盾构隧道管片质量检测技术标准(CJJ/T 164-2011)解读

盾构隧道管片质量检测技术标准(CJJ/T 164-2011)解读
盾构隧道管片质量检测技术标准(CJJ/T 164-2011)解读

盾构隧道管片质量检测技术标准(CJJ/T 164-2011)

说明:

目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T 164-2011)”的word 版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。

该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。

1总则

1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。

1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。

1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。

2 术语

2.0.1 管片

盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。

2.0.2 混凝土管片

以混凝土为主要原材料,按混凝土预制构件设计制作的管片。

2.0.3 钢管片

以钢材为主要原材料,按钢构件设计制作的管片。

2.0.4 水平拼装检验

将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。

2.0.5渗漏检验

对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。

2.0.6抗弯性能检验

对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。

2.0.7抗拔性能检验

对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。

2.0.8粘皮

混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。

2.0.9飞边

模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥

砂浆。

2.0.10 拼接面

采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。

2.0.11环向

盾构隧道管片拼装成环后,环的切线方向。

2.0.12纵向

盾构隧道管片拼装后,环与环的中心连线方向。

2.0.13渗漏检验装置

在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺杆、橡胶密封垫等组成。

3基本规定

3.0.1盾构隧道管片检测,应在接受委托后,进行现场和有关资料调查,制定检测方案并确认仪器设备状况后进行现场检测,根据计算分析和结果评价判断是否进行扩大抽检,并应出具检测报告(见图3.0.1)。

图3.0.1 盾构隧道管片检测工作程序

3.0.2从事盾构隧道管片质量检测的机构,应符合国家规定的有关结构构件检测资质条件要求。检测人员应经过培训并取得检测资格。

3.0.3盾构隧道管片的检测数据应真实可靠,全面反映管片质量状况。检测所用的仪器设备应进行定期检定和校准,并应处于正常状态。仪器设备的测量精度应满足本标准相关章节的要求。

3.0.4盾构隧道管片现场检测时,除应执行本标准的有关规定外,还应遵守国家有关安全生产的规定。检测区域应设置明显标志,并应采取适当措施保证检测人员和仪器设备安全。

3.0.5混凝土管片外观、尺寸、水平拼装、渗漏、抗弯性能、抗拔性能检验的原始记录可按本标准附录 A 的格式记录。

3.0.6盾构隧道管片检测报告应包含下列主要内容:

1工程名称、委托单位名称、建设单位、设计单位、施工单位、管片生产单位及监理单位名称;

2 检测目的及依据的标准;

3 检测项目、检测数量及仪器设备;

4 检测结果与数据分析、检测结论;

5 检测日期和报告完成日期,检测单位,主要检测人员的签章;

6 检测数据图表和照片以及计算资料。

4技术指标

4.1混凝土管片

4.1.1 混凝土管片的混凝土强度等级不应小于 C50 ,且应符合设计要求。

4.1.2 混凝土管片应进行外观检验,外观的检验项目和质量要求应按表4.1.2确定。

4.1.3 混凝土管片应进行尺寸检验,尺寸的检验项目和允许偏差应按表4.1.3确定。

4.1.4盾构隧道管片应进行水平拼装检验,水平拼装尺寸的检验项目和允许偏差应符合表4.1.4的规定。

4.1.5

混凝土管片应进行管片渗漏检验,检验结果应满足设计要求。 4.1.6混凝土管片应进行抗弯性能检验,检验结果应满足设计要求。 4.1.7混凝土管片应进行吊装螺栓孔抗拔性能检验,检验结果应满足设计要求。

4.2 钢管片

4.2.1钢管片材质应符合设计要求。

4.2.2钢管片应进行外观检验,外观的检验项目和质量要求应按表 4.2.2确定。

表4.2.2钢管片外观检验项目和质量要求

4.2.3钢管片应进行几何尺寸检验,尺寸的检验项目和允许偏差应符合表4.2.3的规定。

4.2.4钢管片应进行水平拼装检验,水平拼装尺寸允许偏差应符合本标准表4.1.4的规定。

4.2.5钢管片应进行焊缝质量检验,焊缝质量应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205的有关规定。

4.2.6钢管片应进行涂层质量检验,涂层质量应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205的有关规定。

5 检验方法

5.1强度检验

5.1.1混凝土管片的混凝土强度检验应以检查生产过程的试件强度试验报告为依据,且应采用回弹法或钻芯法对混凝土管片的混凝土强度进行抽样检验。

5.1.2当采用回弹法检测混凝土管片的漉凝土强度时,回弹法检验应按现行行业标准《回弹法检测混凝土抗压强度技术规程》JGJ/T 23 的规定执行。回弹操作面宜选择管片内弧面及管片拼接面。

5.1.3当抽检混凝土管片的混凝土检验条件不符合现行行业标准《回弹法检测混凝土抗压强度技术规程》JGJ/T 23有关规定或对回弹法结果有争议时,应采用钻芯法进行混凝土强度检验。钻芯法芯样试件制作及试验应符合国家现行有关标准的规定。

5.1.4钢管片材质强度检验应检查生产过程的检验报告或生产厂家出具的产品质量证明文件,并应符合设计要求。

5.2.1混凝土管片裂缝检验应先采用目测,当发现裂缝时,应记录每条裂缝的位置、最大宽度和长度,并应按本标准表4.1.2判定裂缝类别。

裂缝的最大宽度应采用读数显微镜或裂缝宽度检测仪测量,精确至 0.01mm;裂缝长度宜采用钢直尺或钢卷尺测量,精确至1mm。

5.2.2混凝土管片内外弧面露筋检验应采用目测,发现露筋时应记录外露钢筋的位置及数量。

5.2.3混凝土管片表面孔洞检验应采用目测,发现孔洞时应记录孔洞的位置及数量、每个孔洞的最大孔径和最大深度。

孔洞的最大孔径应采用钢直尺或钢卷尺测量,精确至1mm;最大深度应采用钢直尺和深度游标卡尺测量,钢直尺沿着管片的纵向轴线紧贴在管片表面,然后用深度游标卡尺测量孔洞底部至管片表面的最大距离,精确至 lmm。

5.2.4混凝土管片疏松、夹渣检验应采用目测,发现缺陷时应记录疏松、夹渣的位置及数量。

5.2.5混凝土管片蜂窝检验应采用目测,发现蜂窝时应记录蜂窝的位置及数量。

5.2.6混凝土管片麻面、粘皮检验应采用目测,发现缺陷时应记录麻面、粘皮的尺寸。

应采用钢直尺或钢卷尺测量麻面、粘皮的尺寸,精确至lmm. 并应按本标准附录B计算其面积。

5.2.7混凝土管片缺棱掉角、飞边应采用目测,发现缺陷时应记录缺棱掉角、飞边的位置及数量。

5.2.8钢管片表面裂缝应采用目测,当发现裂缝时,应记录每条裂缝的位置、最大宽度和长度。

裂缝的最大宽度应采用读数显微镜或裂缝宽度检测仪测量,精确至0.01mm;裂缝长度宜采用钢直尺或钢卷尺测量,精确至 lmm。

5.2.9钢管片表面锈蚀应采用目测,发现锈蚀时应记录锈蚀的位置及数量。

5.2.10螺栓孔检测应先采用目测,再采用螺栓对混凝土管片和钢管片环向、纵向螺栓孔进行穿孔检验,并应记录螺栓穿孔检验、内圆面平整和螺栓孔塌孔情况。

5.3.1混凝土管片及钢管片的宽度检验应采用游标卡尺在内、外弧面的两端部及中部各测量1点,共6点,精确至0.1mm。

5.3.2混凝土管片及钢管片的厚度检验应采用游标卡尺在管片的四角及拼接面中部各测量1点,共8点,精确至0.1mm。

5.3.3混凝土管片的钢筋保护层厚度检验应符合现行行业标准《混凝土中钢筋检测技术规程)) JGJ/T 152 的规定。当采用钢筋探测仪进行测量时,应在内弧面和外弧面各测量5点,精确至lmm 。当有争议时,可凿开混凝士保护层,应采用深度游标卡尺进行钢筋保护层厚度测量,精确至0.1mm。

