关于湍流理论研究进展

关于湍流理论研究进展
关于湍流理论研究进展

关于湍流理论研究进展

摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。

关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动

1 无处不在的湍流现象

湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。

然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。

2 湍流理论的发展历史

湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。

2.1 Reynolds方程和混合长度理论

十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等一系列现象。湍流理论开始发展的时候,就受着这种思想支配。1877年T.V.Bonssinesq[2]又开始

用表观湍流(涡旋)粘性系数μT来表示湍流剪切应力τxy,即

式中ρ为流体密度,为湍流(涡旋)运动粘性系数,U为x方向平均速度。

1886年O.Reynolds把湍流运动分为平均运动和脉动运动两个部分,又引进了两种平均效应,一种是分子的平均效应,另一种是流体团的平均效应。分子平均效应产生压强和粘性应力,流体团平均效应产生表观的湍流雷诺应力。1894年他得到了著名的Reynolds方程

式中U i为平均速度,p为平均压强,u i为脉动速度,ρu i u j为Reynolds应力,ρμ分别为流体密度和粘性系数。压强可由状态方程给出,粘性应力可用平均流速梯度和粘性系数表示。Reynolds应力用什么来表示一直是一个很大的问题。由于Reynolds应力的引入使未知量增加了6个,使流体动力学方程组成为不封闭。这就是通常所说的湍流的不封闭困难。从1894年到本世纪30年代,很多人都从事过Reynolds应力用平均流速表示出来的工作。其中最有名的就是混合长度理论。它是分子运动理论表述粘性应力方法的直接移植。

1925年Prandt[3]参照分子自由程引入混合长度的概念来讨论单向沿管壁的流动,认为在该长度距离内,被运的动量是一个不变量,而表观剪应力由动量转移所确定,即扩散系数

l称为混合长度。l被认为和离开固壁的距离y成正比。而Karman则从湍流脉动的局部相似性出发,得到混合长度为

Prandtl的动量转移理论对平均流速分布问题与实验结果较好符合,但在理论上有

严重的不能自圆其说的地方。因为流体团在流体中运动是受压强作用的,而压强作用是会对流体团的动量产生改变作用的。因此G.I.Taylor在1932年提出了涡量转移理论,他认为在混合长度这段距离内,动量是在变化的,而是涡量才是一个不变的量。由此得到涡旋运动粘性系数v T和涡量扩散系数ε分别为

这样,不仅克服了理论上的缺陷,而且能同时成功的解释平均流速分布和湍流热扩散两种现象。

以后还有很多人对混合长度理论的表达式进行了修改,并且把它应用到许多具体问题上,例如尾流、射流等等,曾计算出许多湍流运动的流场和温度场[4]。在有些问题上动量转移理论较好,有些问题则涡量转移理论与实验更符合。对不同的具体问题,混合长度有不同的具体表达式。这就是通常把混合长度理论认为是半经验理论的原因。

在处理混合长度上曾经有过两种不同的观点。一种是Prandtl的观点,认为混合长度是一个区域性的性质;另一种是Karman的相似性观点,认为混合长度和某一点的局部性质有关。虽然在解决某些特殊问题时结果是相同的,但从概念来看却是完全不同的。从今天的实验结果来看,似乎Prandtl的观点更符合实际一些。

2.2 各向同性湍流的统计理论[1]

从上世纪30年代开始,随着热线风速仪等测量技术的发展,实现了对一点湍流脉动量和不同点上脉动量之间相互关联的测量。不同随机量之间的相互关联是统计学上常用的处理问题的方法,这就产生了湍流的统计理论。这种理论主要研究湍流脉动场的统计规律性和湍流运动的内部微结构。由于要避免平均剪切流动和湍流脉动相互交换能量以及湍流场各向异性和不均匀性等复杂性,G.1.Taylor 在1935年讨论了一个和静止气体分子运动论相当的流动状态,这就是均匀各向同性湍流。他在风洞中网格后面做了大致上和这种流劫状态相当的实验。讨论了湍流的关联函数,他令

式中u1为P点脉动速度,u1'为P点脉动速度,f(r)为纵向关联函数,g(r)为横向关联函数,λ就是湍流的Taylor微尺度。它得到了湍流衰减定律

并且讨论了扩散等问题。

1938年和T.vonKarman和L.Howarth把笛卡尔张量引入不可压缩流体的均匀各向同性湍流理论,简化了G.L.Taylor的计算,并且得到了二元速度关联和三元速度关联的表达式及它们各自的分量之间的关系式

他们还得到了均匀各向同性湍流的动力学方程式,即通常所说的Karman -Howarth方程

把这个方程式对r展开,取第一项就就得到Taylor的湍流衰变定律。这个方程有两个未知量f和k,两个未知函数只有一个方程,当然不能把f和k都求出来,所以方程是不封闭的。和Reynolds方程一样,这个方程也是不能求解的。这些不封闭性的原因都来源于流体动力学方程的非线性。以后有很多人尝试引入某些假定来封闭这个方程并求解它,但都未能彻底解决这个问题。

