不同施氮量对夏玉米产量_氮肥利用率及氮平衡的影响

不同施氮量对夏玉米产量_氮肥利用率及氮平衡的影响
不同施氮量对夏玉米产量_氮肥利用率及氮平衡的影响

不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响

赵 营,同延安3,赵护兵

(西北农林科技大学资源环境学院,陕西 杨凌 712100)

摘 要:通过田间小区试验研究了不同施氮量对夏玉米产量、氮肥利用率、硝酸盐淋溶及氮平衡的影响。结果表明,施氮对夏玉米子粒有显著的增产作用,但随施氮量的增加产量变化不大。氮肥利用率在912%~2216%之间,随施氮量的增加而降低。施氮可明显提高0~160cm 剖面土壤NO 32-N 含量,而且随深度的增加NO 32-N 含量呈降低趋势,累积峰主要在20~60cm 之间。玉米收获后,随着施氮量的增加氮素的损失量增加,各施氮处理的硝态氮残留量在121~221kg/hm 2之间,以N 250处理的残留量最高,残留率近65%。关键词:夏玉米;子粒产量;氮肥利用率;硝酸盐淋溶;氮平衡

中图分类号:S14311;S513 文献标识码:A 文章编号:1002-0616(2006)02-0030-04

收稿日期:2005-03-03

基金项目:国家自然科学基金资助项目(30370822);农业部948引进项目:养分资源综合管理技术引进。

作者简介:赵营(1979-),男,河南项城人,硕士研究生,主要从事植物营养与施肥研究。3为通讯作者。

近几年来,随着化肥投入量的增加,出现了化

肥利用率及产出下降的现象。从1989年到2002年的13年间,我国的化肥用量增加了84%,而粮食产量只增加了12%[1];我国水稻和小麦等禾谷类作物的氮肥利用率只有28%~41%,大部分氮素以不同途径损失掉了[2]。未被作物吸收利用而残留,易随降水和灌溉水淋溶到土壤深层或随径流进入地表水,从而污染地下和地表水[3,4];或经氨挥发、硝化-反硝化作用以气体形态进入大气,污染大气环境[5,6]。夏玉米是陕西省关中地区主要粮食作物,在农业生产中占重要的经济地位。在施肥上存在氮肥过量或不合理施肥[7],64%以上农户的玉米当季施氮量在270kg/hm 2左右,大多数为一次施用,造成肥料利用率很低,施肥成本高、经济效益下降。本文通过田间试验进行了不同施氮量对夏玉米产量、氮肥利用率及土壤-作物体系中氮素平衡影响的研究,以期为该地区科学施肥和增产提供依据。1 材料与方法

试验设在陕西省杨凌区孟家寨村的中低肥力田块,该地处于暖温带半湿润气候区,年降水量为550~650mm ,且多集中在7、8、9三个月份。供

试土壤为 土,0~30cm 土壤有机质平均含量为

1213g/kg ,全氮、速效磷(P 2O 5)、速效钾(K 2O )分别为0196g/kg 、1519mg/kg 、13818mg/kg 。供试作物为夏玉米(沈单10号),种植密度为5万株/hm 2,于2004年6月9日播种,9月29日收获。在

夏玉米播种后,为确保出苗率,每小区灌水75mm 一次。当季作物生长期间,降水总量为252mm ,占全年降水量的40%左右。试验设4个处理:N 0P 45K 216、N 125P 45K 216、N 250P 45K 216和N 375P 45K 216(字母下方数字为每公顷的纯养分量),氮磷钾肥品

种分别为46%尿素、12%普通过磷酸钙和60%氯化钾。在玉米7叶展期各处理施1/3的氮肥和全部的磷钾肥,2/3的氮肥在大喇叭口期追施。每个小区面积为50m 2,重复3次,随机区组排列。各处理田间管理同当地大田。

在播种前与收获后按每20cm 一层采集0~200cm 深度的土壤混合样,用1m ol K Cl 按水土比4∶1

浸提,T ector 5020流动注射分析仪测定NO 32-N 含量[8](石灰性土壤中的氮素主要以NO 32-N 形态存在,NH 4+-N 在此忽略不计[9]),并根据各层土壤容重将单位换算成kg/hm 2。分别在夏玉米生育阶段的6月26日(苗期)、7月22日(拔节期)、8月4日(大喇叭口期)、8月30日(灌浆期)和9月29日(收获期)采集地上植物样,进行室内测定。烘干样粉碎后用浓H 2S O 4-H 2O 2消解,然后用流动注射分析仪测全N 。

降水和灌溉水的氮输入量不大,在此文中不计入。氮素的矿化是根据不施氮区作物吸氮量与试验

前后土壤无机氮的净变化来加以估计的,不考虑氮肥的激发效应,假定施肥处理的土壤氮矿化量与不施氮区相同,有关氮肥利用率和氮平衡的概念与计算方法[10,11]如下:

氮肥利用率(%)=(施氮区吸氮量-不施氮区吸氮量)/施氮量×100氮表观损失=氮肥输入+土壤初始无机氮-(作物吸收+土壤残留无机氮)

氮肥表观残留率(%)=(施氮区残留量-不施氮区残留量)/施氮量×100氮肥表观损失率(%)=100-氮肥利用率-氮肥的表观残留率

NO 32-N 累积量(kg/hm 2)=土层厚度(cm )×土壤容重(g/cm 3)×NO 32-N 浓度(m g/kg )/10[12]

文中数据均采用Excel 和S AS 软件进行统计分析。

2 结果与分析

211 施氮对夏玉米产量、吸氮量及氮肥利用率的

影响

不同施氮量对夏玉米产量与氮肥利用率的影响

如表1所示,该肥力水平下施用氮肥对夏玉米子粒有明显的增产作用,

当氮肥施用量大于125kg/hm 2时,增施的氮肥不再有增产作用。N 125、N 250、N 375处理的增产量分别为1029、1000、981kg/hm 2,每千克肥料氮的增产量分别为812kg 、410kg 、216kg ,子粒产量分别提高了1819%、1813%、18%。

统计分析结果显示各施氮处理子粒产量与N 0之间的差异均达5%的显著水平;玉米秸秆产量随着施氮量的增加而增加,施氮量250和375kg/hm 2时,增产达显著水平,且地上部总吸氮量也显著增加。不同施氮处理的氮肥利用率在912%~2216%之间,随施氮量的增加而降低。

表1 不同施氮量下夏玉米产量与氮肥利用率

处理

子粒产量

(kg/hm 2

)秸秆产量

(kg/hm 2

)总吸氮量

(kg/hm 2

)氮肥利用率

(%)

N 05454b ±5685908b ±63011414b ±1711—

N 1256483a ±6046643ab ±58514216ab ±2516

2216N 2506454a ±2016790a ±2714616a ±2131219N 375

6435a ±43

6839a ±40

14818a ±519

912

注:±为标准差,同一列数据不同字母代表差异达5%显著水平,下同。

*—N 0 ▲—N 125 ■—N 250 ◆—N 375

图1 不同施氮量对夏玉米地上生物量(a )和吸氮量(b )累积动态的影响

为了进一步了解夏玉米的生长发育及氮素吸收

规律,对夏玉米不同生育阶段地上部生物量(a )和氮素累积(b )动态进行了监测。从图1可以看出,地上生物量的累积趋势和氮素累积趋势基本一致,都呈“S ”型曲线,宋海星等[13,14]也有类似的研究结果。地上部氮素累积主要集中在两个阶段,一个是从苗期(6月26日)到拔节期(7月22日),另一个是从大喇叭口期(8月4日)到灌浆期(8月30日),这两个阶段的氮累积之和占总累积量的70%~80%,是施肥的关键期,对最终产量形成至关重要。统计分析结果显示,同一生育时