5.3.4钢管片螺栓孔位及直径检验应采用游标卡尺测量,精确至0.1mm。

5.3.5钢管片的环面与端面、环面与内弧面的垂直度检验应采用靠尺和塞尺测量,并应计算钢管片环面与端面、环面与内弧面的夹角,精确至30" 。

5.3.6钢管片的端面、环面平整度检验,应采用靠尺分别紧贴钢管片端面、环面的中部及端部,用塞尺塞人钢管片检验面与靠尺间的缝隙,精确至 0.02mm。

5.4水平拼装检验

5.4.1盾构隧道管片水平拼装检验时,可采用二环拼装或三环拼装,拼装时不应加衬垫。环宽大于或等于 2m的管片宜按二环水平拼装进行检验,环宽小于2m的管片宜采用三环水平拼装进行检验。

5.4.2盾构隧道管片成环后内径和成环后外径检验,应采用钢卷尺在同一水平测量断面上选择间隔约45o的四个方向进行测量(见图5.4.2),精确至 1mm。

5.4.3盾构隧道管片的环向缝间隙和纵向缝间隙应全数检验,应先目测管片拼接处,选择较不贴合的接缝,然后用塞尺进行测量,两环之间的环向缝间隙应测量不少于6点,纵向缝间隙应每条缝测量不少于2点,精确至0.1mm。

5.5.1混凝土管片渗漏检验装置(见图5.5.1)应采用刚性支座,横压件、紧固螺杆及检验架钢板应有足够的刚度。

5.5.2渗漏检验装置应将混凝土管片外弧面等分为三个检验区域(见图5.5.2),每个检验区域应分别布置进水孔和排水孔。检验架钢板与管片外弧面之间应采用橡胶密封垫密封,橡胶密封垫应沿三个检验区域边界布置。橡胶密封垫内侧距离管片侧边不应大于100mm。

5.5.3混凝土管片在检验台上应安放平稳,密封橡胶垫应紧贴在管片外弧面上,管片内弧面与横压件间应垫放橡皮条。管片内弧面宽度方向上的横压件应采用紧固螺栓与下支承座上的横压件连接,用扭矩扳手从中间开始向两边逐级对称拧紧。

5.5.4混凝土管片渗漏检验仪器技术指标应符合表5.5.4的规定。

表5.5.4渗漏检验仪器技术指标

5.5.5渗漏检验前,应酋先安装连接好渗漏检验装置,打开泄压排水孔,接通进水阀门,注人自来水,当泄压排水孔排水时关闭泄压排水孔,启动加压水泵,分级施加水压。检验应符合下列步骤:

1 按 0.05MPa/min 的加压速度,加压到0.2MPa ,稳压10min ,检查管片的渗漏情况,观察侧面渗透高度,作好记录;

2 继续加压到0.4MPa 、0.6MPa ……,每级稳压时间10min ,直至加压到设计抗渗压力,稳压2h,检查管片内弧面的渗漏情况,观察侧面渗透高度,作好记录;

3 稳压时间内,应保证水压稳定,出现水压回落应及时补压,保证水压保持在规定压力值;

4 混凝土管片渗漏检验过程中,若因橡胶密封垫不密实出现渗漏水时,应判定试验失败,重新检验。

5.6抗弯性能检验

5.6.1混凝土管片抗弯性能检验装置(见图5.6.1)应符合下列规定:

1 加载反力装置所能提供的反力不得小于最大试验荷载的1.2倍;

2 支承混凝土管片两端的活动小车车轮应能沿地面轨道滚动;

3 宜采用油压千斤顶进行加载、卸载;

4 施加给混凝土管片的抗弯荷载应通过荷载分配梁来实现,加载点取1/3管片跨度;

5 加压棒的长度应与管片宽度相等。

5.6.2混凝土管片抗弯性能检验设备的安装应符合下列规定:

l 管片应平稳安放在检验架上,加载点上应垫上厚度不小于20mm的橡胶垫;

2 管片检验过程中,应布设挠度和水平位移测点(图5.6.2)。

5.6.3混凝土管片抗弯性能检验仪器技术指标应符合表5.6.3的规定。

5.6.4混凝土管片抗弯性能检验仪器的选用应符合下列规定:

1 荷载测量系统可采用荷载测试仪直接测读,也可通过千斤顶油压表测量得到,油压表可采用指针油压表或数字压力表;

2 位移宜采用百分表测量,百分表可为机械百分表或数字百分表;

3 裂缝宜采用读数显微镜测量。

5.6.5混凝土管片抗弯性能检验应采用分级加载方式,每级加载值应符合表5.6.5的规定,每级恒载时间不应少于5min ,应记录每级荷载值作用下的各测

点位移,并施加下一级荷载。

表5.6.5抗弯性能检验加载值

5.6.6 当混凝土管片出现裂缝后,应持续荷载lOmin,观察混凝土管片裂缝的开展,并应取本级荷载值为开裂荷载实测值。

5.6.7当加载至设计荷载时,应持续荷载30min,观察混凝土管片裂缝开展,记录最大裂缝宽度,随后卸载,终止检验。

5.6.8抗弯性能检验的数据处理应符合下列规定:

1 每一级加载后的位移变量,应按下列公式计算:

W 1=D

1

-(D

4

+D

5

)/2 (5.6.8-1)

W 2=(D

2

+D

3

)/2-(D

4

+D

5

)/2 (5.6.8-2)

W 3=(D

6

+D

7

)/2 (5.6.8-3)

式中:W

1

——中心点竖向计算位移(mm)

W

2

——荷载点中心点竖向计算位移(mm)

W

3

——水平点计算位移(mm)

D

1

——中心点测量位移(mm)

D 2、D

3

——荷载点竖向测量位移(mm)

D 4、D

5

——端部中点竖向测量位移(mm)

D 6、D

7

——端部中点水平测量位移(mm)

2 应绘制中心点位移、荷载点位移、水平点位移与荷载的关系曲线图。

3 应提供每级荷载作用下裂缝位置、长度和宽度的图表。

5.6.9当出现下列情况之一时,检验失败,应重新检验:

1 位移变量曲线出现异常突变;

2 混凝土管片在加载点处出现局部破坏。

5.7抗拔性能检验

5.7.1混凝土管片应采用穿心式张拉千斤顶进行管片吊装孔的预埋受力构

件抗拔性能检验。抗拔性能检验装置(见图5.7.1)中的承压钢板开孔直径应大于吊装孔直径5mm;橡胶垫厚度及承压钢板厚度不应小于lOmm;管片内弧面与橡胶垫之间的空隙应填细砂找平。

5.7.2混凝土管片抗拔性能检验设备的安装应按下列步骤进行:

1 先将螺杆旋人吊装孔螺栓管内,检查螺栓的旋人深度及垂直度;

2 将橡胶垫及承压钢板套进螺杆,然后安装穿心式张拉千斤顶,旋紧螺母,使管片、螺栓、螺杆、千斤顶、螺母连接成一整体;