1938年G.T.T.aylor引入一维湍谱。他把速度关联用Fourier变换变到

波数空间,得到一维湍谱函数E i(k i):

他在这方面的开拓性工作最初也获得了实验的证明。到1948年W.heisenberg又把量子力学中常用的三维湍谱引入

式中

由于不可压缩流体的连续性条件,得到

和物理空间的Karman-Howarth方程相对应,得到了湍流空间相应的方程

子和的关系为

W.Heisenberg为了求解,用量刚分析方法求出涡旋粘性系数,最后得到的方程为

式中r为一个常数。Bass和Chandrasekhar曾进行求Heisenberg方程。Chandraseklar 求得与时间无关的准确解。这个解在,Reynolds数无穷大时趋近于,

E(k)~k-7,这也是Heisenberg最初用近似方程得到的。

2.3 具有剪应力的普通湍流理论

周培源教授在上世纪30年代初期就带领他的学生从事湍流理论研究工作[5]。在30年代末,他认识到Reynolds应力和物体几何形状等边界条件密切相关,要找出Reynolds应力和粘性应力相似不随边界形状改变的应力形变关系式是不可能的。因此他着重寻找Reynolds应力及关联函数所满足的方程[6-8],希望能在解Reynolds应力的方程时,把边界等影响作为积分常数(也就是初始条件和边界条件)自然地考虑进去。1940年周培源教授从Navier-Stokes方程减去Reynolds方程,得到速度涨落方程

为Reynolds应力,π为压力涨落。再从速度涨落方程得到Reynolds应力方

及平均的三元涨落数度乘积方程

同样也可以得到相应的二元速度关联和三元速度关联方程,他把四元速度关联用二元速度关联表出并分别给出二元速度关联和三元速度关样及压力速度关联的表达式,就能得到封闭的方程组。对固体壁附近湍流和自由剪切湍流在各自的简化假定下曾得到不少和实验相符合的结果[9]。但这样做存在着关联系数表达式其有一定任意性的困难(这就是不同封闭方案的变形)。而且在电子计算机还没有发展的40 年代要严格求解这样多的方程是不可能的。近年来由于高速电子计算机的产生,很多复杂的计算工作可以通过机器来完成。周培源教授所做的理论研究又被重新提了出来,并受到国际上很大的重视。

2.4 最近的湍流统计理论

2.4.1 E.Hopf理论[10]

1952年以研究遍历理论著名的概率论和数理统计学家E.Hopf根据湍流脉动场的随机性质,引进脉动速度场的分布泛函。然后从Navier-Stokes方程和连续方程,推导得到了一个对特征泛函数为线性的积分微分方程。由于对这个方程求解遇到很大困难,以后一直没有取得什么进展。

2.4.2 R.H.Kraichnan直接相互作用理论

1958年R.H.Kracichnan[11] 把外力作用下的Navier-Stokes方程经过Fourier变

换,求得小扰动下Green函数所满足的方程。然后再把速度和Green函数用小参数展开,它的实质相应于用Reynolds数展开.再加上准Gauss分布的假定,把四阶矩用二阶矩乘积代入,经过复杂钓计算以后,再把Green函数和关联函数的零级近似用Green函数和关联函数本身代替,于是得到两个联立方程。

2.4.3 Lewis等人的分子运动理论

日本的Tsuge [12]和美国的Lewis[13]等人从气体分子运动论的观点出发,在微观领域内发展了Reynolds两种平均的理论。他们引入了超系综(Superensemble)和次系统(Subensemble)两种平均来对应于Reynolds 的分子平均和湍流平均,这两种平均无疑是完全必要的。因为脉动速度等脉动量都是宏观可观察量,因此决不能仅由一种分子平均来代替。同时他们减弱了混乱假定,推导出广义Boltzmann方程。通过平均得到了连续方程,平均运动方程,二阶矩方程、三阶矩方程等等。和一般湍流理论一样,方程组是不封闭的。要使方程组封闭,仍然要引进封闭性条件。从理论的角度来说,减弱混乱假定实际上是可有可无的。因为只要引进超系综平均和次系综平均,出现Reynolds应力等物理量是必然的,与混乱假定毫不相干。而且混乱假定只能减弱到一定程度,否则温度、压强等物理量都将毫无意义。理论中用Hermite多项式来展开指数函数,这是一种收敛得比较快的展开式,但仅取少数几项恐怕过于粗糙。而这个理论发展到今天,虽然式子极为复杂,在引进封闭性假定以后,也还只能得到众所周知均匀各向同性湍流后期衰变情形的解。而要解决方程不封闭性问题,必须消除以往取统计平均中的不确定性。但怎样来消除不确定性? 从现在看来还无从下手。