期各施氮处理与N 0间地上部生物量均无显著差异,吸氮量也仅在收获期差异达5%显著水平。212 夏玉米生育期0~200cm 土层NO 32-N 含量的变化

氮肥施入土壤后,除被作物吸收利用及以各种途径损失外,大部分以无机氮的形态残留于土壤剖面中,其中NO 32-N 又是无机氮的主要存在形态。从图2可知,施氮可显著增加0~160cm 剖面土壤NO 32-N 含量,随深度的增加NO 32-N 含量呈降低

趋势。由于作物吸收利用,不施氮处理表层的NO 32-N 含量明显降低;各施氮处理的NO 32-N 累

图2 施氮对夏玉米0~200cm土层N O3--N含量的影响

积主要在0~60cm剖面范围,且累积峰在20~60cm之间。N250处理在表层累积浓度最高,其次是N375处理。表层大量残留的NO32-N很容易淋溶到根层以下或通过硝化-反硝化作用损失掉,对环境产生一定的危害[15]。

213 施氮对土壤-作物体系中氮平衡的影响不同施氮量下土壤-作物体系中的氮素平衡计算中,将土壤无机氮(N min)的累积量定义在0~200cm深度范围,即作物根系的主要分布范围。从表2可以看出,夏玉米全生育期土壤氮素的矿化量(11118kg/hm2)与播前残留的硝态氮量之和达174kg/hm2,土壤自身供氮量就可以满足该产量水平下作物对氮素的需求,这也进一步解释了增施氮不增产的原因。玉米收获后氮平衡计算结果表明,随着施氮量的增加,氮素的表观损失量增加。各施氮处理的硝态氮残留量在121~221kg/hm2之间,其中N250的残留量最高,大量残留的硝态氮极易通过淋洗或硝化-反硝化途径损失出土壤-作物体系,对环境产生危害。已有研究认为硝态氮下移至100~300cm或更深的土层可能是冬小麦/夏玉米轮作体系中氮肥的主要损失途径[11]。

表2 不同施氮量对夏玉米全生育期氮平衡的影响(0~200cm)(kg/hm2)

处理

N输入

氮肥起始N min矿化

N输出

吸氮量残留N min表观损失

N0062141111811414b5918c0 N12512562141111814216ab12114bc3512 N25025062141111814616a22016a5710 N37537562141111814818a19919ab20015注:N min—无机氮。

根据表2中N min残留量可以算出N125、N250和N375的表观残留率分别为4913%、6413%和3714%,由氮肥利用率及表观残留率可计算出相应的表观损失率分别为2811%、2218%和5314%(表3)。N250处理NO32-N在土壤剖面中残留量及残留率最高;N375处理的氮表观损失率远远高于N125和N250处理。因此该肥力条件下,综合考虑产量、氮肥利用率及土壤硝态氮残留量等因素,夏玉米氮肥季用量应控制在125kg/hm2以内。

表3 夏玉米生育期的氮肥表观去向(%)

处理N125N250N375氮肥表观利用率22161219912

氮肥表观残留率491364133714

氮肥表观损失率281122185314

3 讨论

本试验条件下,施用氮肥对夏玉米子粒产量有显著的增产作用,但当施氮量大于125kg/hm2时,增施的氮肥不再有增产作用,产量反而有所降低。各施氮处理的氮肥利用率为912%~2216%,随施氮量的增加而明显降低。有研究表明,玉米吸收利用土壤氮素的比例高于对肥料氮的吸收利用,且极易受夏涝的影响[16]。因此,氮肥合理施用与否,除了考虑到氮肥的增产效应和氮肥利用率外,还应考虑土壤残留无机氮的高低。夏玉米收获后各施氮处理0~200cm土体中土壤残留的硝态氮在121~221kg/hm2之间,且大多残留在0~100cm土体范围。大量残留的NO32-N极易通过淋洗或硝化-反硝化作用从土壤-作物体系中损失掉,造成对环境的危害[3-5,11]。欧美许多发达国家对此要求十分严格,一般要求0~90cm土体残留硝态氮低于45 kg/hm2或无机氮(N min)不高于50kg/hm2[17]。在考虑土壤自身供氮水平的基础上,适当降低氮肥的

施用量不仅不会影响夏玉米产量,而且可将氮素的表观损失降到一个较低的水平,此推荐用量应为125kg/hm2或更少。

参考文献:

[1] 国家统计局.中国统计年鉴[M].北京:中国统计出版社,

2003.419.

[2] 朱兆良,文启孝.中国土壤氮素[M].江苏科学技术出版

社,1992.213-249.

[3] 吕殿青,同延安,孙本华,等.氮肥施用对环境污染影响的

研究[J].植物营养与肥料学报,1998,4(1):8-150. [4] 李世清,李生秀.半干旱农田生态系统的硝酸盐淋溶损失

[J].应用生态学报,2000,11(2):240-242.

[5] A.R.M osier,Zhu Z L.Changes in patterns of fertilizer nitrogen

use in Asia and its consequences for N2O emissions from agricultural

systems[J].Nutr.Cyc.in Agroecosystems,2000,57:107-

117.

[6] Li Y E,Liu E D.Emissions of N2O,NH3and NO x from fuel com2

bustion,industrial processes and the agricultural sectors in China

[J].Nutr.Cyc.in Agroecosystems,2000,57:99-106.

[7] 同延安,Ove Emteryd,张树兰,等.陕西省氮肥过量施用现

状评价[J].中国农业科学,2004,37(8):1239-1244. [8] Ove Emteryd.Chemical and physical analysis of inorganic nutrients

in plant,s oil,water and air[M].S tencil N o.10.S wedish Uni2

versity of Agricultural Sciences,Uppsala,S weden.1989.156-

159.

[9] 同延安,Ove.Emteryd,吕殿青.黄绵土与黄泥巴的硝化作

用及氮损失与铵固定[J].西北农业学报,1999,8(6):58

-64.

[10] 刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮

肥利用率及氮平衡的影响[J].生态学报,2002,22(7):

1122-1128.

[11] 巨晓棠,刘学军,王朝晖,等.冬小麦/夏玉米轮作体系中

的氮素损失途径分析[J].中国农业科学,2002,35(12):

1493-1499.

[12] 叶优良,包兴国,等.长期施用不同肥料对小麦/玉米间作

产量、氮吸收利用和土壤硝态氮累积的影响[J].植物营

养与肥料学报,2004,10(2):113-119.

[13] 宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的

动态变化[J].中国农业科学,2003,36(1):71-76. [14] 褚贵新,吕新,刘建国,等.冬小麦套作玉米作物氮磷吸收

分配规律和施肥运筹[J].新疆农业科学,2000,5:199-

202.

[15] 梁东丽,同延安,Ove Emteryd,等.黄土性土壤剖面中N2O

气态损失的研究初报[J].土壤学报,2002,39(6):802-

809.

[16] 郭李萍,王兴仁,张福锁,等.不同年份施肥对作物增产效

应及肥料利用率的影响[J].中国农业气象,1999,20(4):

20-23.

[17] Van der Ploeg R R,Ringe H,M achulla G,et al.P ostwar nitro2

gen yse efficiency in W est G ermany agriculture and groundwater

quality[J].J.Environ.Qual.,1997,26(6):1203-1212.