3 安装荷载测试系统。

5.7.3混凝土管片抗拔性能检验仪器的技术指标应符合表5.7.3的规定。

表5.7.3检验仪器技术指标

5.7.4混凝土管片抗拔性能检验应采用分级加载方式,每级加载值应符合表5.7.4的规定,每级持荷时间不应少于5min,应记录每级荷载作用下螺栓的位移量。

表5.7.4抗拔性能检验加载值

5.7.5当抗拔性能检验加载达到设计荷载时,应持续荷载30min,每5min 测量一次位移,记录荷载和位移,终止试验并观察混凝土管片裂缝开展情况。

5.8焊缝检验

5.8.1钢管片焊缝缺陷检验应采用目测或放大镜观察,当发现缺陷后应采用游标卡尺或钢尺测量缺陷的长度,精确至0.1mm ,并应记录缺陷的类型、位置及数量。焊缝几何尺寸偏差检验应采用焊缝量规测量,精确至0.1mm。

5.8.2钢管片焊缝内部缺陷检验应采用超声波法进行探伤检测。焊缝内部缺陷检验的操作应符合国家现行标准《钢结构工程施工质量验收规范》GB 50205 和《钢结构超声波探伤及质量分级法》JG/T 203 的有关规定。

5.9涂层检验

5.9.1钢管片涂层外观质量宜采用目测的方式进行检测,钢管片涂层厚度宜采用干漆膜测厚仪进行检测。

5.9.2钢管片涂层检验应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205的有关规定。

6验收标准

6.1检验数量

6.1.1盾构隧道管片的检验,应合理划分检验批,制定抽样检验方案。检验批宜根据工程验收需要按施工标段划分。抽样检验方案应在检查管片的规格、型号及性能检测报告的基础上制定。

6.1.2混凝土管片质量检验项目应包括:混凝土强度、外观、尺寸、水平拼装、渗漏、抗弯性能及抗拔性能,抽样检验数量应符合表6.1.2规定。

表6.1.2混凝土管片质量验收检验数量

注:外观及尺寸的检验应按标准块、邻接块、封顶快三种类型管片分别抽检,渗漏、抗弯性能检验宜选用标准块。

6.1.3钢管片质量检验项目应包括:外观、尺寸、水平拼装、焊缝及涂层,抽样检验数量应符合表6.1.3规定。

注:外观及尺寸的检验应按标准块、邻接块、封顶快三种类型管片分别抽检

6.2判定标准

6.2.1当采用回弹法对混凝土管片强度进行抽检时,应按现行行业标准《回弹法检测:混凝土抗压强度技术规程)) JGJ/T 23的规定,计算混凝土强度推定值。当生产过程的、混凝土试件强度试验报告评定为合格且回弹法抽检推定值或钻芯法芯样强度试验值满足设计强度要求时,应判定该检验批管片混凝土强度合格。

6.2.2混凝土管片外观检验应按本标准表4.1.2指标判定,当主控项目无缺陷且一般项目缺陷不超过2项时,应判定该检验批管片外观质量合格。

6.2.3混凝土管片的几何尺寸应按本标准表4.1.3规定的允许偏差进行判定。当混凝土管片宽度、厚度和钢筋保护层厚度检验均符合下列规定时,应判定该检验批管片几何尺寸合格:

1 管片各个测点的宽度检验结果不超过允许偏差,宽度的检验结果应判为合格。

2 管片各个测点的厚度检验结果不超过允许偏差,厚度的检验结果应判为

合格。

3 管片钢筋保护层厚度检验应符合下列规定:

1)当全部钢筋保护层厚度检验的合格点率为90%及以上时,钢筋保护层厚度的检验结果应判为合格;

2) 当全部钢筋保护层厚度检验的合格点率小于90%但不小于80%时,可再抽取相同数量的管片进行检验;当按两次抽样总和计算的合格点率为90%及以上时,钢筋保护层厚度的检验结果仍应判为合格;

3) 每次抽样检验结果中不合格点的最大偏差均不应大于本标准表4.1.3规定允许偏差值的1.5倍。

6.2.4混凝土管片水平拼装检验应按本标准表4.1.4规定的允许偏差进行判定,当成环后内径、成环后外径、环向缝间隙和纵向缝间隙的各个检测结果均符合本标准表 4.1.4规定的允许偏差时,应判定该检验批管片水平拼装性能合格。

6.2.5混凝土管片的抗渗性能应按以下规定进行判定:在设计抗渗压力下稳压2h,管片内弧面不出现渗漏水现象,侧面渗水高度不超过50mm,应判定该检验批管片抗渗性能合恪。

6.2.6混凝土管片的抗弯性能应按以下规定进行判定:加载达到设计荷载并持荷30min后,没有观察到裂缝或裂缝宽度不大于0.2mm,应判定该检验批管片抗弯性能符合设计要求。

6.2.7混凝土管片的抗拔性能应按以下规定进行判定:设计荷载下的最后三次所测位移,相邻两个位移差均小于0.01mm,应判定该检验批管片预埋受力构件抗拔性能符合设计要求。

6.2.8钢管片的外观质量应按本标准表4.2.2的规定的允许偏差进行判定,当主控项目无缺陷且一般项目缺陷不超过1项时,应判定该检验批钢管片外观质量合格。

6.2.9钢管片尺寸偏差应按本标准表4.2.3的规定进行判定,当抽检钢管片尺寸偏差检验项目全数满足要求时,应判定该检验批合格。

6.2.10钢管片的水平拼装结果应按本标准第6.2.4条的规定进行判定。

6.2.11钢管片焊缝质量应按现行国家标准《钢结构工程施工质量验收规范》GB 50205的规定进行判定。

6.2.12抽检钢管片涂层质量应按现行国家标准《钢结构工程施工质量验收规范》 GB 50205的规定进行判定。

6.3检验结果

6.3.1同一检验批混凝土管片质量评定应符合下列规定:

1 当混凝土强度、外观、尺寸、水平拼装、渗漏、抗弯性能、抗拔性能检验均判定为合格时,应判定该检验批管片为合格。

2 当有一项性能指标不合格时,应针对不合格性能指标取双倍数量管片进行扩大检验,如扩大抽检合格,则去除抽检不合格管片,该检验批管片应判定为合格;若加倍抽样检验仍不合格,应对该检验批管片该项目逐一进行检验,合格者方可使用。

6.3.2同一检验批钢管片质量评定应符合下列规定:

1 当外观、尺寸、水平拼装、焊缝、涂层检验均判定为合格时,应判定该检验批管片为合格。

2 当有一项性能指标不合格时,应针对不合格性能指标取双倍数量管片进行扩大检验,如扩大抽检合格,则去除抽检不合格管片,该检验批管片应判定为合格;若加倍抽样检验仍有不合格,应对该检验批管片该项目逐一进行检验,合格者方可使用。