2.4.4 Meecham 理论[14]

1968年Meecham等人提出用30年代Wiener用于研究噪声非线性过滤所用过的Wiener-Hermite泛函展开方法到湍流问题上来。这种方法最初用在增量独立平稳正态的随机过程(Wiener过程)。这方法的基本思想是把脉动速度这种随机场用一组互相正交的理想随机函数作为它的基,展开成无穷级数。这种理想随机函数是由白噪声函数的Hermite多项式组成的。然后根据Navier-Stokes方程和连续方程得到这个无穷级数的系数所满足的一组积分微分方程。问题的关键是确定这系数。最后利用统计平均的方法找出相应的关联函数和能谱函数。由于这种方法要求解更复杂的积分微分方程和作更多的人为假定。因而至今没有得到什么满意的

结果。

2.4.5 S.Grossmann重正化群法

1975年S.Grossmann [15]把湍流运动看作类似二级相变的过程。他引入场ψ代替湍流场,并且引入四点相互作用,然后用类似处理相变指数的重正化群办法来得到Komoropob-5/3次定律。并且接着又进一步推广这个方法去计算指数和-5/3的偏离。由于两种现象物理本质是不同的,所以能否进一步做下去还是一个疑问。

2.4.6 陈善谟统计动力学重复级串法

最近陈善谟[16]从统计动力学的方法出发和Kraichnan一样引入了传播子的概念,利用重复级串法求出了相应于Heisenberg的涡旋粘性系数的表达式。这样二元湍谱方程就变成封闭可解。并且利用Plank方程得到随机性很强时的传播子表达式。他除了得到Komoropob-5/3次定律以外,还得到有速度梯度时的k-3和k-1定律。这些定律都是在大气和海洋中被观察到的。但他没有得出湍能衰变律,同时也不能得到整个湍谱,这就不能求出相应的Reybolds应力等物理量。所以离开应用到实际剪切流动问题中去还有一段距离。

2.4.7 混沌理论[17]

拟序(或相干)结构对认识湍流的重要性愈来愈受到人们的关注。如剪切湍流的扩散和发展,不仅仅是小尺度随机扩散的结果,更主要是由大尺度拟序结构的相干干涉、卷并造成的。数值模拟发现,对充分发展的湍流仍有涡管状的拟序结构,但还没有被实验证实。湍流并非是一个真正的随机系统。

湍流的数学描述是一个无穷维的动力系统,是无穷维的混沌。混沌理论告诉我们,在确定性的非线性动力系统中可以同时存在规则的有序结构和不规则的混沌状态,而且它们有时往往是相互交织在一起不可分割的,都是受系统本身的同一种非线性规律支配,在没有系统外部任何影响时也会出现。湍流是典型的耗散系统,它通往混沌的道路除周期迭加和间隙外,还有其它途径。Frisch等认为,湍流间隙可用强度变化的一些特定项表示,这些项包含于有分数维的内波集上。

间隙、湍流斑这些拟序结构表现出统计意义上的自相似性。分形理论指出,简单图形的变换会形成和原始图形性质截然不同的结果并表现出两者之间的自相似性。分形在湍流中有广泛的应用,随机分形的生长能类比于湍流的拟序结构,这要用计算机来模拟,Frisch等作了大量的工作但远不能模拟出真实的湍流来。

耗散系统的奇怪吸引子对初始条件有非常敏感的依赖性,且它的功率谱是一个宽谱,表明系统中已被激发出无穷多个特征频率。湍流系统中存在马蹄,马蹄的存在意味着双曲不动点的存在,意即存在不稳定流形。此外耗散系统中的奇怪吸引子有非常奇特的拓扑结构和几何结构—具有无穷多层次的自相似结构的为非整数几何维数的一个集合。简单耗散系统中的逻辑梯阶映射显现的混沌呈现出规则有时是无序的倒分叉现象、窗口现象和间隙现象的特征。

采用计算机模拟混沌时首先要构造模型,如CML模型,对湍流而言,更有用的是CCM模型混沌的理论分析困难较大,在湍流中都是针对一些具体问题作出的。这一方面是由于湍流实验专家还对实验中所观察到的现象是否是真正的混沌意见并未统一,另一方面对认为是混沌现象的实验研究还很困难。重要的是,混沌机理并未完全探明而是刚刚起步。用混沌模拟湍流,或者说,研究湍流中的混沌现象,还处于积累经验的时期。有人乐观估计,混沌理论的重大突破性进展可导致湍流问题的根本性解决。

