向量法求二面角专题练习

向量法求二面角专题练习
向量法求二面角专题练习

1,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥

面A BCD ,S A =21,A B=BC=1,A D=2

1

。 求侧面SCD 与面SB A 所成的二面角的

大小。

2如图,正三棱柱111ABC A B C -的所有棱长都为

2,D 为1CC 中点.

(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;

3.如图,已知四棱锥P ABCD -,底面ABCD 为菱形,

PA ⊥平面ABCD ,60ABC ∠= ,E F ,分别是BC PC ,的中点.

(1)证明:AE PD ⊥;

(2)若H 为PD 上的动点,EH 与平面PAD

面角E AF C --的余弦值.

A

B

C

D

1

A

1

C

1

B

P

B

E

C

D

F

A

4.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA ⊥平面ABCD ;

(2)求以AC 为棱,EAC 与DAC 为面的二面角 的大小

5.如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与A 1B 相

交于点D ,M 为B 1C 1的中点. (1)求证:CD ⊥平面BDM ;

(2)求平面B 1BD 与平面CBD 所成二面角的大小.

6.如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E为PB 的中点.

(1)求异面直线PD与AE所成的角的大小;

(2)在平面PAD内求一点F,使得EF⊥平面PBC;

(3)在(2)的条件下求二面角F—PC—E的大小.

7. 如图,正方体ABCD—A1B1C1D1的棱长为1,

E、F、M、N分别是A1B1、BC、C1D1、B1C1

的中点.

(1)用向量方法求直线EF与MN的夹角;

(2)求直线MF与平面ENF所成角的余弦值;

(3)求二面角N—EF—M的平面角的正切值.

用向量法求二面角的平面角教案

用向量法求二面角的平面 角教案 Prepared on 24 November 2020

第三讲:立体几何中的向量方法 ——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量;

求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA , 2 1 = AD ,求面SCD 与面SBA 所成二面角的余弦值. 分析 分别以,,BA AD AS 所在直线为,,x y z 轴,

(完整版)《用向量法求二面角的平面角》教案

第三讲:立体几何中的向量方法 ——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解二面角的平面角的向量法. 教学难点

求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 结论: 或 统一为: 2、法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几 2 12121,cos cos n n n n n n ? ?? ?? ρ?=><=θ

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

二面角求法及经典题型归纳

- 1 - αβa O A B 二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

空间几何向量求二面角专项练习

1. 如图,四棱锥中,底面为矩形,底面, ,点M 在侧棱上,=60° (I )证明:M 在侧棱的中点 (II )求二面角的大小。 2. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD , 60ABC ∠=?,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为6 2 ,求二面角E —AF —C 的余弦值. 3.如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA =2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。 (1) 证明:直线EE //平面FCC ;求二面角B-FC -C 的余弦 值。 4.如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --11111 11111E A B C F E 1 A 1 B 1 C 1 D 1 D

5.如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°, E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 6.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6. 已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 7. 如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 8.如图,在五面体ABCDEF 中,FA 平面ABCD, AD//BC//FE ,AB AD ,M 为EC 的中点,AF=AB=BC=FE= AD (I) 求异面直线BF 与DE 所成的角的大小; ⊥⊥1 2 A B C E D P A B B 1 C 1 A 1 L A C B P A D B C E D B A 图5

利用空间向量求二面角的平面角

利用空间向量求二面角的平面角 1.二面角的概念: 二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为 l αβ--. 2.二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线 ,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 3、二面角的大小 (1)二面角的平面角范围是[0,180]; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 4、用法向量求二面角 5、面面角的求法 (1)法向量法:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角 (2)方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。 D C β α B A O m 2 m 1 n 2 n 1 D C β α l 如图所示,分别在二面角α-l -β的面α,β内,并且沿α,β延伸的方向,作向量1n ⊥l ,2n ⊥l ,则我们可以用向量1n 与2n 的夹角来度量这个二面角。 如图,设 1m ⊥α,2m ⊥β,则角<12,m m >与该二面角相等或互补。 cos cos ,AB CD AB CD AB CD θ?== ?

小结: 1.异面直线所成角: 2.直线与平面所成角: 3.二面角: 二.求二面角的平面角: 例1:在正方体AC1中,求二面角D1—AC —D 的大小? 例2:如图,三棱锥P-ABC 中,面PBC ⊥面ABC ,⊿PBC 是边长为a 的正三角形,∠ACB= 90°, ∠BAC=30°,BM=MC 。(1)求证: PB ⊥AC (2)二面角C-PA-M 的大小 。 cos cos ,AB CD AB CD AB CD θ?==?