E ffect of different N rates on yield of summer maize,fertilizer N recovery and N balance

ZHAO Y ing,T ONG Y an-an3,ZHAO Hu-bing

(C ollege of Res ources and Environmental Sciences,N orthwest Sci-T ech University of Agriculture and F orestry,Y angling Shaanxi712100)

Abstract:A field experiment was carried out to study the effects of different N rates on the yield,fertilizer N recovery, nitrate leaching and N balance in summer maize.The results indicated that N application could increase the grain yield of summer maize significantly,but which didnπt change too much with N rate increasing.Fertilizer N recovery of different N treatments was ranged from912%to2216%,which decreased with the N rate increasing1N application als o increased NO32-N content in s oil profile of0to160cm depth,and which decreased with the s oil depth,the peak point was be2 tween20cm and60cm1A fter summer maize was harvest,apparent N losses increased with N rate increasing1S oil resid2 ual N min was ranged from121to221kg/hm2in0~200cm,the highest NO32-N residual of22016kg/hm2was in the treatment of N250,apparent N residual rate was nearly65%1

K ey w ords:summer maize;grain yield;fertilizer N recovery;nitrate leaching;N balance

水稻栽培氮肥要求量及利用率

水稻栽培氮肥要求量及利用率/h1 -- -- 本站首页 免费课件 免费试题 整册教案 教育资讯 计划总结 英语角 幼儿教育 文书写作 海量教案 免费论文

网站地图设为首页收藏本站 语文科数学科英语科政治科物理科化学科地理科历史科生物科中考备战高考备战高考试题中考试题教学论文作文园地

教学论文 经济论文 理工论文 管理论文 法律论文 行政论文 艺术论文 医学论文 文史论文 农科论文 英语论文 课程改革 教育法规 教育管理 家长频道 您现在的位置:3edu教育网免费论文农科论文农科论文正文3edu教育网,百万资源,完全免费,无需注册,天天更新!

水稻栽培氮肥要求量及利用率 1产量目标水稻产量的构成由单位面积上的穴数、穗数、每穗结实粒数和千粒重几个部分构成,要求达到的标准:穴数17~22穴/平方米;穗数450~500穗/平方米;实粒数85~90粒/穗;千粒重24~26克;产量9000~10000公斤/公顷。2基地与良种选择2.1自然条件。黑龙江垦区位于东经123°40′~134°40′和北纬40°10′~50°21′之间,总面积5.43万平方公里,占全省土地总面积的12.2%。分布在黑龙江省12个地(市)69个县(市、区),横跨小兴安岭南麓、松嫩平原和三江平原地区。 2.2种子质量标准。纯度≥98%;净度≥98%;发芽率≥95%;水分≤14.5%。 2.3品种要求。选择品种要根据垦区的自然条件,土壤条件,品种的品质、抗逆性、产量等综合选择。产量9000~10000公斤/公顷,品质口感好,抗倒伏、抗病害、耐盐碱、分蘖力强的中早熟品种。3适时旱育苗、旱育稀植,培育壮秧3.1壮秧标准。秧龄35~45天,叶龄3.5~4.5叶,苗高13~17厘米,根数13~15条,百株千重3.5~4克以上,20%的秧苗带1~2个分蘖,叶色绿中带黄,根系盘根好,插后返青快。3.2营养土配制。营养土的选择与配制关系到秧苗的长势,因此要选择含盐少、PH值低、草籽少、土质疏松肥沃的土壤,一般要采用灌区干的渠干土方宜配制比例用95%的渠干土过筛(3~4口径)加5%的优质腐熟的马粪或猪粪作育苗土。配制床土、化肥、农药、调酸剂要准、要均匀,配制后要过筛,使PH值为4.5。 3.3种子处理。3.3.1选种:用重量25公斤/公顷,选择好品种后进行脱芒,有利于播种均匀,在晴天选择干燥平坦地上晒2~3天,提高种子活性,用比重1:13(约50公斤加盐1公斤)盐水漂选,用清水冲净。3.3.2浸种消毒:目的上为了防止恶苗病发生。1)45%的浸种灵或901可湿性粉剂兑水500倍液即1袋加水50公斤浸40公斤的种子,在室温下浸5~7天,每天搅拌1~2次,一浸到底,直接催芽。 2)40%植物龙乳油稀释400~500倍,1袋加水50公斤浸种40公斤,浸种6天,无需清水冲洗可直接催芽。3)催芽:将浸好种子放在28~32的情况下催芽,一般2天左右,即在85%破胸露白后

氮肥基础知识(一)

一、氮肥种类 1、碳酸氢铵(铵态氮):分子式为NH4HCO,含氮量17噓右,是化学性质不稳定的白色结晶,易吸湿分解,易挥发,有强烈的刺鼻、熏眼氨味(因分解出氨气NHO,湿度越大、温度越高,分解越快,易溶于水,呈碱性(pH8.2-8.4)。 碳酸氢铵是一种不稳定化合物,常压下,温度达到70C时全部分解。在气温20C时,露天存放1天、5天、10天的损失率分别为9% 48% 74%在潮湿的环境中易吸水潮解和结块(结块本身就是一种缓慢分解的表现)。在贮存和施用过程中,应采取相应措施,防止其挥发损失。适合于各类土壤及作物,宜作基肥施用,追肥时要注意深施覆土。 2、氯化铵(铵态氮):分子式为NHCI,含氮24-25%为白色结晶,易溶于水,吸湿性小,不结块,物理性状好,便于贮存。氯化铵呈酸性,也是生理酸性肥料。氯离子对硝化细菌有一定的抑制作用,施入土壤后氮的硝化淋失作用比其它氮肥要弱。因此,氯化铵是水田较好的氮肥。 3、硝酸铵(铵态氮、硝态氮):分子式为NMNQ,含氮33-35%。硝酸铵有结晶状和颗粒状两种,前者吸湿性很强,后者由于表面附有防湿剂,吸湿性略差一些。硝酸铵易溶于水,pH呈中性。硝酸铵既 含有在土壤中移动性较小的铵态氮,又含有移动性较大的硝态氮,二者

均能很好地被作物吸收利用。因此,硝酸铵是一种在土壤中不残留任何物质的良好氮肥,属生理中性肥料。硝酸铵宜作旱田作物 的追肥,以分次少量施用较为经济。不宜施于水田,不宜作基肥及种肥施用。 4、尿素(酰胺态氮):分子式为(NH2) 2CO含氮46%左右。普通尿素为白色结晶,吸湿性强。目前生产的尿素多为半透明颗粒,并进行了防吸湿处理。在气温10-20 C时,吸湿性弱,随着气温升高和湿度加大,吸湿性也随之增强。尿素属中性肥料,长期施用对土壤没有副作用。施入土壤后,经过土壤微生物分泌的尿酶作用,水解成碳酸铵被作物吸收利用。其水解过程为:(NH2) 2CO+2Q(NH4)2CO3。水解速度与土壤酸度、湿度、温度有关,也受土壤类型、熟化程度和施肥深度等因素的影响。通常情况下,尿素全部水解成碳酸铵的时间为:气温10C时约10天,气温20C时4-5天,气温30C时约2天。所以,尿素的肥效比较慢,作追肥时应适当提前。尿素适合于各类土壤及作物,可作基肥、追肥及叶面喷施用(喷施浓度为1-2%)。 二、三种形态的氮肥(铵态氮、硝态氮和酰胺态氮)在土壤中的转化特点 铵态氮肥施入土壤后,一部分被植物直接吸收利用,一部分被土壤胶体吸附,另一部分通过硝化作用将转化为硝态氮。

