线性模型、基于树的模型、神经网络三种算法的对比

线性模型、基于树的模型、神经网络三种算法的对比

线性模型、基于树的模型、神经网络三种算法的对比

?我们将机器学习中最突出、最常用的算法分为三类:线性模型、基于树的模型、神经网络,用一张图表简明地指出了每一类的优势和劣势。

?

?

?在机器学习中,我们的目标要幺是预测(predicTIon),要幺是聚类(clustering)。本文重点关注的是预测。预测是从一组输入变量来预估输出变量的值的过程。例如,得到有关房子的一组特征,我们可以预测它的销售价格。预测问题可以分为两大类:

?

?

?回归问题:其中要预测的变量是数字的(例如房屋的价格);

?

?

?分类问题:其中要预测的变量是是/否的答案(例如,预测某个设备是否会故障)

?

?

?

?了解了这点,接下来让我们看看机器学习中最突出、最常用的算法。

?

?

R语言-决策树算法知识讲解

R语言-决策树算法

决策树算法 决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于 2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是 virginica(图中黑色的分类) 我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树: 这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。 前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。 决策树的构建 一、KD3的想法与实现 下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。 先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。 问题:我们如何确定起决定作用的划分变量。 我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。 为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。 关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。 直接给出计算熵与信息增益的R代码:

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

一元线性回归模型的置信区间与预测

§2.5 一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量^ β是随机变量 i y 的函数,即:i i y k ∑=1?β,所以它也是随机变量。在多次重复抽样中,每次 的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。 即回答1β以何种置信水平位于() a a +-1 1?,?ββ之中,以及如何求得a 。 在变量的显著性检验中已经知道 ) 1(~^ ^ ---= k n t s t i i i βββ (2.5.1) 这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值 2 αt ,那么t 值处在() 22,ααt t -的概率是α-1。表示为 α αα-=<<-1)(2 2 t t t P 即 α ββαβα-=<-< -1)(2 ^ 2 ^ t s t P i i i

α ββββαβα-=?+<

ER图2关系模型:九步转换算法

3.2.3 Mapping from ER Models to Relational Models ?Mapping Algorithm ?Example There is almost a one-to-one correspondence between the ER constructs and the relational ones. The two major distinctions are: 1.In a relational schema, relationships are represented implicitly through primary and foreign keys of participating entities. 2.In a relational schema, columns of relations cannot be multi-valued or composite. Composite attributes are replaced with their simple component ones, and multi-valued attributes are stored in a separate relation. 一.Mapping Algorithm We can translate an ER schema to a relational schema by following a nine-step algorithm based on the one given in Elmasri and Navathe 1994. The algorithm attempts to minimize the need for joins and NULL values when defining relations (Steps 2, 4, and 5). 1.For each strong entity E: o Create a new table. o Include as its columns, all the simple attributes and simple components of the composite attributes of E. o Identify the primary key and the alternate keys. Do not include any