附录A 原始记录表格

A.0.1混凝土管片外观检验可按表A.0.1记录

隧道监控量测技术

1隧道监控量测的定义:隧道现场监控量测是指在隧道施工过程中,对围岩和支护、衬砌受力状态的量测。现场监控量测是监视围岩稳定,判断支护、衬砌结构设计是否合理,施工方法是否正确的一种手段;也是保证新奥法安全施工、提高经济效益的重要条件;为施工中可能有的工程变更提供科学依据;它贯穿隧道施工的全过程。为此《公路隧道施工技术规范》(JTJ 042-94)中第9.1.1条作出下列规定:采用复合式衬砌的隧道,必须将现场监控量测项目列入施工组织设计,制定监控量测计划,并在施工中认真实施。 2、监控量测的目的与要求:量测的目的为: ⑴掌握围岩动态和支护结构的工作状态,利用量测结果修改设计,指导施工. ⑵预见事故和险情,以便及时采取措施,防患于未然. ⑶积累资料,为以后的新奥法设计提供类比依据. ⑷为确定隧道安全提供可靠的信息 ⑸量测数据经分析处理与必要的计算和判断后,进行预测和反馈,以保证施工安全和隧道稳定. 量测的要求:快速埋设测点.(一般设置在距掌子面、工作面2m范围内,开挖后24小时、下次爆破前测取第一次读数。)测量读数在隧道内尽量要快;保证测量点不被破坏;读数准确可靠。 3监控量测的任务:⑴确保安全。⑵指导施工。⑶修正设计。⑷积累资料。 4现场工作程序:准备工作;确定埋设断面;测点埋设;数据采集;数据整理分析;资料归档 5监控量测的项目与方法:隧道监控量测的内容应根据隧道工程地质条件,围岩类别(级别)、围岩应力分布情况、隧道跨度、埋深、工程性质、开挖方法、支护类型等因素确定。通常分为必测项目和选测项目,如地表下沉对城市地铁项目应为必测项目;但对于山地交通隧道可把地表下沉做为选测项目。《公路隧道施工技术规范》(JTJ042-94)对复合式衬砌的隧道现场监控量测要求内容见5.4下表 5.1监控量测的项目与方法:必测项目选测项目 5.2必测量测项目:必测项目:必测项目:包括围岩地质和支护描述、地表沉降观测、拱顶下沉量测、周边收敛量测。这类量测是为了在设计、施工中确保围岩稳定的经常性量测工作。量测方法简单,量测密度大,量测信息直观可靠,费用较少,贯穿在整个施工过程中,对监视围岩稳定,指导设计和施工有巨大的作用。土建施工完成量测工作亦告结束。 5.3必测量测项目所需设备:精密水准仪、塔尺、钢圈尺(测地表沉降、拱顶下沉);周边收敛仪(测周边收敛)。 5.4隧道现场监控量测要求内容表: 5.5地质、支护状态观察:该项目包括对掌子面观察和支护结构的支护效果观察。掌子面工程地质和水文 地质情况观察包括岩石的名称、岩层产状、断层、层理、节理等结构面的分布、走向、产状。每茬炮后需要观测一次。支护状态观察包括初期支护状态和已成峒支护效果观察。如喷射砼开裂部位、宽度长度及深度。二次衬砌的整体性、防水效果等,每天观察一次。洞内状态观察是可靠性很高且最直接的判断资料。 对洞外边仰坡稳定和地表渗透观察按要求进行描述;做好相关的观察记录。观察使用地质罗盘、地质锤、钢卷尺、放大镜、秒表、手电、照相机或摄像机等。 5.6 周边收敛量测:5. 6.1必测量测项目:围岩周边位移量测:在预设点的断面,隧道开挖爆破以后,沿隧道 周边的拱顶、拱腰和边墙部位分别埋设测桩。测桩埋设深度30cm,钻孔直径φ42,用快凝水泥或早强锚固剂固定,测桩头需设保护罩,测桩每断面6组共12根。采用钢尺式周边收敛仪量测周边收敛变形。所有测点布置在量测断面位置。 ①周边收敛量测是最基本的主要量测项目之一,布置在主测断面。先在测点处用凿岩机(或电钻)在待测 部位成孔,然后将藕合剂(锚固剂)置入孔中,最后将收敛预埋件敲入,旋正收敛钩,尽量使两预埋件轴线在基线方向上,以利收敛计悬挂和观测。待凝固后,周边收敛量测采用收敛计进行数据采集。 连拱必测项目测点断面布置图 我们用测线布置图中的BC和DE边的值变化来实现对净空水平收敛的量测。周边收敛数据处理:回归分析时,一般同时采用下面的三种函数,通过对比,推算最终位移时采用三个函数中回归精度(拟合程度)较高的一个函数,不同测点的回归函数可能不同。

工程测量毕业论文 隧道监控量测技术应用

毕业设计 隧道监控量测技术应用 系部测绘工程系 专业名称工程测量 指导教师 学生姓名

毕业设计(论文)任务书学生用表. 日月年指导教师签名: 摘要 随着我国改革开放不断深化,国民经济蓬勃发展,在山区公路建设中突破过去传

统的修路思想,不采取盘山绕行,不破坏沿线生态环境,不增长公路里程用设置隧道避免因采取高边坡路基带来的滑坡、塌方、滚石、泥石流等自然灾害,确保了行车的安全可靠,亦缩短了行车时间,同时又适应了建设与自然的和谐发展。由于隧道工程的特殊性、复杂性和隧道围岩的不确定性,对隧道围岩及支护结构进行监控量测是保证隧道工程质量、安全的必不可少的手段。通过量测,及时对隧道个别围岩失稳趋势的区段提供了预报,为施工单位及时调整支护参数以及合理确定二次衬砌时间提供了可靠的科学依据。通过大量量测发现隧道开挖及初期支护后大约30d围岩基本上稳定,于是建议施工单位及时施作二次衬砌。同时由于监控措施得当,及时的指导施工和修改设计,从而保证了隧道施工的安全、经济、收到了良好的效果。但由于监控量测工作是一项具体而又复杂的工作,在实际过程中尚需不断积累经验和完善相关理论。 此论文是本生于2010年十月~2011年四月于中铁十一局四公司京福闽赣Ⅰ标第一项目部从事监控量测工作时所写。 关键词理处据数,降沉表地,测量控:隧道施工,监. 目录 第一章工程概况 (6) 1.1 工程概况 (6) 1.2工程地质及水文特征 (7) 1.3 地震动参数 (7) 第二章人员仪器配置 (8) 2.1监控量测人员配备 (8) 2.2监控量测仪器配备 (8) 第三章监控量测基本规定 (9) 3.1监控量测设计内容 (9) 3.2对施工单位要求 (9) 3.3现场监控量测工作主要内容 (9) 3.4 注意事项 (9) 第四章监控量测技术要求 (11)

隧道围岩监控量测技术

隧道围岩监控量测施工技术 孟朋伟,何俊华 (中铁十二局柳南二项目部) 摘要:隧道围岩监控量测是铁路隧道设计文件的重要组成内容,也是铁路隧道施工作业中关键的重要环节。在铁路隧道工程中,隧道围岩监控量测技术获得了广泛的应用,并取得了明显的技术经济效果。隧道围岩监控量测施工技术在隧道内施工过程中,使用专用的仪器、设备,对围岩和支护结构的受力、变形进行观测,并对其稳定性、安全性进行评价,以坛碰1#隧道的成功实例,确保了在隧道施工中顺利贯通。 关键字:沉降观测埋设观测数据分析 1、工程概况 1.1 隧道设置 坛碰1#隧道全长758米,进洞里程为DK721+180,出口里程为DK721+938。隧道进口位于直线上,出口段位于曲线上,隧道纵坡为单面上坡,全隧坡度为11.9‰。 本隧道Ⅳ级围岩230米,Ⅴ级围岩528米。Ⅴ级围岩分别是:DK721+180~DK721+210、DK721+210~DK721+347、DK721+497~DK721+582、DK721+662~DK721+782、DK721+782~DK721+893、DK721+893~DK721+923;Ⅳ级围岩分别是:DK721+347~DK721+497、 DK721+582~DK721+662。 1.2隧道地质情况 1.2.1 地形地貌 测区属低山丘陵地貌,海拔高程97~190m,山坡自然坡度10°~30°,隧道埋深50~80m,地形起伏较大,植被一般,测段覆土较薄。 1.2.2 地质构造 隧道位于昆仑关复式背斜内,岩层层理产状变化较大,岩体节理发育,岩体被切割成块状、碎块状。 1.2.3 水文地质特征 测段内地下水以孔隙潜水。基岩裂隙水为主。受大气降水及地表水补给。地下水较发育。 1.2.4 不良地质及特殊软土 隧道不良地质为顺层。特殊为软土。 1.2.5 工程地质条件评价 隧道区覆土薄,岩层软硬不均,风化层较厚,岩层产状变化较大,倾角较缓,岩体节理发育,地表出露风化带岩体被切割成块状或碎块状,洞身地表冲沟发育,进出口及浅埋地段风化厚度大。 2、隧道围岩监控量测编制依据 2.1编制依据: 2.1.1《铁路隧道围岩监控量测测量技术规程》JB 10212 - 2007 2.1 .1《隧道设计图》