2.4.8 流动稳定性理论

流动稳定性虽然有广泛的应用于工程技术的价值,但仍主要是探索层流向湍流转捩的机理。具体作法是在原流动中叠加一扰动,判别扰动随时空的演化,据以说明稳定和不稳定性。当为不稳定性时找到失稳的临界雷诺数和其它控制参数。对于平行流的稳定性分析主要采用线性理论和非线性理论。在非线性理论中若设扰动是二维的,又可分为朗道法、能量法、形状假定理论、弱非线性理论和分叉理论。如果假设扰动是三维的,又可分为二次失稳理论、共振三波理论、一般共振理论和直接共振理论。

具体应用分叉理论时要处理的问题主要有:①找出对应于分叉点的临界参数值;②找出该参数值在临界值附近的分叉解;③判明新分叉解的稳定性。常见的分叉主要有: ①对称鞍结点分叉;②鞍结点分叉;③跨临界分叉;④滞后分叉;

⑤Hopf分叉;⑥周期倍分叉;⑦同宿或异宿分叉。在用计算机计算时问题转化为:①如何实现对解曲线的追踪;②怎样判断与搜索奇异点;③计算分叉点处的分叉方向,实现对分叉后解曲线的追踪。上述表述可以采用矢量场、流形的几何观点,把非线性代数方程组的解流形与相应矢量场的不变流形联系起来,叙述可简洁明了。

稳定性理论成功的一个例子是解释湍流边界层底层低速条纹产生的机理。和实验相当吻合在湍流控制中,稳定性理论获得了非常广泛的应用。

3 湍流拟序结构的模拟

60年代后期,湍流实验研究中的一个主要进展是湍流剪切流动中拟序结构的发现。特别是大尺度的间歇现象与周期性的猝发过程的发现。它们大大改变了我们过去对湍流性质的看法和认识。目前一般认为在湍流剪切流动中存在着有序的大尺度旋涡结构和无序的小尺度脉动结构,而湍流的不规则运动无论在空间和时间上都是一种局部现象。

弄清楚湍流剪切流动中的拟序结构,对于了解湍流的发生机理、发展过程、动量与能量的传递规律,以及建立更好的瑞流理论模型,均具有十分重要的意义。

目前世界上有不少流体力学实验工作者都在从事这方面的工作。一般说来他们所采用的实验方法有两种:一种是流动观察,另一种是速度测量。前者的优点是方法简单,形象生动,能纵览全流场情况;后者的优点是能获得定量的实验数据。二者相辅相成,缺一不可。如果前者提供骨架而后者附之以肌肉,则拟序结构的奥秘可以迎刃而解。

通常将湍流剪切流动分为壁湍流剪切流动与自由湍流剪切流动两类。前者系指流经固壁(包括平板)圆管,槽道等的湍流边界层流动,而后者系指湍流射流、尾流写混合层等流动。关于湍流剪切流动拟序结构的一般性质的描述都是最先从壁湍流并始的,以后逐渐发展至对自由湍流的研究。

3.1 壁湍流剪切流动

60年代后期,美国斯坦福大学的Kline[18]等分别用流动观察的方法研究壁湍流时拟序结构。尽管他们对间歇现等和碎发过程的阶段划分和命名有所不同,但所观察到的现象基本上是一致的。目前一般认为流经平板壁面的湍流边界层,按其特性可分为三个区,即近壁区(0?y+<100),外区(100

通过这些研究,对壁湍流剪切流动中的各杯拟序结构已经获得于粗略的图象和大致的了解。但对它们的更精确的物理图象和各拟序结构之间的相互关系,各

研究人员仍持有不同的看法;例如为了解释猝发现象,有人认为近壁区内的漩涡是马蹄形的,另一些人认为是反向旋转的漩涡对,又有一些人认为是发夹形漩涡或“波”的破裂等。考虑到前面的观察都是二维的、而湍流是一种三维现象。缺乏完整的三维拟序结构图象,可能是对湍流结构特性产生不同解释的原因。

Praturi与Brodkey[19]根据他们观察访结果提出一个比较明确的拟序结构模型。首先,他们强调在不同的特性区与不同的事件之间没有明显的分界线。各区域与各事件的运动特性代表它们的特殊性。自由来流中湍流度不同引起流动事件大小、位向、速度与强度的不同,但事件的基本性质并不改变。

其次,他们把平板边界层内拟序结构的发展大致分为五个阶段。总的来说,这一模型与其他作者提出的模型有两个主要不同之点: 第一,Praturi与Brokey

认为边界层外区内的横向旋涡运动引起了揣流/非湍流界面上凸块的出现和产生了支配近壁区内活动(如喷射与轴向旋涡运动)所需的条件,而以前很多作者则认为来至近壁区并含有足够能量的喷射(或猝发),当其走向边界层外区时即在湍流/非湍流界面上产生凸块,第二,Praturi与Brokey认为近壁区内旋涡运动是从边界外区进来的高速流体与近壁区内向外流的低流体之间相互作用的结果,而其他作者制对近壁区内的旋涡运动提出各种不同的模型,包括含有反向旋转的旋涡对,正是由于它们的存在,使得界于旋涡对之间的流体向外流出。

