多元函数的极值(复习)

多元函数的极值(复习)
多元函数的极值(复习)

§6.6 多元函数的极值

求具有二阶连续偏导数的二元函数的极值的步骤如下: ① 求出函数),(y x f 的所有驻点

由???==,0),(,0),(y x f y x f y

x 解得),(y x f 的驻点),(00y x ;

② 根据极值的充分条件判定驻点是否为极值点

对每一个驻点),(00y x ,求出二阶偏导数在该点的值

000000(,),(,),(,)xx xy yy f x y A f x y B f x y C ''''''===

1°当2

0B AC -<时,),(y x f z =在点),(00y x 取得极值),(00y x f ,

0A <时为极大值,0A >时为极小值;

2°当2

0AC B -<时,),(y x f z =在点),(00y x 不取极值; 3°当2

0B AC -=时,不能确定,需另作讨论。

习题六(A )22.求下列函数的极值,并判断是极大值还是极小值: (1)()z xy a x y =--,(0)a ≠; 解:① 求驻点

22

(,)[()]()2(,)[()]()2x x y y f x y xy a x y y a x y xy ay xy y f x y xy a x y x a x y xy ax xy x

''=--=---=--''=--=---=--

由22(,)20(,)20x y f x y ay xy y f x y ax xy x ?'=--=??'=--=?? 解得 003

003a x x x x a y y a y a y ?====????????===????=?

,,或

所以(0,0), (0,)a , (,0)a , (,)33

a a 为()z xy a x y =--的驻点;

②求二阶偏导数

222

(,)(2)2(,)(2)22(,)(2)2xx x xy y yy y f x y ay xy y y f x y ay xy y a x y f x y ax xy x x

''''''=--=-=--=--'''=--=-,

(2)2

2

1z x y x y xy =-++++ 解:① 求驻点

222

2

(,)(1)12(,)(1)12x y y f x y x y x y xy x y f x y x y x y xy

y x

''=-++++=++''=-++++=-++

由(,)120(,)120

x

y f x y x y f x y y x ?'=++=??'=-++=?? 解得11x y =-??=?,

所以(1,1)-为2

2

1z x y x y xy =-++++的驻点; ②求二阶偏导数

(,)(12)2(,)(12)1(,)(12)2xx x xy y yy y f x y x y f x y x y f x y y x ''''''=++==++='''=-++=,

24.某工厂生产甲、乙两种产品,产量各为x 、y ,其成本函数为22(,)23c x y x xy y =++。由市场调查得知,甲、乙两种产品的单价与产量分别有如下关系:12363,405P x P y =-=-。

求甲、乙两种产品产量各为多少时总利润最大?并求出最大利润。

解:设L 表示该工厂的利润,则12()(,)

L Px P y c x y =+- 2222(,)(363)(405)(23)3644082L L x y x x y y x xy y x x y y xy ==-+--++=-+--。

解方程组(,)36820

(,)401620

x

y L x y x y L x y y x ?'=--=??

'=--=??,得唯一驻点(4,2)。 根据问题的实际意义,L 必可取得最大值, 因此这个最大值在(4,2)处取得。于是该工

厂的最大利润为22

max (4,2)3644440282242112L L ==?-?+?-?-??=(元)。

25.某厂家生产某种产品的成本是每件2元,另外每月再花广告费A 元,则每月的销售量为0.00130(1)(22)A x e P -=--,其中P 为产品销售价格。求最合理的P 和A 值,使得工厂的纯利润最大。

解:设L 表示该工厂的利润,则L= x (P -2)- A 0.00130(1)(22)(2)A

e

P P A -=----

0.0012(,)30(1)(2444)(00)A L L P A e P P A

A P -==--+->>,。

解方程组0.0010.0012

(,)30(1)(224)0(,)0.03(2444)10A P A A L P A e P L P A e

P P --?'=--=??'=--+-=??,得1201000ln 3P A A ==??=?,或(舍去),

得唯一驻点(12,1000 ln3 )。

根据问题的实际意义,L 必可取得最大值, 因此这个最大值在(12,1000 ln3 )处取得。故当P=12, A=1000 ln3 时工厂的纯利润最大。

求函数),(y x f z =在条件0),(=y x ?的极值的拉格朗日乘数法的基本步骤为: (1) 构造拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=,其中λ为某一常数;

(2) 由方程组?

??

