聚碳酸酯的生产及应用

聚碳酸酯的生产及应用
聚碳酸酯的生产及应用

化学工程师

.ol枷calb西M2004年11月霎然菱l文章编号:1002—112412004)11—0038—02

聚碳酸酯的生产及应用

陈建滨1一。董红星1

(1.哈尔滨工程大学。黑龙江哈尔滨150001;2.黑龙江省化工研究院,黑龙江哈尔滨150仃76)

摘要:本文论述了聚碳酸酯的各种生产工艺路线,对其国内外现状、消费和市场进行了分析,并提出了建设新的聚碳酸酯装置的建议。

关键词:聚碳酸酯;生产;应用;市场

申图分类号:’TQ323.4+l文献标识码:A

A珥坩瑚瞄oⅡaI-dpⅫ删蚰ofp呐阳孤lbI啪舭

c眦NJiam—binl'2,D()NGHor唱一曲】gl

(1.}hbillbgilleeriIlg蹦v∞匆,}IaIb洒15000l,Q曲a;

2.Heil∞裔imgPm面cialQleIIlical髓giIle商Ilghl出tute,}王aIbiIl150ar76,QIim)

Ab缸翟d:I’oly∞_Ibo瑚【teinvario璐pmcessisdiscussed.C‘m蜘m曲on舳dⅡlarketingoff,CiIldomesticandin“粕atioIlalaIe锄a:岍ed.Ac0咖dvesuggesti∞0fb【lildingan唧PCpl姐tisprop∞ed.

Keywords:出缸b(mate;pIDduction;a础枷on;marl【et

聚碳酸酯(P柚yc越舢旧te)一般简称PC,它是分子链中含有一[一O—R—O—Co一]一链节的高分子化合物。其中因R基团的不同,可分为脂肪族、脂环族、芳香族以及脂肪一芳香族等几大类。作为当今五大工程塑料之一的聚碳酸酯,主要是指双酚A型聚碳酸酯。PC是一种综合性能优良的热塑性工程塑料。可用于制造机械、汽车和精密仪器等零部件,可制成精度很高的成型品,也可用于电子元件和电动工具部件。但PC的加工成型要求较高,本身无自润滑性,不适合制造带金属嵌件的制品。由于PC本身无毒、耐化学品性好,食品卫生性能优良,可以广泛地应用日常生活中。特别是它的透明性能优异于其他工程塑料,所以,广泛应用于航空玻璃、灯具、安全玻璃、办公设备、激光光盘等领域。可以说在国民经济的各个领域,PC都获得了广泛的应用,而且还在不断扩大。

1995年,PC的产量开始超过了一直居工程塑料首位的聚酰胺家族,成为世界上第一大工程塑料,而且其增长速度也超过了聚酰胺。

1工艺路线及其比较

1.1原料

聚碳酸酯主要原料是双酚A、碳酸二苯酯、光

收稿日期:2004—09—08

作者简介:陈建滨(1961一),男,高级工程师,1983年毕业于大连理工大学,现从事化工科研工作,哈尔滨工程大学在读硕

士研究生。

气、cO等,其中最主要的原料是碳酸二苯酯(DPC),最早是由苯酚和光气反应缩合而成。

聚碳酸酯的另一重要原料是双酚A,是苯酚和丙酮的重要衍生物。是多种高分子材料的原料,2002年世界产量为340万t,其中68%用于生产聚碳酸酯。我国双酚A主要用于生产环氧树脂,而相反,国外主要用于生产聚碳酸酯。

1.2聚碳酸酯合成工艺路线

1.2.1传统酯交换法双酚A和碳酸二苯酯,在催化剂存在下,在高温、高真空条件下,进行酯交换反应和缩聚反应生成聚碳酸酯。

U如

n<p旷L瞅9警

伶◇?念。一吐他<p伽

此法是传统工艺,不腐蚀设备,工艺流程简单、成熟、易操作,无溶剂回收设备。但由于反应是在高温、高真空条件下进行,生产设备和条件要求高,设备投资较大。缩聚后期物料粘度增高,必须有相应的搅拌装置。产品光学性能差,浊度指数偏高。本工艺不适合大吨位工业生产。而原料碳酸二苯酯生产使用了光气,对环境和劳动安全有很大影响。