公交最优路径选择的数学模型及算法_雷一鸣

第17卷第2期 湖南城市学院学报(自然科学版)V ol.17 No.2 2008年6月 Journal of Hunan City University (Natural Science) Jun. 2008 公交最优路径选择的数学模型及算法 雷一鸣 (广东工业大学华立学院,广州 511325) 摘要:在公交出行查询系统中,最关键的部分是寻找两站点间乘车的出行最优路径问题.建立了以最小换乘次数为第一目标,最小途经站点为第二目标的公交出行最优路径模型.同时,设计了一种算法以确定最优公交线路序列,分析了线路相交的几种情况,给出了换乘点选择方法. 关键词:最优路径;换乘次数;公交网络 中图分类号:O232文献标识码:A文章编号:1672–7304(2008)02–0050–03 公交最优路径问题一直是应用数学、运筹学、计算机科学等学科的一个研究热点.对公交最优路径问题的理论研究主要包括公交网络的数学描述和设计最优路径算法.在公交网络描述方面,Anez等用对偶图描述能够涵盖公交线路的交通网络,Choi等讨论了利用GIS技术从街道的地理数据产生公交线路和站点的问题;在设计最优算法方面,常用的算法[1]有Dijkstra算法、Floyd 算法、Moore-pape算法等.Moore-pape算法计算速度较快,适用于大型网络,但它无法进行“一对一”的计算.Floyd算法虽然可以快速地进行“多对多”的计算,但它不能应用于大型网络,而Dijkstra算法是目前公认的最好的算法,但它数据结构复杂、算法时间长,不适合公交线路的查询.本文首先对公交网络进行了数学描述,考虑到公交乘客出行时所面临的各种重要因素,包括换乘次数、途径站点、出行耗时和出行费用等,选择以换乘次数最少作为最优路径算法的第一约束目标,而出行耗时虽难以准确测算但它与途径站点数相关,所以选择易于量化的途经站点数最少作为第二约束目标,建立公交乘车数学模型,设计相应的算法,并利用有关实验数据验证了它的有效性和可行性. 1 模型的建立及其算法 1.1 模型假设及符号规定 为了更好地建立数学模型,首先对公交网络及出行者作出以下假设[2]: 1)不考虑高峰期、道路交通堵塞等外界因素对乘车耗时的影响. 2)假设出行者熟悉公交站点及附近地理位置,并且知道可乘的各种公汽和地铁以及到达目的地有哪几种不同选择的机会.在公交线路网中, 不同的公交线路在行程上一定会有重叠,也就是说不同的线路上一定会有同名站点.在进行网络分析时,把空间上相近的异线同名站点合理抽象成一个节点. 3)假设出行者对公汽和地铁的偏好程度不一样.在不换乘的情况下,宁愿乘地铁,以求舒适;在路途较近的情况下,宁愿坐公汽而放弃乘地铁.出行者可根据自己的偏好结合自己的出行需求(换乘次数、最短路程、费用等),可在各种出行方案中选出满足自己出行需求的乘车方案.设() L I为经过点A或其附近的公交线路集,其中1,2,..., I m =;() S J为经过点B或其附近的公交线路集,其中,,..., J12n =;(,) E I U为线路 ) (I L上的站点,其中,,..., U12p =;(,) F J V为线路) (J S上的站点,其中,,..., V12q =;() X K为经过站点) ,(U I E的线路,其中,,..., K12w =;() Y O 为经过站点) , (V J F的线路,其中,,..., O12v =;(,) d E F M ≤表示从站点E步行到站点F之间的距离不超过乘客换车时步行的最大心理承受值M,其中M表示乘客在换车时步行的最大心理承受值.通常,M与公交站点间的平均距离呈线性正相关. Ai Z表示站点A的下行第i个站点; Bj Z表示站点B的上行第j个站点;另外,公交的可行线 路的集合可表示为:{| i i TR TR TR == 0112,1 ,,,,,, i i i i d a p a p a ? < ,} id d p a>,其中,{} 01,1 ,,,, i i d d a a a a ? 为站点集合,{} 12,1 ,,,, i i i d d p p p p ? 为公交车次的集合, i TR 收稿日期:2008-03-10 作者简介:雷一鸣(1972-),男,湖南临武人,助教,硕士,主要从事数学模型及经济信息管理研究.

Dijkstra算法模型设计与实现

Dijkstra算法模型设计与实现 一、Dijkstra算法概述 Dijkstra算法是一种点对多点的集中式最短路径算法,即寻找网 络中其他所有节点到目的节点的最短路径。 Dijkstra算法通过对路径的长度进行迭代,从而计算出到达目的节点的最短路径。其基本思想是按照路径长度增加的顺序来寻找最短路径,显然有:到达目的节点v的最短路径中最短的肯定是节点的最近节点v所对应的单条链路,最短路径中下一个最短的肯定是节点v 的下一个最近的邻节点所对应的单条链路,或者是通过前面选定的节点的最短的由两条链路组成的的路径,依次类推。 二、Dijkstra算法描述 设每个节点i标定的到达目的节点1的最短路径长度估计为D i , 如果在迭代的过程中,D i 已变成一个确定的值,称节点i为永久标定的节点,这些永久标定的节点的集合用P表示。在算法的每一步中,在P以外的节点中,必定是选择与目的节点1最近的节点加入到集合P中。具体算法如下: 1. 初始化,即P=1{},D1=0,D j=d j1,j11。(若j,1 ()?A, 则d j1 =¥)。 2. 寻找下一个与目的节点最近的节点,即求使下式成立的i。置 。如果P包括了所有的节点,则算法结束。 D i =min j?P D j ,i?P

3. 更改标定值,即对所有的j?P,置D j =min i D j ,d ji +D i é?ù?,返 回第2步。 三、Dijkstra算法实现 根据Dijkstra算法描述编写程序进行实现,程序中采用邻接矩阵表示一个有向图,输入为该图的邻接矩阵以及目的节点,输出为图中各点的邻接关系,依照次邻接关系可得到到达目的节点的最短路径。 程序用C语言编写,GCC环境编译,具体代码见附录。 四、运行结果及分析 选择一具有7个节点的有向图进行实验,其各边权重及拓扑结构如下所示: 图1 实验用图 选取节点1为目的节点,运行程序: 1. 输入表示该图的邻接矩阵,不相邻的节点间链路权值用-1表示,代表无穷大; 2. 输入目的节点编号; 3. 得到输出结果,如下图所示。