3.2 自由湍流剪切流动

为了研究方便,通常将一自由剪切湍流划分为层流区、过渡(或发展)区和完全发展湍流区。

目前对平面混合层的拟序结构问题还存在一些不同的着法。过去公认的说法是:在很小的雷诺数下(特征长度是混合层的局部厚度),初始混合层为平面涡层,它对二维(或轴对称)扰动是不稳定的,于是这些扰动逐渐增长并出现一次或多次成对的旋涡,随之流动具有一定的三维性,相当长时间以后,流动达到一与雷诺数无关的自保持和完全湍流状态,这时湍沐混合层中的大旋涡已成为完全三维的。而后来Brown与Roshk o[20]等对二平行流的混合层进行了仔细的流动观察,他们发现由于Kelvin-Helmhotz不稳定性,平面涡层迅速地出现拟序的二维旋涡,以后通过并合过程,它们逐渐增长。但令人迷惑不解的是,在整个观察范围内(包括并合过程和后来的发展),旋涡都基本上保持为三维的。最近Chandruda

等进一步做了流动观察试验,并综合上述两种看法,提出只有当低湍流度自由来流和开始混合处为层流边界层时才能出现拟序的二维旋涡结构,如果自由来流的扰动相当大(包括混合层挟带周围空气),由于旋涡成对过程对小的三维扰动也是很敏感的,于是在过渡的早期阶段,即使旋祸本身的尺度仍很小时,旋涡结构就成为三维的了。这样Brown与Roshko所观察到的二维漩涡结构在实际中很少出现,而湍流混合层中的大尺度漩涡虽然拟序性要差一些,但完全为三维的。漩涡的三维问题是一个非常重要的问题,因为它是漩涡能级扩展得到发展的先决条件,它也能将湍流区与准二维随机流动分别开来。

4 小结

尽管湍流研究相当困难,但是仍然有大量的国内外学者致力于这一领域的理论工作。目前随着计算机应用技术的飞速发展和测量手段的不断丰富,湍流的精细实验正在进一步地展开,它对深入认识湍流的物理本质至关重要;相关学科的发展也推动了湍流的研究,如非线性科学的发展、小波理论的应用和重化群理论的开拓等等均在湍流研究中得到应用;另一方面如何从湍流这一复杂的现象找到简单的规律则需要新型的思维方式。如最近的湍流标度的研究,找到了湍流层级结构的自相似律,从而推动了湍流的研究;从工程应用的角度来看,各种工程化的湍流模型正在进一步的完善,在为工程应用服务的同时,对湍流的机理研究亦有一定的推动作用。总之,随着实验技术、数学理论、数值方法及计算机技术的不断发展,湍流研究将一定得以进一步的深入,可以预言21世纪将是解决湍流这100年难题的世纪。

参考文献

[1] 第2届全国流体力学学术会议报告[C]. 无锡:[出版者不详],1979.

[2] Reynolds .O.,Phil.Trans.,A186(1985),123.

[3] Prandtl. L.,ZAMM,5,136-139;22(1942),241-243.

[4] 庄逢甘. 物理学报,1953(9):202-214.

[5] 王竹溪. 清华科学报告,1934(2):307-326.

[6] 周培源. 中国物理学报,1940(4):1-33.

[7] 周培源. Quart.Appl.Math ,1945(2):38-54.

[8] 周培源. 清华科学报告,1948(5):1-19.

[9] 林家翘.清华科学报告,1947(4):419-450.

[10] Hopf.E.,J.Rat.mech.Anal.,1952(1):87.

[11] Kraichnan.R.H.,Phys.Rev.,1958(109):1407-1422.

[12] Tsuge.S.,Phys.Fluids,1974(17):22.

[13] Lewis.M.B.,Phys.Fluids,1975(18):313-316.

[14] Meecham.W.leng,D.T.,J.F.M.32,1968(5):225.

[15] Grossmann.S.,Phys.Rev.,All,1975:2165.

[16] 陈善谟.Fluid Dynamics Transactions(Poland),1971(6):577-586.

[17] 刘兆存. 湍流问题的若干问题研究进展[J]. 水利水电科技进展,1995(4):

12~16.

[18] Kline.S.J,.Reynolds,W.C.,Schauh,F.A.& Rundstandler,P.W.J.F.M.,1967

(38),741.

[19] Praturi.A.K.& Brodkey,R.S.,J.F.M.,1978(89),251.

[20] Brown.G&Roshko,A.,J.F.M.,1974(64),237.