1.2.2光气化法在催化剂、溶剂、吡啶或碱水等存在

阻埝

2004年第ll期陈建滨等:聚碳酸酯的生产及应用

下,双酚A和光气直接反应。C强

勘弋3卜}《>旷皓+2忍Ha

该法—般采用界面缩聚法,将光气通入惰性溶剂与

双酚A的氢氧化钠水溶液中进行反应。

光气化法是在常温常压下反应,设备要求不高,工

艺成熟,产品质量好,尤其透明度高,成本低。是各国普遍采用的工艺,尤其是大型装置,兀I乎都采用此工艺。

1.2.3非光气酯交换法

在原料单体到树脂合成

都不用光气的一种聚碳酸酯溶融酯交换工艺。大体可分为两类:(1)非光气碳酸二苯酯法,以意大利

Ellich锄公司工艺为代表,它是以甲醇为原料合成碳

酸二苯酯。它完全不使用光气,被称为绿色化工的代表之一。其后续过程与传统酯交换法相似。(2)工艺是用其他非光气单体与双酚A或双酚A的酯

进行酯交换。

1.3各工艺技术比较

聚碳酸酯是法国Baver公司于1953年研究成功,1958年实现工业化,至今已近半个世纪,聚碳酸酯工艺也不断改进。目前,聚碳酸酯的工业化装置大部分都是采用界面缩聚光气法工艺。该工艺技术已经很成熟,尤其适合于大规模连续生产,产品质量高,尤其透明性好、易加工、产品分子量高、强度大、

能满足各种用途的需要。长期以来,采用此工艺的

聚碳酸酯,其生产能力一直占绝对优势,目前,仍是

世界聚碳酸酯的主要生产技术。它的缺点是生产时必须使用光气,而光气是毒性很强的化学物质,属于禁止化学武器公约表l的物质。生产中所需的二氯

甲烷溶剂毒性也很强。

.非光气法技术是由美国GE公司首先开发并且工

业化的,法国Ba_噼和日本三菱工程塑料公司也开发了

类似的工艺技术。它不但不使用光气,而且也不需要

洗涤和溶剂回收设备,所以投资相对少。甲醇和苯酚

循环使用,原料成本大大降低。非光气法工艺是一种

全封闭、无副产、污染少,具有典型的绿色工艺,是世界

瞩目的聚碳酸酯合成工艺的发展方向。

2国内外现状与市场分析

2.1国外现状与市场分析

由于聚碳酸酯的优异性能,近期发展较快,尤其是在光盘、家电、电子产品等方面的应用发展迅速。

1998年世界生产能力147万t?a~,1999年新增能力

50万t?a~,到2002年世界聚碳酸酯生产能力已达240万t?a_。。从报道的计划看,到2006年还要增加150万t?a-。。那时能力将达到390万t?a~。其发

展速度之快,令人瞩目。

目前,世界聚碳酸酯最大的公司是GE,在世界各地总能力达78.5万t?a~,占35%,其次为Bayer,

总能力72.1万t?a~、占32%,第3位为D0w化学,总能力为26.4万t?a-。、占12%,日本帝人总能力为20万t?a-。、占8.8%,日本三菱亚洲/三菱化成总能力为19万t?a-。、占8.4%,其他为10万t?a-’。所

以,聚碳酸酯的生产主要集中于几个大公司。其他

地区对聚碳酸酯需求量持续增长也令人关注。

从消费分配上来看:电子/电器、包括计算机、办公设备和光盘,占总消费的26%,其次为透明薄板

和片材占21%。今后几年内,主要消费增长点是光盘、汽车。

2.2国内现状与市场分析

我国聚碳酸酯的研究早在1958年就开始,第三个五年计划期间实现工业化,当时曾掀起聚碳酸酯热,生产企业多达20余家。虽经几十年的发展,工艺技术还很落后、产品质量差、消耗定额高、成本高等问题还没有解决,已经有很多厂家陆续停产。目

前坚持生产的上海、重庆、江苏3家公司,生产能力曾达5600t?a-。,但近几年产量可能不足1000t?a~。

我国近年来,聚碳酸酯消费增长很快,1992年仅2.3万t,2002年达34万t。年均增长率31%。主要是电子电器10.5万t,阳光板8万t、光盘8万t、饮用水包装3万t、纺织l万t、其他3.5万t。