春季不同时期施用氮肥对小麦浚2016产量性状及产量的影响

春季不同时期施用氮肥对小麦浚2016产量性状及产量的影响 摘要以小麦新品种浚2016为材料,在高水肥条件下,按照春季不同的追氮肥时期进行4个处理的综合试验,通过对产量结果的方差分析和对成穗数、结实小穗、穗粒数、千粒重等的分析, 关键词小麦;浚2016;施肥;产量性状;产量 浚2016为小麦新品种,2011年5月通过河南省农作物品种审定委员会审定(审定编号:豫审麦2011004)[1]。该品种适应性强、株型紧凑、秆低抗倒、拔节前生长发育较慢、拔节后生长快、分蘖力和成穗率中等、穗大粒多、千粒重高。2012—2013年度安排了春季不同时期施用氮肥对小麦品种浚2016产量性状及产量影响的试验。 1 材料与方法 1.1 试验概况 3 结论与讨论 试验结果表明,小麦品种浚2016在高产栽培条件下,小麦药隔后期追施氮肥,可保证小麦抽穗前和抽穗后的氮素供应。在不同的施氮肥处理中,药隔后期追施氮肥有利于提高浚2016成穗数、结实小穗数、穗粒数、千粒重,从而提高产量。已有的研究表明,拔节后追氮肥会造成小麦后期贪青晚熟,但在本试验中,药隔后期追施尿素没有出现贪青晚熟现象,且产量处于较高水平,可能与浚2016在高水肥栽培条件下起身拔节期要求达到一定的氮素供应强度有关。由此可见,浚2016高产栽培条件追施氮肥的最佳时期是在拔节后(药隔后期),追施尿素300 kg/hm2为宜[5-6]。 4 参考文献 [1] 孙希增,郭智萍.高产稳产大穗抗倒小麦新品种浚2016的选育及栽培技术[J].农业科技通讯,2011(9):118-119. [2] 南京农业大学.田间试验和统计方法[M].2版.北京:中国农业出版社,1999:191-197. [3] 李大同,朱华翠,徐春宏.兴化市安丰镇小麦氮肥施用试验研究[J].现代农业科技,2014(4):22-23. [4] 王新民,韩燕来,谭金芳,等.不同灌水条件下缓释氮肥在冬小麦上的肥效研究[J].河南农业科学,2001(3):17-19.

氮肥施用量对水稻生长的影响

氮肥施用量对水稻生长的影响 摘要通过无氮、精确施氮和常规施肥做精确施氮试验,以确定氮肥的施用量对水稻生长的影响。结果表明:株高与施氮量有显著关系,随施氮量的增加而绿度值呈增加趋势;茎蘖数、有效穗数随施氮量的增加而增加,但施氮到一定量时呈持续缓慢增加;穗粒数随施氮量的增加而增加,但到一定量后不增加反而下降;施氮量对粒重的影响表现为随施氮量的增加而粒重下降。据此可知,从无氮施肥到精确施氮是有增产空间的,但并非越多越好,只有做到氮肥用量适宜,才能减少浪费。 关键词氮肥;水稻;生长;影响 为了真正提高农民种植水稻的净收益,必须尽快建立水稻精确施氮技术指导体系,努力提高氮肥利用率,减少肥料浪费,降低污染系数,发展高产、高效、安全的生态水稻生产。为此,大丰市土肥站在白驹镇狮子口村茅林玉家的责任田里做了精确施氮试验。 1材料与方法 前茬作物为小麦,品种为9023,基肥施45%的枫叶牌氮磷钾比例为18-17-10的复合肥450kg/hm2,腊肥施46.3%尿素300kg/hm2,拔节孕穗肥施46.3%尿素150kg/hm2,生长中后期,喷施兴砍牌安利素750g/hm2,相隔6~7d喷1次,计2次。小麦实际产量为7 425kg/hm2。 本次试验共设3个处理,分别为:无氮对照(No),面积33.3m2,施五氧化二磷60kg/hm2,氧化钾90kg/hm2作基肥,整个生育期不施氮肥;精确施氮(Nj),面积66.7m2,施纯氮84kg/hm2,五氧化二磷60kg/hm2,氧化钾90kg/hm2作基肥,分蘖肥施氮66kg/hm2,穗肥施氮135kg/hm2,相当于尿素294 kg/hm2,分2次施,第1次在倒4叶施尿素144kg/hm2,第2次在倒2叶施尿素114kg/hm2;常规施肥(Nc),面积333.3 m2,施氮67.5kg/hm2,五氧化二磷67.5kg/hm2,氧化钾67.5 kg/hm2作基肥,分蘖肥施172.5kg/hm2,穗肥施氮69kg/hm2。 处理No、处理Nj、处理Nc使用同一水稻品种徐稻4号,按照统一密度和栽插方式,行距25cm,株距14cm,34.5万穴/hm2,小区筑埂分条,并用塑料薄膜包裹,沟系配套,不得漫灌,防止串水、渗肥、小区内肥力均匀,地势高低一致,防止病虫草害的管理措施一致,6月21日移栽,水稻移栽时秧龄6.1叶,成熟期为10月28日,观测项目包括株高、剑叶面积、茎蘖动态、叶色、地上部分

水稻氮磷钾利用率试验总结

水稻氮磷钾利用率试验报告 Experimental report on the utilization of nitrogen and phosphorus in Rice 时长春①邹忠②章晓峰③ ①丁堰镇农业服务中心;②如皋市土壤肥料指导站;③如皋市财政局 SHI Chang-chun①Zou Zhong②Zhang Xiao-feng③ ①Dingyan Town Agricultural Service Center;②Rugao soil and Fertilizer Station Guide;③Rugao City Bureau of Finance 摘要 通过试验研究,摸清配方施肥下水稻氮磷钾肥料利用率,为水稻精准施肥方案制定提供依据。 Abstract Through the experimental study, to find out the formula fertilization and the use rate of rice nitrogen and phosphorus fertilizer, to provide the basis for the development of rice precision fertilization program. 关键词 水稻;氮磷钾;肥料利用率。 Key word Rice; nitrogen and phosphorus; fertilizer utilization ratio. 基金项目 获得农业部公益性行业(农业)科研专项(201303109-4)项目资助。 正文 1试验目的 随着测土配方施肥技术在水稻生产中的推广应用,氮磷钾肥料三要素在水稻上的利用率也必将发生新的变化,为摸清氮磷钾在水稻生产中的利用率现状,为下一步制定更加精准的测土配方施肥技术方案提供技术支撑,根据市土肥站的要求,特在丁堰镇开展了水稻氮磷钾利用率试验研究。 2材料与方法 2.1处理设置 试验设8个处理,包括常规施肥全肥、常规施肥无氮、常规施肥无磷、常规施肥无钾、配方施肥全肥、配方施肥无氮、配方施肥无磷、配方施肥无钾。常规施肥水平根据当地习惯施肥量选定,配方施肥方案根据市农业部门推荐的测土配

几种氮肥施用中注意的问题

氮肥的种类不同,在土壤中的转化特点不同。 硫铵、碳铵和氯化铵中NH4+的转化相同,除被植物吸收外,一部分被土壤胶体吸附,另一部分通过硝化作用将转化为NO3-;硫铵和氯化铵中阴离子的转化相似,只是生成物不同,酸性土壤中两都分别生成硫酸和盐酸,增加土壤酸度;石灰性土壤中则分别生成硫酸钙和氯化钙,使土壤孔隙堵塞或造成钙的流失,使土壤板结,结构破坏;二者在水田中的转化亦有所不同,氯化铵的硝化作用明显低于硫铵,且不会像硫铵一样产生水稻黑根,因此在水田中往往氯化铵的肥效高于硫铵;碳铵中的碳酸氢根离子则除了作为植物的碳素营养之外,大部可分解为CO2和H2O,因此,碳铵在土壤中无任何残留,对土壤无不良影响。 硝态氮肥如硝酸铵施入土壤后,NH4+和NO3-均可被植物吸收,对土壤无不良影响。NH4+除被植物吸收外,还可被胶体吸附,NO3-则易随水淋失,在还原条件下还会发生反硝化作用而脱氮。 酰胺态氮肥如尿素施入土壤后,首先以分子的形式存在,在土壤中有较大的流动性,且植物根系不能直接大量吸收,以后尿素分子在微生物分泌的脲酶的作用下,转化为碳酸铵,碳酸铵可进一步水解为碳酸氢铵和氢氧化铵。所以尿素施在土壤的表层也会有氨的挥发损失,特别在石灰性土壤和碱性土壤上损失更为严重。尿素的转化速度主要