??===+==+=0

),(,0),(),(,

0),(),(y x L y x y x f L y x y x f L y y y x x x ?λ?λ?λ解出λ,,y x ,其中驻点(,)x y 就是所求条件

极值的可能的极值点。

注:拉格朗日乘数法只给出函数取极值的必要条件,因此按照这种方法求出来的点是否为

极值点,还需要加以讨论。不过在实际问题中,往往可以根据问题本身的性质来判定所求的点是不是极值点。

习题六(A )26.某工厂生产A 、B 两种产品,A 产品每件纯利6元,B 产品每件纯利4元,制造x 件产品与y 件产品的成本函数为2

(,)100006000

x

c x y x y =+++,而该厂每日的制造预算

是20 000元。 问应如何分配A 、B 两种产品的生产,使利润最大?

解一:设该厂每日生产x 件A 产品、y 件B 产品。设L 表示该工厂的利润,则

(,)64(0,00)L L x y x y x y xy ==+≥≥≠且。

因此问题就是在条件210000200006000x x y +++=,即21000006000

x x y ++-=下,求函数(,)64(0,00)L L x y x y x y xy ==+≥≥≠且的最大值。作拉格朗日函数

2

(,,)64(10000)6000

x L x y x y x y λλ=++++-, 求L 的驻点,即解方程组

2

(,,)6(1)0

3000(,,)40(,,)100000

6000x y

x L x y L x y x L x y x y λλλλλλ?'=++=??'=+=??'?=++-=?

1500

48125x y λ=??

?=-??=?,得唯一驻点(1500,8125) 所以这个驻点就是所求的解。即该厂每日生产1500件A 产品、8125件B 产品时利润最大。最大利润为(15008125)615004812541500L =?+?=,(元)

。 解二:设该厂每日生产x 件A 产品、y 件B 产品。设L 表示该工厂的利润,则

(,)64(0,00)L L x y x y x y xy ==+≥≥≠且。

因此问题就是在条件210000200006000x x y +++=,即2

1000006000

x x y ++-=下,求函数(,)64(0,00)L L x y x y x y xy ==+≥≥≠且的最大值。

化为无条件极值求解。把2

100006000

x

y x =--代入(,)64L x y x y =+得

2(,)64(10000)6000x L L x y x x ==+--,即2

()2400001500

x L L x x ==-+ 令2()201500

x x L L x ''==-=,得唯一驻点1500x =。

根据问题的实际意义,L 必可取得最大值, 因此这个最大值在1500x =处取得,此时

2

150010000150081256000

y =--=。

于是该厂每日生产1500件A产品、8125件B产品时利润最大,最大利润为

2

1500

L=?-+=(元)

(1500)215004000041500

1500

或(15008125)615004812541500

,(元)。

L=?+?=

高等数学第九章多元函数极值典型问题

1 设函数2 2(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常 数a ,并确定极值的类型. 2 求函数2 2 z x xy y =-+在区域1x y +≤上的最大值和最小 值. 3(04研) 设(,)z z x y =是由2 226102180x xy y yz z -+--+=确定的函 数,求(,)z z x y =的极值点和极值. 4 求函数23 u xy z =在条件x y z a ++=(其中,,,a x y z R + ∈)下的条 件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型. 分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题. 解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1) (1,1) (1,1)(1,1) 40220f x a y x f xy y ----??=++=??????=+=???, 因此有410a ++=,即5a =-. 因为 22 (1,1) 4f A x -?==?,2(1,1) (1,1) 22f B y x y --?= ==-??, 22 (1,1)(1,1) 22f C x y --?===?, 2242(2)40AC B ?=-=?--=>,40A =>, 所以,函数(,)f x y 在(1,1)-处取得极小值. 2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值. 分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可. 解 由 20z x y x ?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上, 22()313(1)133z x y xy x x x x =+-=--=-+, 它在[0,1]上最大值和最小值分别为1和 1 4 ; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上, 22()1(1)1z x y xy x x x x =-+=++=++,