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

空间向量法求二面角

徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊 空间向量法求二面角 学习目标: 1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题. 新知自学: 让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的 夹角解 图1 图2 课堂互学: 例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小. 例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角 B A C D --的正弦值 例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的大小。 总结提炼: 随堂检测: 1.如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 能力提升: 1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π ,求锐二面角A-A 1C-B 的大小. A B C D E F ?ω θ β l α 2 n 1 n θ β l α ? 1 n 2 n O (A ) B A 1 C 1 B 1 D 1 D C Q z y x 图4 A z y D C B S 图5 A B C D 1 A 1 C 1 B

如何用空间向量求解二面角

如何用空间向量求解二面角 万立勇 (河南省信阳市新县高中,465550) 求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、射影法、向量法等若干种。而这些方法中最简单易学的就是向量法,但在实际教学中本人发现学生利用向量法求解二面角还是存在一些问题,究其原因应是对向量法的源头不尽了解。本文就简要介绍有关这类问题的处理方法,希望对大家有所帮助。 在立体几何中求二面角可归结为求两个向量的夹角问题.对 于空间向量→a 、→b ,有cos <→a ,→ b >= → →→ →??| |||b a b a .利用这一结论, 我们可以较方便地处理立体几何中二面角的问题. 例1 (2005年全国高考理科试题) 在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .求 面VAD 与面VDB 所成的二面角的大小. 证明: 建立如图空间直角坐标系,并设正方形边 长为1,依题意 得AB ??→ = (0,1,0),是面VAD 的法向量, 设n →= (1,y ,z)是面VDB 的法

向量,则 0,0.n VB n VB →??→→??→??=????=? ?1,3y z =-?? ?=- ???n →= (1,-1 )。 ∴cos <AB ??→,n → > |||| AB n AB n ??→→ ??→→ ??= - 7 , 又由题意知,面VAD 与面VDB 所成的二面角为锐角,所以其大小 为arccos 7 例2 (2004年全国高考四川、云南、吉林、黑龙江理科数学试题)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB =90?,AC=1, CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . ⑴求证CD ⊥平面BDM ; ⑵求面B 1BD 与面CBD 所成二面角的大小. 解:⑴略 ⑵如图,以C 为原点建立坐标系.设BD 中点为G ,连结B 1G , 则依 ,14,1 4 ),BD ??→ = (- y B B 1 C 1 A 1 C A D M

向量法求线面角,二面角

利用空间向量解立体几何问题1、线面垂直

别解:本题还可以证明向量A1C与平面DBE的法向量平行 11.(2009安徽卷理) 如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,,AE、CF都与平面 ABCD垂直,AE=1,CF=2.

(I )求二面角B -A F -D 的大小; (向量法)以A 为坐标原点,BD 、AC 、AE 方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图) 设平面ABF 的法向量1(,,)n x y z =,则由1100n AB n AF ??=???=?? 得02220 x y y z ?- +=???+=? 令1z = ,得1 x y ?=??=-??1(2,1,1)n =-- 同理,可求得平面ADF 的法向量2(2,1,1)n =-。 由120n n ?=知,平面ABF 与平面ADF 垂直, 二面角B-AF-D 的大小等于 2 π 。 14.(2009江西卷文) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==, 2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 解:方法(一):

(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD. 因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD, 所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD. (2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD, 由(1)知,PD⊥平面ABM,则MN 是PN 在平面ABM 上的射影, 所以 P N M ∠就是PC 与平面ABM 所成的角, 且PNM PCD ∠=∠ tan tan PD PNM PCD DC ∠=∠== 所求角为arctan (3)因为O 是BD 的中点,则O 点到平面ABM 的距离等于D 点到平面ABM 距离的一半,由(1)知,PD⊥平面ABM于M ,则|DM|就是D 点到平面ABM 距离. 因为在Rt △PAD 中,4PA AD ==,PD AM ⊥,所以M 为PD 中点,DM =,则O 点到平面ABM 。 方法二: (1)同方法一; (2)如图所示,建立空间直角坐标系,则(0,0,0)A ,(0,0,4)P ,(2,0,0)B , (2,4,0)C ,(0,4,0)D , (0,2,2)M , 设平面ABM 的一个法向量(,,)n x y z =,由,n AB n AM ⊥⊥可得:20 220x y z =??+=? ,令1z =-, 则1y =,即(0,1,1)n =-.设所求角为α ,则2sin 3 PC n PC n α ?= = , 所求角的大小为. (3)设所求距离为h ,由(1,2,0),(1,2,0)O AO =,得:2AO n h n ?= = 25.(2009全国卷Ⅰ文)(本小题满分12分)(注决:在试题卷上作答无效) 如图,四棱锥S ABCD -中, 底面ABCD 为矩形,SD ⊥底面ABCD ,AD = ,