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

湍流研究简史-温景嵩

湍流研究简史-温景嵩 长春实验所发现的湍流不连续性及其对柯尔莫果洛夫理论基础的冲击具有十分重要的意义。(长春实验是指作者1972年9月在长春郊区采用类似热线风速仪的仪器测量大气湍流的温度脉动,也称温度脉动仪,然后通过频谱分析仪进行各谱段频谱分析。作者从中发现了湍流不连续性,也称间歇性。)因为湍流不仅是流体运动中的一个重大的世纪性的前沿课题,不仅它普遍存在于自然界,也普遍地存在于工程界,它是基础科学中一个重大的前沿分支---20世纪下半叶兴起的非线性科学的先驱和归宿。正由于以上两个原因,所以湍流问题的研究不仅吸引了众多的流体力学家,力学家的兴趣,而且也吸引了众多的数学家,物理学家,大气科学家,甚至包括了众多的工程技术界的专家学者的兴趣,大家都想在这一领域里一显身手。可以说湍流这一领域真正是“江山如此多娇,引无数英雄竞折腰”。自1883年英国曼彻斯特大学著名流体力学大师雷诺发表他的现代湍流开创性工作以来,一百二十多年里在湍流领域中已积累起浩如烟海的文献,发表了成百上千种的学说和理论,尽管如此,由于湍流这一课题固有的十分严重的困难,一百二十多年的众多科学家的奋斗结果,真正成功的理论并不多,算起来也就四个。 1. 普朗特的半经验混合长理论 第一个是1925年普朗特发表的半经验混合长理论,以及由此而导出的平板平均流速与所在高度的对数成正比的对数分布律。(冯. 卡尔曼1930,普朗特1933)这个对数分布律已由大量实验所证明。在工程上有很好的应用,可以用以计算平板表面所受的摩擦阻力,经过推广后,现在还可以用以计算飞船模型表面所受摩擦阻力。应该承认普朗特的半经验混合长理论解决了工程应用上的一大难题。后来前苏联学者莫宁(Monin)和奥布霍夫又把它成功地推广到近地面边界层大气风速的分布问题中去,为解决大气物理中的大气扩散等难题开辟了道路。然而普朗特的混合长理论并不是在工程应用中产生,也不是在大气中应用产生,也不是由实验带出来的结果。相反,它是在解决湍流这一学科发展中所面对的难题而产生的。它产生了以后,才有了工程的应用,才有了在大气中的应用,并且也才有了实验的证实。普朗特的半经验混合长理论是为解决雷诺方程的不闭合难题而创造出。1895年,也就是雷诺用实验证明湍流发生规律工作后的十二年,同样是由他研制成著名的雷诺方程。该方程从支配黏性流体运动的基本方程---纳维-斯托克斯方程出发,然后把瞬时流场分解为平均流场和湍流脉动速度流场的和,把这个和式代入到纳维-斯托克斯方程再取平均就形成了雷诺方程,这是一个支配湍流场中平均流场变化的方程,不幸方程不闭合。因为除了待求的平均流场外,又多了一个未知数,即同一点上湍流脉动速度的两个分量相关矩,它具有应力的量纲,又叫雷诺应力。它表征了湍流脉动场对平均场的影响,相关矩肯定不为0 ,即雷诺应力不是0。否则有湍流发生后的平均流场分布规律就应和没有湍流发生时的层流流场规律相同。而实验已证实,两者确实不同,这就证实湍流场的雷诺应力对平均场确有重要影响。可惜这是未知的。于是一个雷诺方程无法同时解出平均场和雷诺应力两个未知数,形成湍流研究中著名的不闭合难题,这个难题是由纳维-斯托克斯的非线性,以及湍流特有的随机性,在对方程求取平均值过程中必然产生。所以是湍流研究中固有的一个难点。用同样的雷诺方法,原则上可以求出湍流脉动速度两个分量相关矩的方程,这样方程就多了一个,此时和原来的雷诺方程一起现在有了两个方程,两个未知数,似乎可以闭合,其实不然。从纳维-斯托克斯方程的非线性特点,可以断定在建立两个分量的二阶相关矩方程时,必然又会增加一个新的未知的三阶相关矩,方程仍然不闭合,依此类推,若建立三阶相关矩方程,则同样还会多出一个未知的四阶相关矩,可以断言,沿着这条路线下去,未知数永远要比方程多一个,方程不可能闭合。这样下去,湍流问题就无法严格在数学上求解。雷诺方程建立后又过了三十年,即1925年由普朗特用混合长理论解决了这个难题。他的解决办法就是用物理模型方法来切断雷诺方程在数学上的不封闭链条,在雷诺方程那里就打住,引入混合长的物理模型,使雷诺