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

BP神经网络模型与学习算法

BP神经网络模型与学习算法 BP神经网络模型与学习算法 (1) 一,什么是BP (1) 二、反向传播BP模型 (8) 一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。" 我们现在来分析下这些话: ?“是一种按误差逆传播算法训练的多层前馈网络” BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。 传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差: 即BP的思想可以总结为 利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 ?“BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)” 最简单的三层BP:

?“BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。”BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。 激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数: 那么上面的函数为什么称为是S型函数呢: 我们来看它的形态和它导数的形态: p.s. S型函数的导数:

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

浅谈网络流算法与几种模型转换

浅谈网络流算法与几种流模型 吴迪1314010425 摘要:最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。只要残量网络中不存在增广路,流量就可以增大,可以证明他的逆命题也成立;如果残量网络中不存在增广路,则当前流就是最大流。这就是著名的增广路定理。s-t的最大流等于s-t的最小割,最大流最小割定理。网络流在计算机程序设计上有着重要的地位。 关键词:网络流Edmonds-Karp 最大流 dinic 最大流最小割网络流模型最小费用最大流 正文: 图论中的一种理论与方法,研究网络上的一类最优化问题。1955年,T.E.哈里斯在研究铁路最大通量时首先提出在一个给定的网络上寻求两点间最大运输量的问题。1956年,L.R. 福特和 D.R. 富尔克森等人给出了解决这类问题的算法,从而建立了网络流理论。所谓网络或容量网络指的是一个连通的赋权有向图 D= (V、E、C),其中V 是该图的顶点集,E是有向边(即弧)集,C是弧上的容量。此外顶点集中包括一个起点和一个终点。网络上的流就是由起点流向终点的可行流,这是定义在网络上的非负函数,它一方面受到容量的限制,另一方面除去起点和终点以外,在所有中途点要求保持流入量和流出量是平衡的。如果把下图看作一个公路网,顶点v1…v6表示6座城镇,每条边上的权数表示两城镇间的公路长度。现在要问:若从起点v1将物资运送到终点v6去,应选择那条路线才能使总运输距离最短?这样一类问题称为最短路问题。如果把上图看作一个输油管道网,v1 表示发送点,v6表示接收点,其他点表示中转站,各边的权数表示该段管道的最大输送量。现在要问怎样安排输油线路才能使从v1到v6的总运输量为最大。这样的问题称为最大流问题。 最大流理论是由福特和富尔克森于 1956 年创立的,他们指出最大流的流值等于最小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求最大流的方法,后来又有人加以改进,使得求解最大流的方法更加丰富和完善。最大流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。 先来看一个实例。 现在想将一些物资从S运抵T,必须经过一些中转站。连接中转站的是公路,每条公路都有最大运载量。如下: 每条弧代表一条公路,弧上的数表示该公路的最大运载量。最多能将多少货物从S运抵T? 这是一个典型的网络流模型。为了解答此题,我们先了解网络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1、有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这个顶点S便称为源点,或称为发点。 2、有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这个顶点T便称为汇点,或称为收点。 3、每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容量用cij表示。 则称之为网络流图,记为G = (V, E, C) 介绍完最大流问题后,下面介绍求解最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。 三个基本的性质: 如果C代表每条边的容量F代表每条边的流量 一个显然的实事是F小于等于C 不然水管子就爆了 这就是网络流的第一条性质容量限制(Ca pacity Constraints):F ≤ C 再考虑节点任意一个节点流入量总是等于流出的量否则就会蓄水或者平白无故多出水 这是第二条性质流量守恒(Flow Conservation):Σ F = Σ F 当然源和汇不用满足流量守恒 最后一个不是很显然的性质是斜对称性(Skew Symmetry): F = - F 这其实是完善的网络流理论不可缺少的就好比中学物理里用正负数来定义一维的位移一样 百米起点到百米终点的位移是100m的话那么终点到起点的位移就是-100m同样的x向y流了F 的流y就向x流了-F的流 把图中的每条边上的容量于流量之差计算出,得到参量网络。 我们的算法基于这样一个事实:参量网络中任