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

现代高新技术在隧道监控量测的应用分析

第五节新技术的示范试点 为解决隧道建设过程中关键数据的快速感知、安全风险的动态评价与反馈等关键问题,选取试点工程进行示范,通过积极应用激光、图像、红外、光纤或其他自主研发的新型自动化巡查感知技术与装备,动态快速感知掌子面围岩特征、变形和支护质量状态,提高施工过程中安全状态的感知效率与精度,有效降低施工安全风险,消除重大安全隐患,减少因工期延长、安全风险产生的经济损失,有效控制意外事故的影响。示范工作将直接指导本项目公路隧道建设,还可推广应用至全国类似隧道工程的建设。通过在代表性隧道区段进行新技术创新应用,达到以下预期成效: 1)动态感知隧道掌子面围岩特征,包括发育节理的倾角/间距迹长、夹层或断层宽度及倾角等参数:快速分析围岩稳定状态,及时反馈临空面失稳区域、关键风险源,有效指导施工过程中的隐患排查和风险管控工作; 2)自动化观测识别软弱围岩段掌子面围岩变形,提前预测软弱围岩段开挖面鼓出变形、溜塌风险: 3)沿隧道轴向、环向空间覆盖式的动态感知隧道初期支护轮廓状态与钢拱架间距,分析初期支护轮廓、变形状态及超欠挖情况,解决现有技术检测断面少、数据误差大等问题。 现代高新技术在隧道监控量测的应用分析监控量测是隧道工程施工中的重要工序,作为保障隧道施工安全,验证和调整施工方法和支护参数的重要手段,隧道监控量测具有以下几个特点:量测设备的可靠性和量测数据的准确性、量测信息发布的及时性和广泛性。随着现代高新技术的发展,并应用与监控量测技术的开发研究和创新上,有效减少了测量人力资源的投入,节约成本,提高效率;同时具有数据精度高、可靠性强、数据处理及信息发布及时、自动化、网络化的优点,为隧道信息化施工提供有力保障。 0 综述 公路隧道施工监控量测是保障隧道施工安全的重要信息基础。公路隧道施工监控量测分选测项与必测项,必测项洞内外观察、周边位移、拱顶下沉、地表下沉和拱脚下沉五项,通过监控这五项参数可掌握围岩动态和支护结构的工作状态,对量测数据经过分析处理后,可用来预测围岩变形趋势,来验证和修改设计支护参数,从而采取相应的施工措施,科学的组织和指导施工,保证隧道施工安全。随着现代高新技术的发展,并应用与监控量测技术的开发研究和创新上,越来越多高效的数据采集和处理手段产生。 目前比较高新的监控量测技术主要是将传统的隧道变形监测系统和互联网技术、移动设备技术有机的结合起来,设计一套全自动监控测量设备及云监控平台,实现对隧道初期支护变形的自动连续监测。自动监控量测设备实时采集数据,将数据通过物联网传输到监控中心进行分析、处理并自动预报预警。相比通过测量人员定时到现场测量的方式,自动监控量测技术能连续监测隧道变形情况,避免了人为测量隧道变形数据时对监测数据的篡改,能够自动及时预报预警,具有连续性、真实性、

监控量测在地铁区间隧道盾构施工中应用

庞旭卿:监控量测在地铁区间隧道盾构施工中应用 监控量测在地铁区间隧道盾构施工中应用 庞旭卿1,2 (1.陕西铁路工程职业技术学院,陕西渭南714000;2.长安大学地测学院,西安710054) 【摘要】在地铁区间主体、车站、及附属结构施工中按照设计及规范要求采用科学先进、准确可靠的监测手段及时反馈信息指导施工,是确保施工安全的关键。针对深圳地铁5号线盾构施工区间隧道地质条件较差的特点,就盾构施工监控量测工艺流程及盾构施工测量、监测质量保证措施进行设计,保证了盾构隧道工程安全经济顺利地进行。 【关键词】地铁;区间隧道;盾构;监控量测 【中图分类号】U231;U45【文献标识码】B【文章编号】1001-6864(2011)09-0107-02 盾构法是地下隧道的一种施工方法,对地层的适应性也越来越好,因此在地下工程(尤其是地铁区间)中被广泛采用[1]。然而,在软土层中采用盾构法掘进隧道,会引起地层移动而导致不同程度的沉降和位移,因此,通过盾构法施工地铁中监控量测的实施及信息反馈,对控制周围位移量、确保临近建筑物的安全是非常必要的[2]。 1工程概况 深圳地铁5号线线路全长40.933km,区间以盾构施工为主。工程地质与水文地质条件复杂,有特殊土等不良地质现象,特别是淤泥层较厚,地下水丰富。含水层主要为砂层,结构松散,自稳性差,透水性强,施工中易发生坍塌、涌水、涌砂、变形、失稳等现象。临近地面建筑物多,施工干扰大;围护结构受土的侧压力后有向内收缩的趋势,钢管支撑预应力施加的控制难度大,预应力大则围护结构外扩,不够则围护结构收缩。 2盾构施工监控量测 2.1监测项目 主要包括:地表隆陷、隧道隆陷、土体内部位移、衬砌环内力和变形、土层压应力等[3]。具体内容详见表1。 表1盾构隧道施工监测项目汇总 序号监测项目量测器工具测点布置监测目的与要求量测频率 1地表隆陷水准仪每30m设一断面,过既有建筑物时加密每10m一断面 2隧道隆陷水准仪、钢尺5m设一断面 3周边净空 收敛位移 收敛仪 每5 50m一个断面, 每断面1 3个测点 4管片裂缝观察、目测 5管片实际 位置监测 水准仪每环 监测隧道施工引起的地 表变形、隧道变形情况, 确保施工安全。 掘进面前后<20m时测1 2 次/d,掘进面前后<50m时测1 次/2d,掘进面前后>50m时测1 次/周 随时观察 每天 2.2施工监测工艺流程 隧道与土体变形监测成果是确定盾构机掘进参数的重要依据,为保证盾构机正常掘进,信息化施工是重要手段,盾构区间施工监测的工艺流程如图1所示。 2.3施工监测实施 (1)测点布置:如图3 图5所示。地面沉降(隆陷)监测点布置:根据隧道通过的围岩条件布置测点,一般地段30m设一断面。 地面沉降观测点的观测周期:盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进[4]。每次观测点应与上一次观测点部分重合,以做比较,掘进前后50m范围内两天观测一次,范围之外的检测点每周观测一次,直至稳定。当沉降或隆起超过规定限差(-30/+10mm)或变化异常时,应加大监测频率和检测范围。并将信息及时传递给有关部门。 监测方法:用精密水准仪进行测量。 监测要点:监测时严格按照GB12987-91国家二等水准测量规范执行,沉降点复测周期按照《城市测量规范》执行。 数据处理:地表沉降监测随施工进度进行,并将各沉降点沉降值存入计算机监测管理管理系统汇总成沉降变化曲线、沉降速度变化曲线统一管理,绘制报表。 (2)隧道隆陷。每5m设一断面;周边净空收敛位移测量:每10 20m设一断面。监测方法:用收敛仪测量。测量精度:?1mm。数据处理:监测值存入计算机监测管理系统统汇总成位移变化曲线、位移速度变化曲线统一管理。 (3)管片裂缝。监测方法:观察、目测。监测要点:发 701

隧道围岩监控量测

山西中南部铁路通道ZNTJ-1标 第四项目部隧道围岩监控量测 测量负责人:罗科 技术负责人:武飞龙 工程负责人:董俊瑞 中铁十二局第四项目部 二〇一〇年八月十三日