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史 I 中国科学家早期湍流研究的回顾 黄永念 北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871 摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。 关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。 引言 湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。实际上有很多中国科学家在上一世纪中做了非常出色的工作。本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。 中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。另一方面是在国外开展的研究工作,这部分工作国内也不很熟悉。因此,本文将把他们的不懈努力介绍给大家。 胡非在1995年发表的专著《湍流,间隙性与大气边界层》中曾专门介绍了中国学者的湍流研究工作[3],但他的介绍还不够全面,特别是缺少对早期工作的报道。本文可以弥补其中的不足。 1 三十年代的研究工作 在我国最早发表湍流论文的是当时在清华大学的王竹溪先生。他在周培源先生的指导下

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

关于湍流理论研究进展精品资料

关于湍流理论研究进展 摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。 关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动 1 无处不在的湍流现象 湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。 然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。 2 湍流理论的发展历史 湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。 2.1 Reynolds方程和混合长度理论 十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等

第15章 预混燃烧模拟

第十五章预混燃烧模拟FLUENT有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: ●15.1 概述和限制 ●15.2 预混燃烧模型 ●15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1 概述 在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微米量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章)模拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2 限制 在使用预混燃烧模型时有以下限制: ●必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。 ●预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中, 可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解 器用有限速率模型模拟。有关限速率模型见13章。 ●预混燃烧模型不能和污染物(如碳烟和NOx)模型一起使用。但完全预混系统可以 用部分预混模型(见16章)模拟。 ●不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模 型。 15.2 预混燃烧理论 湍流预混燃烧模型基于Zimont等人的工作[275,276,278],涉及求解一个关于反应过

湍流理论发展概述

. 湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

湍流调研报告——高等流体力学

高等流体力学 湍流调研报告 学生姓名:********** 学号:********** 专业班级:********** 2015年 12月1日

前言 自1839年G.汉根在实验室中首次观察到由层流向湍流的转变现象以来,对湍流的研究已有近两百年历史,但由于湍流流动的复杂性,至今仍存在一些基本问题亟待解决。但从检索有关湍流文章过程中发现,绝大多数文章均是介绍有关湍流的数值模拟问题,鲜有文章报道关于湍流理论的基础研究。一方面的原因是由于湍流理论研究其固有的困难性,我想还有另一方面的原因便是当今学术界乃至整个社会风气的浮躁。物欲横流金钱至上的社会风气下,Paper至上的学术氛围下,基础学科的发展及基础理论的研究深受其害。基础研究学者得不到应有的精神上、物质上的尊重,青年科学家为了将来的发展避开基础学科,中年科学家为了避免家庭经济上的负担放弃理论研究,当今只有部分老一辈的科学家坚持着自己的原则和理想,我想这也是他们为什么仍是我国科学技术发展中流砥柱的原因吧。纵然如今之风气已被众多学者所诟病,但已根深蒂固,不可能将之迅速扭转,当下应从政策上给予基础研究支持和鼓励,予现行之风以纠正,方可促我民族之复兴。在前任上海交通大学校长谢绳武先生给杨本洛先生《湍流及理论流体力学的理性重构》[1]一书的序中以及施红辉先生《湍流初级教程》[2]的前言中均提到切实支持原创性基础研究的重要性。 本文首先查阅文献了解了湍流的定义,以及人们目前对湍流的认识;然后通过调研梳理了湍流理论的发展过程;最后,就湍流的数值模拟极其未来的发展方向做了简要介绍。

一、湍流的定义 什么是湍流?查阅相关书籍、论著,关于湍流的论述相当多的部分是从1883年Reynolds的圆管内流动实验引出的,通过实验观察,给出了湍流的描述性定义:湍流是复杂的、无规则的、随机的不定常运动。随后详细说明了湍流的一些主要特征,包括其扩散性、耗散性、大雷诺数、记忆性、间歇性等等,但对湍流严格意义的科学定义没有叙述,我想这也是湍流能成为跨世纪难题的一个反映吧。从各论著的叙述来看,随着湍流理论的发展,湍流的定义是不断修正和补充的,19世纪初,湍流被认为是完全不规则的随机运动,Reynolds称之为“波动”[3],首创统计平均法描述湍流运动;1937年,Taylor 和von Karman则认为湍流是一种不规则运动,于流体流过固壁或相邻不同速度流体层相互流过时产生;Hinze认为湍流除了不规则运动外,其各个量在空间、时间上具有随机性;我国著名科学家周培源先生则主张湍流为一种不规则的涡旋运动;自20世纪70年代开始,很多学者又指出湍流不是完全的随机运动,其存在一种可以被检测和显示的拟序结构。由清华大学出版社出版,林建忠等人编著的《流体力学》[4]一书中提到,目前大多数学者的观点是:湍流场有各种大小和涡量不同的漩涡叠加而成,其中最大涡尺度与流体环境密切相关,最小涡尺度则由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。 值得一提的是,杨本洛先生所著的《湍流及理论流体力学的理性重构》一书中从形式逻辑考虑,对湍流的本质,包括其物理本质、物理机制、形式特征做了论述,并提出一切宏观物质总是粒子的(宏观力学中基本假设之一是连续介质假设),认为流体是大数粒子的集合,湍流研究困难的本质在于基于微分方程所表现的连续宏观表象与宏观流体的粒子本质之间存在的根本矛盾,著作中含有大量的逻辑讨论及哲学层次的思考。二、湍流理论发展简史 1839年,G.汉根在实验中首次观察到流动由层流到湍流的转变,这便揭开了湍流这一科学难题的第一幕。在其后百余年的理论发展中Reynolds、Prandtl、von Karman、Taylor、Kolmogorov、Landau、Heisenberg、Onsager、Chandrasekhar、Hopf、周培源、李政道、林家翘、谈镐生等如雷贯耳的大师们纷纷登上这一广阔的舞台,在湍流的金色大厅里演