探索求一元函数极值和最值方法

“探索求一元函数极值和最值方法”的学习报告 一、前言 函数的极值、最值不仅在实际问题中占有重要地位,而且也是函数形态的重要特征。因此,通过学习、掌握确定极值点和最值点,并求出极值和最值的方法是十分重要的。 二、学习内容和过程 1.探索可能的极值点 (1)回顾相关定义、定理 a.极值定义:若函数f在点x0的领域U(x0)内对一切x∈U(x0)有f(x0)≥(≤)f(x),则称函数f在点x0确取得极大(小)值。称x0为极大(小)值点。 b.费马定理:设函数f在点x0的某领域内有定义,且在点x0可导。若点x0为f的极值点,则必有f’ (x0)=0。且称这样的点为稳定点。 (2)思考并回答下列问题。进一步分析可能的极值点类型。 a.可导点成为极值点一定是稳定点吗?(是。通过费马定理可证明) b.函数的不可导点也能称为极值点吗?(能。例如y=| x|在x=0处取极小值) c.函数的稳定点一定是极值点吗?(不一定。例如y=x3,x=0为稳定点,但非极值点) d.函数的不可导点一定是极值点吗?(不一定。例如y=1/x,在x=0处不可导,但不是极值点) e.函数在点x0处不可导,它包含了哪几种情况?(①连续不可导②不连续) f.除此之外,还有没有其他类型的点极值点?(没有) 稳定点,例如y=x2,x=0处 (3)由上面的问题得到极值点的范围 连续不可导,例如y=| x|,x=0处 不可导点2x≠0 不连续点,例如y= -1 x=0 2.探索确定极值点的方法 由极值点的范围可知极值点分为连续点和间断点。对于剪短点,只要满足在x0某领域内始终有f(x0)≥f(x)或者f(x0)≤f(x),至于连续部分函数任意,这样间断点x0就为极大或极小值点,即判断间断点是否为极值点,只需要根据极值定义即可。下面主要讨论连续点能否成为极值点的判断。 (1)a.考察函数y=x2,y=x3,y=x1/3易知在x=0处连续,在U0(x)可导,且有 ①y=x2x<0时,f’ (x)<0,函数严格递减 x>0时,f’ (x)>0,函数严格递增 ②y=x3 f’ (x) ≥0函数单调递增 仅在x=0时,f’ (x)=0 ③y=x1/3 f’ (x)>0.函数严格递增且x=0处不可导 由y=x2在x=0处连续以及两边领域内的增减性可知y=x2在x=0处取得极小值,而y=x3以及y=x1/3由f(x)的增减性可知在x=0处不取极值。 b.启发得到定理:设f在点x0连续,在某领域U0(x0)内可导则 Ⅰ若当x∈U+0(x0),f’ (x) ≤0,当x∈U—0(x0),f’ (x) ≥0,则f在点x0处取得极大值Ⅱ若当x∈U+0(x0),f’ (x) ≥0,当x∈U—0(x0),f’ (x) ≤0,则f在点x0处取得极小值

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

导数与函数的极值 最值问题 解析版

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值. 例1已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2 ,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或? ??=-=33b a .?

当???=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 () A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2 1 31)(23-++-= 在)4,0(上无极值, 而()20,4∈,所以只有12m -=,3m =

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

多元函数极值的充分条件

多元函数极值的充分条件 马丽君 (集宁师范学院 数学系) 我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。若 0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值 点) 对于多元函数() Y f X =,其中 12(,,,)n X x x x =,有与上面一元函数取得极值的充 分条件相对应的结论。 定义 1.设n 元函数()Y f X =,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12 ,,,T n f f f x x x ????? ?????? 为()f X 的梯度,记作gradf 。 引理 设n 元函数()f X ,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数, 则()f X 在点00 0012(,,,)n X x x x =取得极值的必要 条件 是 : 0112(),, ,0T n n X X f f f gradf X x x x ?=?????== ?????? 证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。 定义 2.设n 元函数()f X ,对各自变量具有二阶 连续偏导数,00 0012(,, ,)n X x x x =是()f X 的驻点, 现定义 ()f X 在点0X 处的矩阵为: 2220002 112122220002021 22222 0002 1 2 () ()()()() ()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ?? ????? ?????? ??? ???? ? =??????? ??? ? ?? ???? ???????? 由 于 各 二 阶 偏 导 数 连 续 , 即 22(,1,2,,)i j j i f f i j n x x x x ??==????, 所以0()f H X 为实对称矩阵。 定理 设n 元函数()f X ,其中 12(,,,)n X x x x =,具有对各自变量的二阶连续偏导 数,00 0012(,, ,)n X x x x =是()f X 的驻点,则 (1) 当 0() f H X 正 定 时 , 000012(,, ,)n X x x x =是()f X 的极小值 点; (2) 当 0() f H X 负定时, 000012(,, ,)n X x x x =是()f X 的极大值 点; (3) 当 0() f H X 不定时, 000012(,, ,)n X x x x =不是()f X 的极大 值点 证明:由()f X 在点0X 处的泰勒公式

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式

1前言 函数极值问题已广泛地出现于数学、物理、化学等学科中,且它涉及的知识面非常广,所以就要求学生有较高的分析能力和逻辑推理能力,同时也要求学生掌握多种求函数极值的方法,因此对函数极值的研究是非常必要的。 函数极值的求解与发展极大的推动了微积分学科的发展,为其做出了重大贡献。 微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。 同样在很多工程实际中,我们经常需要做一些优化。举个简单的例子,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是

相关文档
最新文档