监控量测实施方法说明 一、围岩量测的目的 现场监控量测是隧道施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数,混凝土衬砌支护时间提供信息依据,为完善隧道工程设计与指导施工提供可靠的足够的数据。 二、编制依据 (1)《铁路隧道监控量测技术规程》(TB10121-2007) (2)山西中南铁路通道隧道施工图,隧道参考图。 三、适用范围 适用于冯家墕隧道、程家塔隧道、姚好塔隧道、刘家曲隧道、王家会隧道、曹家坡道围岩监控量测。 四、量测项目 隧道监控量测的项目根据工程特点、规模和设计要求综合选定,量测项目可分为必测项目和选测项目两大类。监控量测工作要求必须紧跟开挖、支护作业。

按设计要求布设测点,并根据具体情况及时调整或增加量测的内容。根据本段隧道的特点,本段隧道必测项目包括:⑴洞内、外观察;⑵水平净空变化;⑶拱顶下沉。选测项目包括:洞顶地表下沉量测。 五、量测方法和要求 根据设计文件、结合铁路隧道监控量测技术规程,制定本段隧道围岩量测方案。拱顶下沉、收敛量测起始读数宜在开挖后3~6h内完成,其他量测应在每次开挖后12h内取得起始读数,最迟不得大于24h,且在下一循环开挖前必须完成。 测点应牢固可靠、易于识别,并注意保护,严禁损坏。观测周期及观测时间根据现场实际情况确定。 观测计划及观测方案应征得监理批准,观测结果异常时应立即报设计单位拿出处理意见,情况紧急时,应果断采取措施,确保施工安全。 测试中按各项量测操作规程安装好仪器仪表,每测点一般测读二次,取算术平均值作为观测值;每次测试都要认真做好原始数据记录,并记录开挖里程、支护施工情况以及环境温度等,保持原始记录的准确性。各项量测作业均应持续到变形基本稳定后2~3周后结束。具体方法和要求下表。

盾构工程施工测量和监控量测方案

盾构工程施工测量和监控量测方案 1 施工测量 1.1 控制测量 为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。 (1)复测 按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。将复测成果书面上报监理单位。 在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。 (2)控制测量 复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。

(3)平面控制测量 为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。 盾构始发井投点测量 为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的

为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。 为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。取中定出P1、P2的投影。然后将全站仪分别架设在各点上。观测通道内设置的P3、P4,采用全圆法观测各点的角度、距离、平差后计算出各点坐标,以此作为通道、隧道暗挖控制的定向边(P3~P4)。 洞内导线测量 通过竖井定向,导线严格按四等导线要求联测至隧道内,并在隧道内设置通视效果好且稳固的导线点,导线点采用强制对中的形式,直线隧道施工导线点平均边长150米,特殊情况下不短于100米。为

监控量测技术在公路隧道中的应用 (2)

监控量测技术在公路隧道中的应用 :公路隧道已广泛采用新奥法设计与施工,现场监控量测是新奥法设计与施工的重要组成部分。通过对隧道进行监控量测,可预测预报围岩变化,优化设计和指导施工,确保隧道施工安全,使工程投资经济合理。通过对公路隧道的拱顶下沉、水平收敛、地表沉降、喷层应力、钢拱架应力等多项涉及围岩稳定性及支护合理与否的参数进行跟踪量测, 实时确定了合理的二次衬砌施工时间,成功避免了施工中重大安全事故的发生,确保了隧道施工安全和质量,对隧道施工具有指导意义。 关键词: 公路隧道新奥法监控量测 隧道围岩变形量测是新奥法现场量测的首要内容,是确认或修改支护设计参数和判别围岩稳定的依据,是保证隧道施工安全的一项重要措施。为了保证隧道的设计净空断面,监理人员应严格要求施工单位按规定进行拱顶下沉和净空量测,量测数据及分析结果应及时与设计进行比较,掌握地表沉陷、围岩和支护的工作状态,对围岩稳定性作出评价,确定或调整支护结构、支护参数和支护时间;评价支护结构的合理性及其安全性,并对设计和施工的合理性进行评估和信息反馈,以确保施工安全和隧道的稳定。 一隧道围岩的量测 1.1 隧道监控量测的必测项目 为了保护隧道的顺利开挖及二次衬砌的时间,隧道围岩的量测必测项目一般包括地址及支护状况观察、周边收敛量测、拱顶下沉量测、地表下沉。地质及支护状况观察包括岩性、岩层产状、结构面、溶洞、断面描

述、支护结构裂缝等;周边收敛量测是量测隧道周边位移,了解收敛状况、断面变形状态,判断稳定性;拱顶下沉量测是监视拱顶下沉,了解断面的变形状态,判断隧道拱顶的稳定性;地表下沉是根据地表下沉位移量判定隧道开挖对地表下沉的影响,以确定隧道支护结构。 1.2 隧道监控量测的选测项目 隧道围岩量测的选测项目:围岩内部位移量测、锚杆轴力量测、衬砌应力量测、围岩压力量测及支护压力、型钢支撑应力量测及弹性波测试。围岩内部位移量测是了解隧道围岩的松弛区、位移量及围岩应力分布,为准确判断围岩的变形发展提供数据;锚杆轴力量测是根据锚杆所承受的拉力,判断锚杆布置是否合理;衬砌应力量测是根据量测二次衬砌内应力、喷射混凝土层内轴向应力,了解支护衬砌内的受力情况;根据围岩压力及层间支护压力,判断复合衬砌中围岩荷载大小,判断初期支护与二次衬砌各自分担围岩压力情况;量测型钢支撑内应力,推断作用在型钢支撑上的压力大小,判断型钢支撑尺寸、间距及设置型钢支撑的必要性;通过声波测试,判断围岩松动区大小、裂隙发育情况。 二隧道围岩量测的手段要求 量测数据的质量好坏直接影响监控的成败。监控现场量测手段应满足下列要求: 1、尽快埋设测点。隧道开挖过程中,围岩压力场、位移场的变化与开挖作业面的空间位置密切相关。一般情况下,位移的变化在量测断面前后总计两倍洞径范围内最大。为了全面量测应力、位移的变化值,要求测点埋设紧靠开挖作业面,且要尽快埋设,以减少对施工的干扰。第一

隧道围岩监控量测技术在隧道施工中的应用

隧道围岩监控量测技术在隧道施工中的应用 随着我国经济的不断发展,隧道施工也越来越多。隧道工程中必不可少的就是围岩监控量测技术,通过该技术能够实现对围岩稳定状态的实时反馈,确保施工的正确性与安全性,因此,该技术具有很高的应用价值。文章针对围岩监控量测技术,先对该技术的重要性进行了分析,然后重点探析了其在隧道施工中的应用技巧,希望能够得到隧道施工人员借鉴。 标签:隧道施工:围岩监控;量测技术;应用 1、前言 在进行隧道施工的过程中,监控量测必不可少。而围岩监控量测技术主要是应用于复合式衬砌隧道施工中,通过对施工过程的组织结构等进行实时监控,来提升施工的质量。然而,施工现场变化多端,很多奇怪的地形情况给围岩监控量测带来了困难,文章将会通过对围岩监控量测技术的分析,对其进行一番调整,更好地应用于各类地形情况的隧道施工中,提升其应用价值。 2、围岩监控量测的重要性分析 一般意义上来讲,围岩监控量测技术的重要性可以体现在以下三个方面:其一,对围岩稳定性进行判断;其二,对支护、衬砌结构合理性进行判断;其三,对施工方法准确性进行判断,除了这些主要作用外,围岩监控量测技术还能够对施工安全进行判断,帮助提升隧道工程的经济价值,而在监控过程中检测到的数据也能够为隧道施工提供重要参考。具体来讲,在隧道工程中加入围岩监控量测技术主要是出于以下五个方面的考虑:第一,为了对施工组织结构进行优化,隧道施工的地点地形情况不一,这使得单一的施工方式并不适用于所有隧道施工,必须对隧道施工地的地形等状况进行充分了解后才能够开始施工设计,而围岩监控量测技术能够帮助工作人员对隧道地质情况进行全面了解,从而进行预测、反馈,了解施工中有哪些需要注意的地方。第二,围岩监控量测技术帮助确定支护时间。通过监测,能够对隧道的一些信息进行了解,根据这些信息呈现的内容就可以判断支护形式、方法是否正确,若不正确,可以进行适当调整,确保安全性。第三,帮助评价围岩稳定性。通过围岩监控测量的实时进行,能够获得围岩的动态数据,对这些数据进行分析,判断其是否有很大的波动,了解施工中的应力分布及受力,从而确保任何突发事件都能够及时处理。第四,根据围岩监控量测所得到的数据信息能够进行预先施工方案的调整,保证最佳的施工方案。第五,提升未来隧道设计能力与施工能力。 3、围岩监控量测的施工应用分析 下面笔者将从量测主要任务、量测具体实施和量测数据处理这三个方面进行围岩监控量测技术的应用分析:

盾构段监控量测方案

广深港客运专线ZH-4标 益田路隧道工程盾构段监控量测方案 编制: 审核: 批准: 中铁十五局广深港客运专线ZH-4标六工区 2010年6月13日 目录

1.编制目的 (4) 2.编制依据 (4) 3.工程概况 (4) 3.1地理位置 (4) 3.2工程范围 (4) 3.3设计参数 (5) 3.4建(构)筑物调查情况 (5) 4.地表沉降变形机理 (6) 4.1沉降机理分析 (6) 4.2地表沉降变形的演变分析 (6) 4.2.1前期沉降阶段 (6) 4.2.2通过期间沉降阶段 (6) 4.2.3盾尾间隙沉降阶段 (6) 4.2.4后期沉降阶段 (6) 5.工程施工特点 (7) 6.监测的目的及方法 (7) 6.1地表沉降监测 (7) 6.2监测控制网的施测精度 (7) 6.3监测的主要内容和测点布设 (8) 6.3.1地表变形监测 (8) 6.3.2洞外观察 (8)

6.3.4深层土体位移监测 (8) 6.3.5地下水位监测 (9) 6.3.6地下管线位移监测 (9) 7.施工监测资源配置 (10) 7.1监控测量仪器 (10) 7.2监控量测人员组织 (10) 8.施工监测控制精度和监测频率 (11) 8.1施工监测控制精度 (11) 8.2监测频率 (11) 8.3控制标准 (11) 8.3.1建筑物变形控制标准 (11) 8.3.2地表变形控制标准 (12) 8.3.3深层土体变形控制标准 (12) 8.3.4地下水位、管线位移控制标准 (12) 9.隧道结构变形监测 (12) 9.1隧道结构变形监测内容 (12) 9.2变形控制标准 (13) 9.3隧道结构变形监测频率 (13) 9.4隧道结构变形控制方法 (13) 10.监测数据的整理和分析 (14)

盾构施工隧道监测方案

上海长兴岛域输水管线工程盾构推进 环境监测 技术方案 上海东亚地球物理勘查有限公司 二00八年五月

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容 五监测技术方案 六监测人员安排 七技术及质量保证措施 八附图

上海长兴岛域输水管线工程盾构推进环境监测技术方案前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全倚赖于经验,19世纪才逐渐形成自己的理论,开始用于指导地下结构设计与施工。于是在重大或长大隧道中,及时掌握现场的第一手资料,进行动态分析,就成为施工控制的重要项目之一。 因此施工量测项目显得更加突出和重要。为了验证设计和计算是否合理,运营是否安全,各种工程试验与测试技术的研究和应用也越来越受到施工和科研工作者的重视。地下工程的设计,必须将现场监控量测列入设计文件,并在施工中实施。现场监控量测是判断围岩和隧道的稳定状态,保证施工安全,指导施工顺序,进行施工管理,提供设计信息的重要手段。掌握围岩和支护动态,按照动态管理量测断面的信息,正确而经济的施工;量测数据经分析处理与必要的计算和判断,预测和确定到最终稳定时间,指导施工工序和实施二次衬砌的时间;根据隧道开挖后围岩稳定性的信息,进行综合分析,检验和修正施工前的预设计;积累资料,已有工程的量测结果可应用到其他类似的工程中,作为其他工程设计和施工的参考依据。 盾构在推进过程中必然会造成地面沉陷、位移现象,针对这种情况本监测工程设置了相应的监测手段,对在盾构推进过程中产生的各种变形进行实时监测。 一工程概况 长兴岛域输水管线工程位于长兴岛上,起点于牛棚圩以北的丁字坝附近,与青草沙水库出水输水闸井相接;终止于永和路以南120m左右的上海崇明越江通道东侧绿化带内,与长江原水过江管工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

公路隧道施工过程监测技术

试题 第1题 属非接触量测断面测定超欠挖的方法是() A.求开挖出渣量的方法 B.使用激光束的方法 C.使用投影机的方法 D.极坐标法 答案:D 您的答案:B 题目分数:3 此题得分:0.0 批注: 第2题 锚杆施工时,对砂浆锚杆应尺量钻孔直径,孔径大于杆体直径()时,可认为孔径符合要求 A.50mm B.30mm C.15mm D.10mm 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第3题 喷射混凝土()是表示其物理力学性能及耐久性的一个综合指标,所以工程实际往往把它做 为检测喷射混凝土质量的重要指标 A.厚度 B.抗压强度 C.抗拉强度 D.粘结强度 答案:A 您的答案:D 题目分数:3 此题得分:0.0

批注: 第4题 喷射混凝土与围岩粘结强度试验试块采用()方法制作 A.喷大板切割法、成型试验法 B.凿方切割法、直接拉拔法 C.喷大板切割法、凿方割切法 D.成型试验法、直接拉拔法 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第5题 形状扁平的隧道容易在拱顶出现() A.压缩区 B.拉伸区 C.剪切区 D.变形区 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第6题 防水卷材往洞壁上的固定方法有()两种 A.热合法和冷粘法 B.有钉铺设和无钉铺设 C.环向铺设和纵向铺设 D.有钉铺设和环向铺设 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第7题 隧道锚杆杆体长度偏差不得小于设计长度的(?) A.60%

B.85% C.90% D.95% 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第8题 以下检测方法不属于隧道内混凝土衬砌厚度检测方法的是 A.凿芯法 B.回弹法 C.地质雷达法 D.激光断面仪法 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第9题 隧道施工监控量测中()的主要目的是了解隧道围岩的径向位移分布和松驰范围,优化锚杆参数,指导施工 A.围岩周边位移量测 B.拱顶下沉量测 C.地表下沉量测 D.围岩内部位移量测 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 ()对于埋深较浅,固结程度低的地层,水平成层的场合更为重要 A.围岩周边位移量测 B.拱顶下沉量测 C.地面下沉量测 D.围岩内部位移量测 答案:B

盾构施工监测总结报告

XXXX~XXXX区间盾构施工监测 总结报告 编制: 审核: 审批: XXXXX轨道交通X号线X期工程XX标项目经理部 二○一二年一月三十日

目录 1 工程概况 (3) 1.1工程简述 (3) 1.2工程地质及水文地质情况 (3) 2 监测作业方案 (5) 2.1监测依据 (5) 2.2监测内容 (6) 2.3监测频率 (6) 2.4监测精度 (7) 2.5警戒值的执行 (8) 3.监测成果质量 (9) 3.1质量控制 (9) 4监测组织实施 (9) 4.1投入的仪器设备 (9) 4.2监测人员组织 (10) 5完成监测工作量 (10) 6监测成果总结 (11) 6.1监测统计成果 (11) 6.2监测成果曲线 (11) 7监测成果分析 (11)