取决于脲酶活性,而脲酶活性受土壤温度的影响最大,通常10℃时尿素转化需7-10天,20℃时需4-5天,30℃时只需2天。因为尿素在土壤中需要转化为铵态氮以后,才能大量被植物吸收利用,故尿素作追肥时,要比其它铵态氮肥早几天施用,具体早几天为宜,应视温度状况而定。 氮肥合理施用的基本目的在于减少氮肥损失,提高氮肥利用率,充分发挥肥料的最大增产效益。由于氮肥在土壤中有氨的挥发、硝态氮的淋失和硝态氮的反硝化作用三条非生产性损失途径,氮肥的利用率是不高的,据统计,我国氮肥利用率在水田为35%-60%,旱田为45%-47%,平均为50%,约有一半损失掉了,既浪费了资源,又污染了环境,所以合理施用氮肥,提高其利用率,是生产上亟待解决的一个问题。 氮肥的合理分配应根据土壤条件、作物的氮素营养特点和肥料本身的特性来进行。 土壤条件:土壤条件是进行肥料区划和分配的必要前提,也是确定氮肥品种及其施用技术的依据。首选必须将氮肥重点分配在中、低等肥力的地区,碱性土壤可选用酸性或生理酸性肥料,如硫铵、氯化铵等;酸性土壤上应选用碱性或生理碱性肥料,如硝酸钠、硝酸钙等。盐碱土不宜分配氯化铵,尿素适宜于一切土壤。铵态氮肥宜分配在水稻地区,并深施在还原层,硝态氮肥宜施在旱地上,不宜分配在雨量偏多的地区或水稻区。“早发田”要掌握前轻后重、少量多次的原则,

不同氮肥施用量对水稻产量及品质的影响

各种营养元素中,氮素是影响水稻产量的最活跃的因素,氮素营养状况与水稻的生理特性、产量形成等有密切的关系。柳金来等研究表明,当氮素施用水平由低逐渐增高时,产量随氮素用量的增加相应的提高,但是当氮素用量达到一定水平时,再增加氮素,产量提高并不显著,甚至造成减产。因此,对在相同基础地力下,研究不同氮肥施用量对水稻产量和品质的影响,以确定水稻准确定量的施肥技术,从而为减少氮肥的投入,提高氮肥利用率提供参考。 1 内容与方法 1.1 试验基本情况 供试水稻品种选用三江2号。试验地设在建 三江大兴农场科技示范园区水田区,土质为草甸 白浆土,有机质4.42%,碱解氮161.4mg /kg ,速效磷29.8mg /kg ,速效钾131.25mg /kg ,pH 值6.3。前茬为水稻,秋翻。 1.2试验设计 试验共设6个处理,处理1:46%尿素9kg / 667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理2:46%尿素10kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理3:46%尿素11kg /667m 2,二铵7kg /667m 2,33% 硫酸钾9.8kg /667m 2;处理4:46%尿素12kg / 667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理5:46%尿素13kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理6:46%尿素14kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2。1.3试验方法 试验采取单因素小区对比法,8行区,行长 9.95m ,小区面积23.9m 2,3次重复。4月5日播 不同氮肥施用量对水稻产量及品质的影响 张 岩,马士学,王青菊,韩松炎,史国庆 (建三江大兴农场,黑龙江 佳木斯 156303) 摘 要:以三江2号为供试材料,研究不同氮肥施用量对水稻植株生长、抗病性、产量及品质的影响。结果表明:植株的叶 片、茎鞘和穗的干物重大致上随着施氮量的增加而不断增多,当达到14kg /667m 2时,干物质积累量略有下降。瘪粒数随施氮量的增加而增多,结实率和实测产量以中氮水平为高。糙米率、精米率和整精米率都不是以最低氮和最高氮水平为最高,而是中氮水平处理最高,水稻外观品质垩白率和垩白度都是低氮水平较低。关键词:水稻;氮肥;施用量;产量;品质收稿日期:2009-06-15 作者简介:张岩(1978-),男,硕士。 Effect of Nitrogen Fertilizer Amount on Yield and Quality in Rice ZHANG Yan ,MA Shi-xue ,WANG Qing-ju ,HAN Song-yan ,SHI Guo-qing (Jiansanjiang Daxing Farm,Jiamusi Heilongjiang 156303,China) Abstract:Taking Sanjiang No.2as entry,the effects of nitrogen fertilizer on plant growth,disease resistance,yield and quality in rice were studied and the results showed that the weights of leaves,stem and sheath and panicle increased with the increase of nitrogen application,but decreased when the nitrogen amount was 14kg/667m 2.Shriveled grains increased as the nitrogen amount increased and the kernel-setting rate reached the highest at mediate level of nitrogen amount.Brown rice rate,polished rice rate and head rice rate were the highest at mediate level of nitrogen amount and chalky grain rate and chalkiness degree decreased as the nitrogen amount increased. Key words:Rice;Nitrogen fertilizer;Application amount;Yield;Quality 中图分类号:S 147.22 文献标志码:A 文章编号:1673-6737(2009)05-0016-03 16--

水溶肥在提高肥料利用率

水溶肥在提高肥料利用率、节约农业用水、减少生态环境污染、改善作物品质以及减少劳动力等方面具有明显优势。但在施用时应结合其特点掌握以下施肥技巧: 一、避免直接冲施,要采取二次稀释 水溶肥比一般复合肥养分含量高,用量相对较少,直接冲施极易造成烧苗伤根、苗小苗弱等现象,二次稀释不仅利于肥料施用均匀,还可以提高肥料利用率。 二、少量多次施用 由于水溶肥速效性强,难以在土壤中长期存留,少量多次是最重要的施肥原则,符合植物根系不间断吸收养分的特点,减少一次性大量施肥造成的淋溶损失。一般每次每亩用量在3-6千克。 三、注意养分平衡 水溶肥一般采取浇施、喷施,或者将其混入水中,随同灌溉(滴灌、喷灌)施用。需要提醒的是,采用滴灌施肥时,由于作物根系生长密集、量大, 对土壤的养分供应依赖性减小,更多依赖于通过滴灌提供的养分。如果水溶肥配方不平衡,会影响作物生长。另外,水溶肥千万不要随大水漫灌或流水灌溉等传统灌溉方法施用,以避免肥料浪费和施用不均。 四、配合施用 水溶肥料为速效肥料,一般只能作为追肥。特别是在常规的农业生产中,水溶肥是不能替代其它常规肥料的。要做到基肥与追肥相结合、有机肥与无机肥相结合、水溶肥与常规肥相结合,以便降低成本,发挥各 种肥料的优势。 五、尽量单用或与非碱性农药混用 蔬菜出现缺素症或根系生长不良时,不少农民多采用喷施水溶肥的