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

湍流燃烧模型-PDF

PDF 模型 概率密度函数PDF方法以随机的观点来对待湍流问题,对解决湍流化学反应流的问题具有很强的优势。在湍流燃烧中存在一些非输运量( 如反应速率, 密度, 温度及气相体积分数等) 的湍流封闭问题。尽管这些量没有输运方程, 但它们常常是输运变量的已知函数。平均或者过滤高度非线性的化学反应源项会引起方程的封闭问题。因此,用PDF的方法来解决这些非输运量的湍流封闭问题显然是一个既简单又直接的途径。 PDF方法是一种较为流行的湍流燃烧模型,能够较为精确的模拟任何详细的化学动力学过程, 适用于预混、非预混和部分预混的任何燃烧问题。目前, 确定输运变量脉动概率密度函数的方法有输运方程和简化假定两种, 分别称之为输运方程的PDF和简化的PDF。前者建立输运变量脉动的概率密度输运方程,通过求解该方程来获得输运变量脉动的概率分布。后者假定输运变量脉动的概率密度函数的具体形式, 通过确定其中的一些待定参数来获得输运变量脉动的概率分布。湍流燃烧中, 后者应用最为普遍和广泛。在简化的PDF 中, 输运变量脉动的概率密度函数常常采用双 D 分布、截尾高斯分布和B 函数分布等形式。 PDF在理论上可以精确考虑任意详细的化学反应机理,但是其具体求解时需借助其它的模型和算法,而且计算量相对较大。PDF的方程是由N-S方程推导而来,其中的化学反应源项是封闭的,但压力脉动梯度项以及分子粘性和分子扩散引起的PDF的分子输运项是不封闭的,需要引入模型加以封闭。例如,在速度- 标量-湍流频率PDF中,必须采用小尺度混合模型、随机速度模型和湍流频率模型加以封闭。 模化后的输运方程难以用有限容积、有限差分和有限元等方法来求解,比较可行的一种方法是蒙特卡洛(MonteCarlo)方法,在该方法中输运方程被转化为拉格朗日(Lagrangian)方程,流体由大量遵循Lagrang ian方程的随机粒子的系统来描述, 最后对粒子作统计平均得到流场物理量和各阶统计矩。另有与有限容积法相结合的蒙特卡洛法。 PDF 模型的发展 1969年Lungdren首先推导、计算了速度的联合PDF运输方程,避免了对梯度扩散模型进行模拟,对很简单的流动过程得到了简析解[1]。

湍流简史

湍流简史精选 已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介 湍流理论发展简史: N-S方程的导出: 描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。因1821年由 C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。N-S方程和连续方程共同构成了一个闭合的非线性方程组。该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。 湍流的发现: 1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。 层流向湍流转变的雷诺实验: 1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。并在1885年提出了著名的雷诺平均方法。 湍动能串级过程: 1922年Richardson发现湍动能串级过程。大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。 各项同性湍流理论: 1935年G. I. Taylor在风洞实验的均匀气流中设置一排或者几排规则的格栅,均匀气流垂直流过格栅时产生不规则扰动。这种不规则扰动向下游运动过程中,由于没有外界干扰,逐渐演化为各项同性湍流。发展了各项同性理论。 Karman-Howarth方程的导出: 1938年基于Taylor的各项同性理论导出了著名的K-H方程。但方程中含有的未知数的个数比方程数多,因此无法求解。 Kolmogorov空间尺度标度率: 1941年莫斯科的数学家Kolmogorov更进一步地把G.I.Taylor的均匀各向同性理论发展成局地均匀各向同性统计理论,并在人类历史上第一次导出了湍流微结构的规律:结构函数的-p/3定律。第一次揭示了湍流的空间分布特性。但该理论存在着一些缺陷。

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

相关文档
最新文档