1 工程概况 1.1工程简述 XXXX~XXXX区间设计范围为Y(Z)DK16+915.15~Y(Z)DK18+733,右线长1817.85m,左线长1794.332m(短链23.518m),线路自XXX站向南穿越万国商业广场、南塘村、白沙湾路与曲塘路交汇处、并穿越杜花路立交和京珠高速公路,向南到达XXXX。区间线间距为13~15m,线路平面最小曲线半径为450m。区间隧道最大纵坡为26‰。本区间采用盾构法施工,隧道埋深约在15~40m之间。区间在YDK17+276.055、YDK17+876.055和YDK18+400处各设置一条区间联络通道,其中YDK17+876.055兼做泵房,联络通道及泵房采用矿山法施工。 1.2 工程地质及水文地质情况 1.2.1 地形、地貌 本段地貌单元主要为XXXⅠ级阶地,地形平坦开阔,河湖发育,水塘星罗棋布,局部可见残丘、岗地,地面标高32~38m,局部岗地标高可达60多m。 1.2.2 地层岩性 各岩土层具体分部特征及土性变化情况见《地层特性表》。 本盾构区间隧道主要穿越地层为残积粉质粘土(4-1)、强风化泥质粉砂岩(5-1)、中风化泥质粉砂岩(5-2)。盾构上覆土层主要为杂填土(1-2)、粉质粘土(2-1)、圆砾(2-4)、卵石(2-5)、粉质粘土(4-1)、残积粉细砂(4-2)、强风化泥质粉砂岩(5-1)、全风化泥质粉砂岩(5-1a)、中风化泥质粉砂岩(5-2)。 1.2.3 地质构造及地震烈度

隧道监测设计

隧道监测设计 隧道监控测量设计 隧道监控量测应达到下列目的: 1 确保隧道施工安全及结构的长期稳定性; 2 验证隧道支护结构效果,确认支护参数和施工方法的准确性或为调整支护参数和施工方法提供依据; 3 确定装配式衬砌组装方案; 4 监控工程对隧道周围环境影响; 5 积累量测数据,为信息化设计与施工提供依据。量测项目 该隧道的量测项目包括:管片的尺寸、螺栓接头、千斤顶顶力作用、隧道上浮、盾构的掘进(防止过大偏向)、衬砌管片的拼装、地表沉降及地面沉降和地下管线变化、拱顶下沉、周边净空收敛位移、衬砌管片的防水。 主要考虑因素有:①工程地质和水文地质情况(主要在水下);②隧道埋深、跨度、衬砌结构型式和施工工艺;③隧道施工影响范围内现有建筑物的结构特点、形状尺寸及与隧道轴线的相对位置关系。量测方法 本工程采取的监控量测项目、方法和频率详见下表。 监控量测项目、方法及频率 监测项目管片的尺寸监测方法和仪器现场观察监测频率对每一片管片尺寸、强度都要检测备注主要检测

螺栓接头是否因为承受的正负弯矩相差螺栓接头现场观察每个施工周期检测1到2次过大而引起的接缝张开量过大,导致止水带松弛漏水。水准测量的方法,千斤顶顶力作用水准仪、塔尺现场观察水准测量的方法,隧道上浮水准仪、塔尺现场观察偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 防止管片受力不均导致接缝过大漏水盾构的掘进水准测量的方法,旋转角度≥1度/d,2次/d;水准仪、塔尺旋转角度≤1mm/d,1次/3d 在任何情况下一次纠编量不能过大主要检测组装时环面不平整积累过多引起较大的施工应力。管片衬砌管片的拼装水准测量的方法,水准仪、塔尺施工期间的对准安放。还有于盾构堆进时对衬砌施加了很大的顶力,可能发生螺栓连接松动开挖面距量测断面前后<2B时1-2次地表沉降及地面沉降和地下管线变化水准仪和水平尺 /d 开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周每10m到50m一个断面,每个断面7-11个测点开挖面距量测断面前后<2B时1-2次/d 拱顶下沉水准仪、钢尺等开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周开挖面距量测断面前后<2B 时1-2次/d 周边净空收敛位移收敛计开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周

隧道监控量测技术应用毕业论文

石家庄铁路职业技术学院 毕业设计隧道监控量测技术应用

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

盾构施工监控量测方案

哈尔滨地铁一号线九标盾构区间 隧道监控量测方案 一、工程概况 本标段设计为两段区间。第一段区间从南直路站向东沿桦树街直行至哈尔滨东站站,设计区间里程SK16+618.485~SK17+133.428总长约514.943m。区间沿线主要为多层建筑物,地下管线较多,路面交通繁忙,区间隧道纵坡为“V”型坡,最大坡度9.3‰,平面为直线。第二段区间从交通学院站出站后向东以R=350m的曲线斜穿太平公园,横穿宏伟路,再以R=450m的反向曲线转向南直路站。设计区间里程为SK15+746.436~SK16+438.485,总长约692.049m。隧道地质多为沙层和粉沙层,土质松散土体自稳能力差,盾构隧道掘进过程中对土体的扰动较易反映到地表土体及周边建(构)筑物上。二、编制依据 1.《地下铁道、轨道交通工程测量规范》(GB 50308—2008) 2.《工程测量规范》(GB50026--93) 3.《建筑变形测量规程》 三、盾构隧道监测 根据区间隧道穿越建(构)筑物及地面情况,结合盾构施工特点考虑施工过程会对地层产生扰动,有可能引起地表、管线、高架桥等的沉降。故根据区间隧道穿越建(构)筑物及地面情况,结合盾构施工特性确定以下监测方案: 1、在盾构试掘进100m范围内,每10m设一断面,其中每一断面设9个监测点,并且在线路中心线上方(含左右线)纵向每5m埋设一个监测点;在试掘进50m 附近处埋设分层土体沉降监测点和土体位移监测点(埋设倾斜管)。

2、其余地段根据具体情况酌情埋点,一般间距30m设1个监测断面,同时在线路中心线正上方一般间距5m埋设一个监测点,在各监测断面中根据实际情况,分埋设主副两种监测断面形式,即当线路中线周边属于敏感地段,诸如交通密集型道路,或高建(构)筑物分布较为密集的区域,则应严格按照规范规定埋设监测断面,此种情况下称为主断面;反之,若线路(含左右线)上方均为空旷地段,或者仅单线上方属敏感地段,可根据实际情况酌情布设监测断面和监测点,一般较主断面情形下的断面监测点数少若干,同时断面间距略长于主监测断面间距。 3、对距线路边线10m范围内的较高或重点建(构)筑物的沉降、水平位移、倾斜、裂缝进行严密监测,一般是在此类建筑物桩基处埋设监测点位,同时根据实际情况酌情在建筑物房体中上位置处设置监测标志,以便对房体倾斜等各类变化严密监测。在隧道沿线此类典型建(构)筑有:SK16+775南直路立交桥桩基、SK15+910工程大学游泳馆、SK15+970太平文化宫、SK16+250市政排水管修工程处、SK16+300太平房产住宅楼5号楼。 4、隧道内的管片监测,在衬砌成形的管片合适位置处标出监测标志,利用全站仪和水准仪同时对管片的三维坐标进行定时监测,防止管片的上浮和沉降,同时对管片进行净空收敛监测。 5、始发井桩顶和主体结构侧墙的水平位移监测,在始发井四周埋设监测点位,利用全站仪和水准仪同时对其三维坐标进行定时监测,由于现在处于盾构机掘进状态,始发井已逐步处于稳定的运营状态,故可适当的降低监测频率。 盾构隧道施工监测项目和仪器见下表:

相关文档
最新文档