方法加以缓解。在此提醒,水溶肥要尽量单独施用或与非碱性的农药混 用,以免金属离子起反应产生沉淀,造成叶片肥害或药害。 六、避免过量灌溉 以施肥为主要目的灌溉时,达到根层深度湿润即可。不同的作物根层深度差异很大,可以用铲随时挖开土壤了解根层的具体深度。过量灌溉不仅浪费水,还会使养分淋失到根层以下,作物不能吸收,浪费肥料。特别是水溶肥中的尿素、硝态氮肥(如硝酸钾、硝酸铵钙、硝基磷肥及含有硝态氮的水溶性肥)极易随水流失。 七、防止地表盐分积累 大棚或温室长期采用滴灌施肥,会造成地表盐分累积,影响根系生长。可采 用膜下滴灌抑制盐分向表层迁移。黄腐酸钾简介 简介 黄腐植酸是一种从天然腐植酸中提取的短碳链分子结构物质。它具有高负载量及 生理活性。应用于农业及园艺类行业,具有以下益处:螯合常量及微量营养 物质使其更好地为植物利用;防治植物病害,增强抗涝性;激发植物微观生物活性;缓释肥料,改善化肥及农药利用;提高营养吸收,促进植物发芽生长; 加速沉淀分解,改善土壤结构。 黄腐酸钾可活化板结土壤,促进各种瓜果蔬菜和大田农作物的生理代谢,促进根系发达、茎叶繁茂。黄腐酸钾可基施、冲施、追施,冲施或追施亩用量约 20-30 公斤,可节约各种肥料,可使瓜果蔬菜及各种大田作物提前成熟十天左右,增产 20鸠上。可使瓜果蔬菜类延长保鲜期及采摘期,预防落花、落果,增加果品的含糖量,改善果品品质。 2种类 矿物型黄腐酸钾是一种纯天然矿物质活性钾元素肥,黄腐酸钾内含微量元素、稀土元素、植物生长调节剂、病毒抑制剂等多种营养成分,使养分更充足、补给更合理,从而避免了作物因缺少元素而造成的各种生理性病害的发生,使作物株型更旺盛叶色更浓绿,抗倒伏能力更强。黄腐酸钾能及时的补充土壤中所流失的养分,使土壤活化,具有生命力,减少了土壤内养分被过度吸收引起的重茬病害,产品完全可以代替含量相同的硫酸钾或氯化钾及硫酸钾镁,而且天然、环保。 有机型 1、黄腐植酸是腐植酸中的一种成份。腐植酸广泛存在于自然界的草炭、褐煤、风化煤等中,可从腐植酸中提取一定的黄腐植酸与氧化钾制成黄腐酸钾。 2、利

主要氮肥品种使用技术、施肥量确定方法、施肥效益评价

A (规范性附录)

附录B (规范性附录)

氮肥施肥量的确定方法 1 地力分区(级)配方法 根据土壤地力高低,分成若干等级,在不同地力等级区域内经过对比试验后,确定每个地力接近相同区域的氮肥在不同作物的不同生长时期施肥量的施肥方法。 2 目标产量配方法 根据种植区域内的耕作条件和产量最高限度,一般在某种作物近3年的平均产量的基础上再增加10%-15%作为目标产量,再根据作物吸收氮素规律和土壤养分供应量所确定的氮肥施用量和其他肥料配施的施肥方法。 3 养分平衡法 根据无肥区作物带走的养分量和土壤养分测定值计算出土壤供氮量、作物需要吸收的氮肥总量,再确定所需增加氮素养分的施肥方法。作物需要吸收的养分减去土壤可提供的养分就是应增施的氮肥养分量。氮肥施用量(a),用千克/公顷(kg/hm2)表示,按式(1)计算:a=(a1×a2-a3×2.25×a4)÷a5×a6 (1) 式中: a—氮肥施用量,kg/hm2; a1—作物单位产量的氮素养分吸收量; a2—作物目标产量,kg/hm2; a3—土壤供氮养分测定值(mg/kg); a4—校正系数(各地试验确定); a5—该种氮肥的氮素养分含量; a6—当地氮肥的当季利用率(百分数); 2.25—土壤耕层养分测定值折算成1hm2土壤养分含量系数。 4 地力差减法 根据目标产量和无肥区带走的氮素养分量确定所需施用氮素肥料的方法。氮肥施用量(b),用千克/公顷(kg/hm2)表示,按式(2)计算: b=b1×(b2-b3)÷(b4×b5) (1) 式中: b—氮肥施用量,kg/hm2; b1—作物单位产量的氮素养分吸收量; b2—作物目标产量,kg/hm2; b3—无肥区作物产量,kg/hm2; b4—该种氮肥的氮素养分含量; b5—当地氮肥的当季利用率(百分数)。 5 肥料效应函数法 不同产量与相应的施肥量存在着一定的函数关系,从而确定相关肥料适宜施肥量的施肥方法。 6 养分丰缺指标法 在不同地力水平上通过田间试验,得出土壤养分供应水平的丰缺、最高施肥量和作物产量之间的相关性,制定出养分的丰缺指标及其对应的作物产量,从而确定氮肥施用量的方法。 7 有机氮和无机氮施用量的计算方法 7.1 同效当量法

氮肥运筹对氮肥利用率及小麦产量的影响

氮肥运筹对氮肥利用率及小麦产量的影响 赵金花 (河南农业大学农学院,河南郑州450003) 摘要:随着氮肥大量用于农业生产中,氮肥的利用率随之降低,由氮肥淋失而产 生的环境问题日益严重。本文通过对氮肥的动态变化、氮肥的利用率以及在小麦 增产中的作用,探讨不同施氮量、施氮时期和施氮方式对氮肥利用率以及小麦产 量的影响。 关键词:氮肥;氮肥利用率;小麦;产量 Effects of Different Nitrogen Application Techniques on Yield and Nitrogen Use Efficiency of Wheat ZHAO Jin-hua (College Of Agronomy,Agricultural University of Zhengzhou, Henan 450003,China) Abstract:Along with the fertilizer used in agricultural production, The utilization rate of nitrogen fertilizer decreased, Nitrogen leaching loss has caused serious environmental problems. Based on the dynamic changes of nitrogen fertilizer、the utilization rate of nitrogen fertilizer and the effect on wheat yield, Discuss different nitrogen levels、nitrogen application period and nitrogen application methods have influence on the utilization rate of nitrogenous fertilizer and wheat yield. Key words:Nitrogenous fertilizer; Nitrogen use efficiency; Wheat; Yield 氮肥是小麦生产过程中需求量最大、增产效果最显著、产生经济效益最高 的肥料类型,施用氮肥是提高小麦产量的主要措施之一。就小麦生产而言,应用 适宜的氮肥用量和施用方法以及合理的运筹比例是获得小麦高产的关键。随着农 业生产的持续发展和作物产量水平的不断提高,氮肥的使用量在小麦生产中逐年 增大,但肥料利用率较低、经济效益不高的现象十分严重。除筛选与利用氮高效 基因型小麦品种外,解决这一问题的主要途径便是如何合理施用氮肥及提高其利 用率。关于氮肥对小麦生长发育、产量形成及氮素积累、分配与利用的影响,前 人已经作了大量的研究。在前人研究的基础上,本文综述了氮素供应量、时期、

氮肥合理施用准则(发布稿)

65.080 B13 DB51 氮肥合理施用准则 Rules for nitrogen fertilizer application 四川省质量技术监督局 发布

DB51/T617—2007 目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 氮肥类型 (2) 5 施用原理 (2) 6 施用依据 (2) 7 施用技术 (3) 8 效益评价 (3) 附录A (规范性附录)氮肥施用总量的确定和计算方法 (4) 附录B (规范性附录)施肥的效益评价 (6) I