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

最新数学建模bp神经网络.docx

BP神经网络 算法原理: 输入信号 x i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输 出信号 y k,网络训练的每个样本包括输入向量x 和期望输出量d,网络输出值y 与期望输出值 d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值w ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练, 确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有 n 个神经元,隐含层有p 个神经元 , 输出层有 q 个神经元 输入向量: x x1 , x2 ,L , x n 隐含层输入向量:hi hi1, hi2 ,L , hi p 隐含层输出向量:ho ho1 , ho2 ,L ,ho p 输出层输入向量:yi yi1, yi2 ,L , yi q 输出层输出向量:yo yo1, yo2 ,L , yo q 期望输出向量 : do d1, d2 ,L , d q 输入层与中间层的连接权值:w ih 隐含层与输出层的连接权值:w ho 隐含层各神经元的阈值: b h 输出层各神经元的阈值:b o 样本数据个数 :k1,2,L m 激活函数 : f 误差函数: e 1 q(d o (k )yo o (k )) 2 2 o1

算法步骤: Step1. 网络初始化 。给各连接权值分别赋一个区间( -1 , 1)内的随机数,设定 误差函数 e ,给定计算精度值 和最大学习次数 M 。 Step2. 随机选取第 k 个输入样本 x( k) x 1( k ), x 2 (k),L , x n (k ) 及对应期望输出 d o ( k) d 1 (k ), d 2 ( k),L , d q (k) Step3. 计算隐含层各神经元的输入 n hi h ( k) w ih x i (k ) b h h 1,2,L , p 和输出 i 1 ho h (k) f (hi h (k )) h 1,2, L , p 及 输 出 层 各 神 经 元 的 输 入 p yi o (k ) w ho ho h (k) b o o 1,2,L q 和输出 yo o ( k) f ( yi o (k )) o 1,2, L , p h 1 Step4. 利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 数 o (k ) 。 e e yi o w ho yi o w ho p yi o ( k) ( h w ho ho h (k ) b o ) ho h (k ) w ho w ho e ( 1 q (d o ( k) yo o (k))) 2 2 o 1 ( d o (k ) yi o yi o (d o (k) yo o (k ))f ( yi o (k )) @ o (k ) Step5. 利用隐含层到输出层的连接权值、输出层的 差函数对隐含层各神经元的偏导数 h (k ) 。 e e yi o o ( k) ho h (k ) w ho yi o w ho e e hi h (k) w ih hi h ( k) w ih n hi h (k ) ( w ih x i (k ) b h ) i 1 x i ( k) w ih w ih yo o (k )) yo o (k ) o ( k) 和隐含层的输出计算误

线性回归和灰色预测模型案例

预测未来2015年到2020年的货运量 灰色预测模型 是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断. 灰色系统的定义 灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。

建模原理 模型的求解

原始序列为: ) 16909 15781 13902 12987 12495 11067 10149 9926 9329 10923 7691())6(),...1(()0()0()0(==x x x 构造累加生成序列 ) 131159,114250,98469,84567,71580,59085, 48018,37869,27943,18614,7691())6(),...1(()1()1()1(==x x x 归纳上面的式子可写为 称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成. 对(1)X 作紧邻均值生成 ,.... 2)) 1()((21)()1() 1() 1(=-+=k k z k z k z MATLAB 代码如下: x=[7691 18614 27943 37869 48018 590857 71580 84567 98469 114250 131159]; z(1)=x(1); for i=2:6 z(i)=0.5*(x(i)+x(i-1)); end format long g z z = Columns 1 through 3 7691 13152.5 23278.5 Columns 4 through 6 32906 42943.5 319437.5

BP神经网络模型与学习算法

BP神经网络模型与学习算法 一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。" 我们现在来分析下这些话: “是一种按误差逆传播算法训练的多层前馈网络” BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。 传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差: 即BP的思想可以总结为 利用输出后的误差来估计输出层的直接前导层的误差,再用

这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 “BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)” 我们来看一个最简单的三层BP: “BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。” BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。 激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数: 那么上面的函数为什么称为是S型函数呢: 我们来看它的形态和它导数的形态: p.s. S型函数的导数:

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检 验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回 归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 % % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显著 % fV:F分布值,越大越好,线性回归方程 越显著 % fH:0或1,0不显著;1显著(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是 否与Y有显著线性关系 % tV:T分布值,beta_hat(i)绝对值越大, 表示Xi对Y显著的线性作用 % tH:0或1,0不显著;1显著 % tW:区间估计拒绝域,如果beta(i)在对 应拒绝区间内,那么否认Xi对Y显著的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总 离差的百分比,越大越好 % 举例说明 % 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程 线化 % x1=rand(10,1)*10;

相关文档
最新文档