法规,加强各项规章制度管理,在场容场貌、工地卫生、精神文明建设等方面做出表率,创建文明施工,达到标准化工地的要求。 1.3.4发挥企业优势原则 我公司在类似工程施工中具有丰富的施工经验,在秦皇岛地区已经成功实施了多个项目,施工经验及材料组织的经验可以充分被用来实施本项目。我公司将抽调精兵强将组建强有力的项目经理部负责组织实施,同时抽调精良的施工船机设备投入施工,真正做到人力和设备的优化组合。单位总部是项目经理部的坚强后盾,各职能部门均将予以本项目最大的支持,同时设专门组织机构负责协调、解决本工程实施中遇到的问题,我们将充分发挥优势,确保工程的顺利实施,全面履行合同。

码头初步设计总结

****码头初步设计 一、设计概述 该码头为业主码头,主要用于液体化工品的进出口,为泉州三宏化纤有限公司解决化纤、纺织生产所需的原材料的运输,又可提供码头仓储服务,拓展公司的发展空间,并为本地区和相邻石化工业服务。根据业主要求,拟建一个5000吨级液体化工码头泊位和一个2000吨级液体化工码头泊位。 拟建码头设计方案根据工可报告的审查批复及业主要求,码头岸线前沿在批准的规划红线基础上前移12米,码头泊位总长度266米,采用重力式结构,泊位南部设6米×6米的系缆墩,通过钢引桥与后方永久性护岸及陆域相连。北部临时护岸采用斜坡式结构,形成陆域面积12.22万平米。 本项目水工部分的设计内容主要包括码头和护岸部分:自然条件分析、货运量及船型、总平面布置、装卸工艺、水工结构、码头配套附属设施(供电照明、通信、给排水、消防、环保)及相关投资概算等。 二、自然条件分析 1、地理位置 **** 2、风 年平均风速6.1m/s,常风向NE,频率27.2%,次常风向ENE和NNE,频率分别为12%和10.53%。本区季风明显,一年中6~8月以南

风为主,其他各月以东北风居多,强风向NE,最大风速27m/s,阵风最大风速大于40m/s。 3、雾 山腰气象站资料统计,年平均雾日数8天,最多12天,多出现在2~5月,夏季雾甚少。 4、水文 拟建工程海域的潮汐性质属正规半日潮(采用筑港零点为基准面)。设计高水位 6.45m(高潮累积频率10%) 设计低水位 -0.02m(低潮位累积频率90%) 极端高水位 7.70m(五十年一遇) 极端低水位 -0.86m(五十年一遇) 5、波浪 (1)设计波要素 重现期为50年一遇,设计高水位6.45m的波要素。 主波向ENE,H1%=2.99m,H4%=2.52m,T=5.67s 主波向SE,H1%=2.69m,H4%=2.27m,T=5.45s (2)泊稳情况 本港区除受台风影响外,在一般天气情况下,水域的波浪不大,泊稳情况良好。波浪影响港口作业平均为14.2天。 船舶作业条件: 2000吨级船舶波浪:横浪H4%不大于0.6m;顺浪H4%不大于0.6m; 5000吨级船舶波浪:横浪H4%不大于0.8m;顺浪H4%不大于1.0m。

相关文档
最新文档