DB51/T617—2007 II 前言 本标准附录A、附录B为规范性附录。 本标准由四川省农业厅提出并归口。 本标准由四川省质量技术监督局批准。 本标准起草单位:四川省农业厅土壤肥料与生态建设处、四川省农业科学院土壤肥料研究所。本标准主要起草人:陈琦、孙锡发、曹旭辑、曹均成、熊俊秋。

DB51/T617—2007 氮肥合理施肥准则 1 范围 本标准规定了氮肥类型、施用原理、施用依据、施用技术、效益评价。 本标准适用于四川省具有氮(N)标明量、以提供植物所需氮养分为主要功效的大量元素肥料。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 2400 尿素 GB 2945 硝酸铵 GB 3559 农业用碳酸氢铵 GB 535 硫酸铵 GB/T 2946 氯化铵 GB/T 6278 肥料和土壤调理剂术语 NY/T 496 肥料合理施用准则通则 3 术语和定义 下列术语和定义适用于本标准。 3.1 肥料fertilizer 以提供植物所需养分为主要功效的物料。 3.2 大量元素macronutrient 对氮、磷、钾元素的通称。 3.3 氮肥nitrogen fertilizer 具有氮(N)标明量、以提供植物所需氮养分为主要功效的大量元素肥料。 3.4 磷肥phosphate fertilizer 具有磷(P2O5)标明量,以提供植物磷养分为其主要功效的大量元素肥料。 3.5 钾肥potassium fertilizer 具有钾(K2O)标明量,以提供植物钾养分为其主要功效的大量元素肥料。 3.6 有机肥料organic fertilizer 主要来源于植物和(或)动物,施于土壤以提供植物营养为其主要功效的含碳物料。 3.7 植物养分plant nutrient 植物生长所必需的矿质元素。 3.8 肥料养分nutrient from fertilizer 肥料中可供植物吸收的养分。 3.9 施肥量fertilizer rate, fertilizer dose 施于单位面积耕(林)地或单位质量生长介质中的肥料养分(包括土壤调理剂)的质量或体积。 3.10 植物的土壤氯容量chloride capacity of soil and plant 作物耐氯临界值减去土壤含氯量的差值。 1

氮肥的种类、性质和施用

氮肥的种类、性质和施用 <一> 氮肥的种类和性质 根据化合物形态分:铵态氮肥、硝态氮肥、酰胺态氮肥。 一、铵态氮肥: 含有铵根离子(NH4+)或氨(NH3)的含氮化合物。包括碳酸氢铵(NH4CO3)、硫酸铵((NH4)2SO4)、氯化铵(NH4Cl)、氨水(NH4OH)、液氨(NH3)等。 1.共同特点: (1)易溶于水,是速效养分,作物能直接吸收利用,肥效快。 (2)NH4+被土壤胶体吸附形成交换性养分,移动性小,不易淋失。 (3)遇碱性物质分解产生氨气挥发损失。在使用时,不能和碱性肥料混合使用;在储运时防止挥发(密封、开袋后使用);石灰性土壤深施覆土。 (4)在通气良好的土壤中,易发生硝化作用形成硝态氮。 (5)肥效比硝态氮肥慢但长,可作追肥,也可作基肥。 2.常用的铵态氮肥: (1)氯化铵:分子式NH4Cl,含N 24~25%。肥料水溶液呈弱酸性反应;物理性状较好,吸湿性略大于硫酸铵,属于生理酸性肥料。适宜作基肥、追肥,不宜作种肥。施用时忌氯作物不要施用,稻田可长期施用。 (2)硫酸铵:分子式(NH4)2SO4,一般称为标准氮肥。含N 20~21%。肥料水溶液呈弱酸性反应;物理性质好(不吸湿、不结块),属于生理酸性肥料,长期单独施用会使土壤酸化。适宜作基肥、追肥和种肥,适宜各种作物,喜硫作物施用效果更好。施用时不宜长期单独施用,石灰性土壤或水田要深施,水田不宜长期施用。 (3)碳酸氢铵:分子式NH4HCO3,含氮17%左右。肥料水溶液呈碱性反应;化学性质不稳定,易分解挥发损失氨,易发生潮解、结块,不残留任何副成分,被称为“气肥”。可作基肥、追肥,不宜作种肥。施肥时一不离土,二不离水。二、硝态氮肥: 含有硝酸根离子(NO3-)的含氮化合物。包括硝酸铵、硝酸钠、硝酸钙等。 1.共同特点: (1)白色结晶,易溶于水,属速效性氮肥。

施氮肥量与土壤氮矿化速率的关系

施氮肥量与土壤氮矿化速率的关系 土壤中氮素绝大多数为有机质的结合形态。无机形态的氮一般占全氮的1%~5%。土壤有机质和氮素的消长,主要决定于生物积累和分解作用的相对强弱、气候、植被、耕作制度诸因素,特别是水热条件,对土壤有机质和氮素含量有显著的影响。土壤中有机态氮可以半分解的有机质、微生物躯体和腐殖质,而主要是腐殖质。有机形态的氮大部分必须经过土壤微生物的转化作用,变成无机形态的氮才能为植物吸收利用[1]。无机态氮主要是铵态氮和硝态氮,还有少量亚硝态氮的存在,是植物吸收氮素的主要形态[2]。氮素的矿化作用(Nitrogenmineralization)是指土壤有机质碎屑中的氮素,在土壤动物和微生物的作用下,由难以被植物吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程。铵态氮可经硝化作用生成另一种无机氮——硝态氮。氮矿化速率决定了土壤中用于植物生长的氮素的可利用性[3],是森林生态系统氮素循环最重要的过程之一,氮矿化研究对于揭示生态系统功能、生物地球化学循环过程的本质有重要意义。 土壤氮矿化作用被认为是土壤中氮素循环的一个很重要的过程,受到土壤学家和生态学家的关注。森林生态系统土壤中铵态氮、硝态氮的动态,氮矿化的速率以及影响因子的研究对森林生态系统的营养循环、氮素循环具有重要的意义。近年来,国内外学者对森林生态系统土壤铵态氮和硝态氮含量分布状况以及矿化作用给予了高度重视。

在森林土壤氮素的转换与循环、土壤氮素矿化速率及影响因素、温度湿度条件对土壤氮矿化影响以及掉落物质量对土壤氮矿化的影响等方面开展了大量的研究工作[4]。我国在森林土壤、耕作土壤施肥和温带典型草地土壤以及土壤动物微生物等方面也展开了一些研究[5]。但亚热带森林群落施氮肥对土壤氮矿化速率影响的研究报道仍较少见。基于此,以亚热带森林中2种常见森林群落(樟树Cinnamomumcamphora与湿地松Pinuselliottii)作为本试验的研究对象,采用树脂芯法测定土壤氮矿化速率,分析施氮肥量与土壤氮矿化速率的关系。 1实验地概况 试验地位于湖南省长沙市森林植物园(113°02′~113°03′E,28°06′~28°07′N),属典型的亚热带湿润季风气候。7月最热,平均气温29.4℃,极端最高气温40.6℃;年均气温17.2℃,1月最冷,平均4.7℃,极端最低温度-11.3℃;年均日照时数1677.1h,全年无霜期270~300d;雨量充沛,年均降水量1422mm。园内植物种类达2200余种,植被以人工次生林为主。研究样地海拔50~100m,坡度为10°~20°,在园内选择树龄相同或相近的樟树和湿地松2种类型森林群落作为研究对象。2种森林群落主要组成成分分别为:樟树群落以樟树为主,林下植被有柘树Cudraniatricuspidata、白栎Quercusfabri、山矾Symplocoscaudate、毛泡桐Paulowwniatomaentosa、苦槠