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

向量法求二面角专题练习

1,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥ 面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的 大小。 2如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 3.如图,已知四棱锥P ABCD -,底面ABCD 为菱形, PA ⊥平面ABCD ,60ABC ∠= ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥; (2)若H 为PD 上的动点,EH 与平面PAD 面角E AF C --的余弦值. A B C D 1 A 1 C 1 B P B E C D F A

4.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA ⊥平面ABCD ; (2)求以AC 为棱,EAC 与DAC 为面的二面角 的大小 5.如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与A 1B 相 交于点D ,M 为B 1C 1的中点. (1)求证:CD ⊥平面BDM ; (2)求平面B 1BD 与平面CBD 所成二面角的大小.

6.如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E为PB 的中点. (1)求异面直线PD与AE所成的角的大小; (2)在平面PAD内求一点F,使得EF⊥平面PBC; (3)在(2)的条件下求二面角F—PC—E的大小. 7. 如图,正方体ABCD—A1B1C1D1的棱长为1, E、F、M、N分别是A1B1、BC、C1D1、B1C1 的中点. (1)用向量方法求直线EF与MN的夹角; (2)求直线MF与平面ENF所成角的余弦值; (3)求二面角N—EF—M的平面角的正切值.

法向量求解二面角的平面角

法向量求解二面角的平面角 求二面角是高考中必考内容,学习过程中要备受关注,利用传统方法求解二面角的关键是首先知道二面角的平面角,再转化到三角形中解决,而利用法向量可以降低问题的难度,把问题转化为程序化的求解过程,本文就剖析如何利用法向量求解二面角. 一、法向量求二面角步骤 1、建立适当的直角坐标系,当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关系,(如正三棱柱、正四棱柱等)利用图形对称性建立空间直角坐标系解题;此外页可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系. 2、求法向量:一般用待定系数法求解,一般步骤如下:(1)设出平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量的坐标),,(111c b a a =, ),,(222c b a b =;(3)根据法向量的定义建立关于x 、y 、z 的方程组???=?=?0 0b n a n ;(4)解方 程组,取其中的一个解,即得法向量£? 3、利用数量积公式求角:设1n ,2n 分别是两个半平面的法向量,则 由 21,cos n n >= <求得><21,n n ,而><21,n n 的大小或其补角的大小即为二面角的 大小,应注意1n ,2n 的方向。所以二面角的大小可以通过该二面角的两个面的法向量的夹角求得,他等于两法向量的夹角或其补角. 二、考题剖析 例1、在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形, 1 (0)AB PA BC a a == >. (Ⅰ)当1a =时,求证:BD PC ⊥; (Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的 余弦值. A B Q D C P

用法向量求二面角时法向量方向的判断

用法向量求二面角时法向量方向的判断 贺年成 摘要:在求二面角时如何判断法向量的方向 关键词:法向量 二面角 方向 判断 借助法向量求二面角的平面角时,二面角的平面角θ的大小与法向量的所 成角α(=α12<,>n n )相等或互补,当二面角两个法向量都指向二面角的内部或外部时,θπα=-(图1);当两个法向量一个指向二面角的内部而另一个指向二面角的外部时,θα=(图2) 。 对于法向量的方向的判断一直是个难点,其实我们可以借助空间坐标系的坐标原点就可以判断法向量的方向,具体方法如下: 面ABC 与空间直角坐标系的坐标轴分别交于A,B,C 三点,不妨设A(a ,0,0), B(0, b ,0), C(0,0, c ),坐标原点O 在面ABC 上的射影为D 点,容易证明:ABC ?是锐角三角形,而且D 点为ABC ?的垂心1,也就可以知道D 点在ABC ?的内部,设D (x,y,z ),也即向量OD =(x,y,z ) ,则知x ,y ,z 分别与a ,b ,c 同号,此时取平面ABC 的一个法向量n =(111,,x y z ),若n 与向量OD 的对应的一个坐标同号, 1 容易证明三侧棱两两垂直的三棱锥的性质:顶点在底面上的射影为底面三角形的垂心,底面为锐角三角形,锐角三角形的垂心在三角形的内部。

则另外两个也必然对应同号,也即111,,x y z 与a ,b ,c 对应同号, 这样,只要111,,x y z 与对应的a ,b ,c 有一个同号,则可知n 与OD 同向,从而可进一步判断出n 的方向为指向平面ABC 异于原点O 的一侧,否则就指向原点所在的那一侧,这样一来我们可以很容易地判断法向量到底指向二面角的内部还是外部。若二面角的一个半平面过坐标原点,则可以通过平移半平面,让坐标原点置于二面角的内部或外部,再用上面的方法判断。 例. 如右图在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E ,F 分别是PC,PD 的中点,(1)求二面角F —BE —C 的大小,(2)求二面角D —BE —C 的大小。 解析:(1)以D 点为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴,建立如图所示的空间直角坐标系D-xyz ,依题意有P (0,0,2),F (0,0,1),E (0,1, 1),B (2,2,0),C (0,2,0),BE =(-2,-1,1),FE = (0,1,0),EC =(0,1,-1),DE =(0,1,1),设1n = (111,,x y z ), 2n =(222,,x y z ), 3n =(333,,x y z )分别为平面BEF ,平面BEC ,平面BDE 的法向量,110 BE n FE n ?=??=?? ?1111200x y z y --+=?? =? 可取平面BEF 的一个法向量 1n =(-1,0,-2) ,220 BE n EC n ?=??=?? ?22222200x y z y z --+=??-=? 可取平面BEC 的一个法向量2n =(0,1,1),坐标原点D 在二面角的内部,平面BEF 与Z 轴交于F 点,F 点的竖坐标与0n 的竖坐标符号相异,可知1n 的方向指向坐标原点D 所在的一侧,也即1n 指向二面角的内部,同理,平面BEC 与Y 轴交于C 点,C 点的纵坐标与2n 的纵坐标符号相同,可知2n 的方向指向异于坐标原 A

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

二平面法向量的夹角一定等于二面角吗

二平面法向量的夹角一定等于二面角吗 关键词:平面法向量二面角 摘要:二平面法向量的夹角与二面角的关系用向量法求二面角的方法 向量是数形结合的典范,具有几何与代数的二重性,是一个解决问题的重要的数学工具。在中学数学中向量最重要的应用领域就是用它解决立体几何的问题,这样就把抽象的空间思维转化为较机械的代数运算,为解决立体几何中的夹角与距离问题提供了极大的方便.但是在运用向量法求角时,一定要注意所取向量的夹角与所求的犄角之间的关系,否则常会导致误解.下面我们先看 一个误解的例子: 在《未来导报〃高考周刊》2005——2006 学年度第32期(总第111期)中,利用空间向 量求二面角一文中的例1: 图1 在四棱锥V—ABCD中,底面ABCD是正方形, 侧面VAD是正三角形,平面VAD⊥底面ABCD,求面VAD与面VDB所成二面角的大小。 解:建立如图1所示的空间直角坐标系,并设正方形边长为1.依据题意,得=(o,1,o)是面VAD的法向量,设=(1,y,z)是面VDB的法向量,则

? ??=?=?0VB n 0 VD n ? ? ? ? -=- =1y 3 3z ? ??? ? ??--=33,1,1 7 21 n AB ,cos - =>= <∴ . 所以面VAD 与面VDB 所成的二面角的大小为: 7 21 arccos -π . 误解分析:如图2 ,在二面角βια--中,点P 为平面α、β外一点,点A 、B 分别在平面α、 β内, 且P ⊥α,PB ⊥β,AC 、BC 分别为平面PAB 与平面α、β的交线.显然有ACB ∠为二面角βια--的平面角; π=∠+∠ACB APB (圆的内接四边形的对角互补)。 则ACB PB ,PA BP ,AB ∠->=>=<<π ACB APB BP ,PA PB ,AP ∠=∠->=>=<<π 结论:1、当所取平面的法向量的方向,同时指向二面角内或二面角外时,平面法向量的夹角与二面角互补; 2、当所取平面法向量的方向一个指向二面角内另一个指向二面角外时,法向量的夹角与二面角相等。 在上例中,显然所取二平面的法向量同指向二面角内,所以面VAD 与面VDB 所成的二面角的大小为: 7 21 arccos )721arccos ()721(arccos =--=- -πππ. 方法指点:不论所取平面法向量的方向如何,平面法向量的夹角与二 图2

空间几何向量求二面角专项练习

1 1. 如图,四棱锥中,底面为矩形,底面, ,点M 在侧棱上,=60° (I )证明:M 在侧棱的中点 (II )求二面角的大小。 2. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的 中点. (Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 角E —AF —C 的余弦值. 3.如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA =2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。 (1) 证明:直线EE //平面FCC ;求二面角B-FC -C 的余弦值。 4.如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 5.如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面 ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 6.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠= , AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; S ABCD -ABCD SD ⊥ ABCD AD 2DC SD ==SC ABM ∠SC S AM B --111111111 1E A B C F E 1 A 1 B 1 C 1 D 1 D A B C E D P A C B P

相关文档
最新文档