氮肥种类

一、氮肥与磷肥的种类 (一)氮肥种类 1、碳酸氢铵:分子式为NH4HCO3,含氮17%左右,是化学性质不稳定的白色结晶,易吸湿分解,易挥发,有强烈的刺鼻、熏眼氨味,湿度越大、温度越高分解越快,易溶于水,呈碱性反应(pH8.2-8.4)。碳酸氢铵是一种不稳定的化合物,常压下、温度达到70℃时全部分解。在气温20℃时,露天存放1天、5天、 10天的损失率分别为9%、48%、74%。在潮湿的环境中易吸水潮解和结块(结块本身就是一种缓慢分解的表现)。在贮存和施用过程中,应采取相应的措施,防止其挥发损失。适合于各类土壤及作物,宜作基肥施用,追肥时要注意深施覆土。 2、尿素:分子式为(NH2)2CO,含氮46%左右。普通尿素为白色结晶,吸湿性强。目前生产的尿素多为半透明颗粒,并进行了防吸湿处理。在气温10-20℃时,吸湿性弱,随着气温的升高和湿度加大,吸湿性也随之增强。尿素属中性肥料,长期施用对土壤没有副作用。施入土壤后,经土壤微生物分泌的尿酶作用,易水解成碳酸铵被作物吸收利用。其水解过程为:(NH2)2CO+2H2O→(NH4)2CO3水解速度与土壤酸度、湿度、温度有关,也受土壤类型、熟化程度和施肥深度等因素的影响。通常情况下,尿素全部水解成碳酸铵的时间是:气温10℃时约10天,气温20℃时4-5天,气温30℃时约2天。所以,尿素的肥效比较慢,作追肥时应适当提前。尿素适合于各类土壤及作物,可

作基肥、追肥及叶面喷施用(喷施浓度为1-2%)。 3、氯化铵:分子式为NH4Cl,含氮24-25%,为白色结晶,易溶于水,吸湿性小,不结块,物理性状好,便于贮存。氯化铵呈酸性,也是生理酸性肥料。酸性土壤、盐碱地及忌氯作物(果树、烟草等)不宜施用氯化铵。氯离子对硝化细菌有一定的抑制作用,施入土壤后氮素的硝化淋失作用比其它氮肥要弱。因此,氯化铵是水田较好的氮肥。施用氯化铵应结合浇水,争取将氯离子淋洗至下层土壤,以减轻它对作物的不利影响。氯化铵不宜作种肥施用。 4、硝酸铵:分子式为NH4NO3,含氮33-35%。硝酸铵有结晶状和颗粒状两种,前者吸湿性很强,后者由于表面附有防湿剂,吸湿性略差一些。硝酸铵易溶于水,pH呈中性。 硝酸铵既含有在土壤中移动性较小的铵态氮(NH4+-N),有含有移动性较大的硝态氮(NO3--N),二者均能很好地被作物吸收利用。因此,硝酸铵是一种在土壤中不残留任何物质的良好氮肥,属生理中性肥料。硝酸铵宜作旱田作物的追肥,以分次少量施用较为经济。不宜施于水田,不宜作基肥及种肥施用。 (二)磷肥种类: 1、过磷酸钙。主要成分分子式为Ca(H2PO4)2〃H2O,含有效磷(P 2O5)14-20%。产品色泽与磷矿原料有关,一般为灰色或淡黄色的粉末。次要成分是无水硫酸钙,约占总量的50%,含有3-5%的游离酸

8肥料利用率研究方法

第8章肥料利用率研究方法 一、肥料利用率的概念 肥料利用率(utilization rate of fertilizer)是指当季作物从所施肥料中吸收的养分数量占该肥料肥中养分总量的百分率,也可称为肥料回收率或利用系数,一般用肥料投入与产出比例来定义。具体有几种表示方法: (一)肥料利用率或肥料回收率:常用。 肥料利用率(%)=(施肥区植物吸收的养分量-不施肥区植物吸收的养分量)×100/施肥量式中:施肥量=指养分量。 (二)肥料农艺效率 肥料农艺效率(kg/kg)=(施肥区产量-不施肥区产量)/施肥量(三)肥料生理效率 肥料生理效率(kg/kg)=(施肥区产量-不施肥区产量)/(施肥区植物吸收的养分量-不施肥区植物吸收的养分量) 二、氮肥肥料利用率与氮肥损失率 (一)概念及其影响因素 氮肥利用率(utilization rate of nitrogen fertilizer):是指当季作物从所施氮肥中吸收的氮素数量占该氮肥中氮素总量的百分率,也可称为氮素回收率或利用系数。从国内外来看,氮肥利用率普遍不高,而且是难以解决的实际问题。因它受许多因素的影响,如土壤类型和性质、气候条件、作物种类和品种、栽培技术、施肥技术等。在不同条件下,氮肥利用率悬殊很大,我国多数作物对化学氮肥的利用率在20%-50%之间,美国为30%-50%,日本为50%左右,前苏联为24%-61%。 氮肥利用率的高低是衡量氮肥施用是否合理的一项重要指标。不同作物的氮肥利用率很不相同,水稻多为40%-50%,小麦为27%-4l%。不同施肥技术(包括氮肥品种、施肥量、施肥时间与方法等)是影响氮肥利用率的一个重要因素:不同氮肥品种其利用率不同,如碳铵利用率一般为24%-31%,尿素为30%-35%,硫铵为30%-40%。不同施氮量时其利用率不同,在相同条件下,随氮肥用量的增加,其利用率下降。不同施氮方法其利用率不同,特别是氮肥深施和表施,其利用率相差甚大。如碳铵深施(10-17cm),在双季稻上的平均利用率为42.9%;碳铵表施(0-5cm),在双季稻上的平均利用率为29.0%。 氮肥损失率:施入农田的氮肥通过不同机制和途径而损失,其损失途径有土壤和植物两方面。从土壤方面来看,施入土壤中的氮素主要通过铵态氮的挥发、硝态氮的淋失及其反硝化脱氮和地表径流等途径损失,是氮肥损失的主要途径。从植物方面来看,作物地上部吸收的氮素可通过易流动的含氮化合物被雨水淋失、氮素以气体状态从气孔挥发、氮素从花粉和根系分泌出去等途径损失,作物地上部的氮损失量因土壤、气候、植物种类和生育期等不同而异,目前仍在研究之中。 氮肥损失率与氮肥利用率一样,也存在较大变幅。从已有的大量资料来看,我国农业生产中氮肥的损失率平均为50%左右。由此可见,每年施入土壤的大量氮肥,有近一半通过各种途径被损失掉,这是多么大的肥料资源浪费和经济损失!这不仅降低了经济效益,而且还可能造成生态环境污染,危及到食品安全和人体健康。因此世界各国都十分重视提高氮肥利用率的研究。 (二)氮肥利用率的测定 氮肥利用率的测定方法主要有以下两种: 1、差值法(间接法) 一般是在试验中设置不施氮区和施氮区两个基本处理,分别测出两处理作物体内氮素的吸收量,按下式计算: 氮肥利用率(%)=施氮区作物吸氮量-无氮区作物吸氮量 ×100 施氮量 对于一个多级施氮量试验,差值法可以用来计算不同施氮量水平下的氮肥利用率。按下式计算:氮肥利用率(%)=高氮区作物吸氮量-低氮区作物吸氮量×100

相关文档
最新文档