我国聚碳酸酯需求量,预计到20ar7年将达到58

万t,2012年将达到85万t。

国内拟建项目主要有Bayer公司,在上海合资

新建10万t?a‘1装置。预计2004年投产、二期再增加10万t?a-。。日本帝人在江浙建设规模5万t?a‘1的聚碳酸酯装置,即使这两大装置都建成,届时

仍满足不了国内的迅速增长的需求,还需大量进口。

3对我国发展聚碳酸酯的建议

鉴于我国对聚碳酸酯的需求增长迅速和我国目

前生产的状态,再建设新的生产装置,有着非常的可能性、现实性和必要性。根据实际情况,可采用引进技术,或以三资企业形式发展聚碳酸酯工业,具有一

定优势。

据估算,建一套生产10万t?a-1的聚碳酸酯的装置,总投资约28亿元,年销售收入22亿元,年利

税9.5亿元。

熙岭

◇酚

聚碳酸酯的生产及应用

作者:陈建滨, 董红星

作者单位:陈建滨(哈尔滨工程大学,黑龙江,哈尔滨,150001;黑龙江省化工研究院,黑龙江,哈尔滨,150076), 董红星(哈尔滨工程大学,黑龙江,哈尔滨,150001)

刊名:

化学工程师

英文刊名:CHEMICAL ENGINEER

年,卷(期):2004,18(11)

被引用次数:3次

相似文献(10条)

1.期刊论文于春梅.Yu Chunmei国内外聚碳酸酯生产与消费-现代化工1999,19(7)

介绍了国内外聚碳酸酯的生产发展、供需状况及消费结构.对今后5~10年世界及亚洲地区对聚碳酸酯的需求进行了预测.对我国聚碳酸酯行业的发展提出了建议.

2.期刊论文王文灿.WANG Wen-can聚碳酸酯的生产和应用市场-安徽化工2006,32(5)

介绍了聚碳酸酯的物理性能和生产现状,详细地阐明了聚碳酸酯在光学、汽车制造工业、航空航天等九大领域的应用分布情况.

3.学位论文丁春艳聚碳酸酯的分层开裂及变色的失效机理分析2007

聚碳酸酯(PC)是一种重要的高性能工程塑料,它自1938年第一次合成出迄今已有70年的历史。随着工业的发展,对聚碳酸酯的需求量越来越高,聚碳酸酯工业保持着稳定快速的发展,性能不断提高,新的应用领域不断拓展,其产量也随之不断增加。尤其在中国,许多大型跨国企业纷纷在华开设分支机构,国内生产聚碳酸酯的企业也如雨后春笋涌现出来。在聚碳酸酯工业蓬勃发展的背后,问题也随之而来。塑料的失效是困扰其发展的一个大问题,只有很好地解决了失效问题,才能更好地使用。因此,失效问题的研究是聚碳酸酯工业发展的一个非常关键的课题。在本文中,我们主要分析研究了聚碳酸酯在生产使用过程中常见的两个问题:开裂和变色。

通常情况下,开裂在层状材料及多相共混材料中较常见,也有很多文献发表,但对于单相材料的分层开裂研究还未见报道。为了揭示单相材料分层开裂的根本原因,并找到解决提高的办法,本文针对分层开裂的单相结构改性聚碳酸酯,运用扫描电子显微镜、红外光谱、热机械分析、气相色谱质谱连用仪等仪器进行了仔细的分析,发现单项材料的开裂与常见的开裂不同,是一种分层开裂现象。经过进一步的分析得出结论:单相聚碳酸酯分层开裂的主要原因是分子结构的改变,使得分子链在高剪切应力条件下易取向分层排列,由于层间作用力较弱,因此在外力和化学应力的作用下易分层开裂。此外,本文还讨论了单相材料分层开裂的预防措施:优化加工条件,改进模具设计等。这一发现不仅填补了分层开裂分析领域的空白,对实践也具有很好的指导意义。

塑料在加工过程中的变色情况并不多见,由于颜料在塑料材料中的使用量通常较少,因此对颜料及变色的分析比较困难。本文针对聚碳酸酯变色情况作了一系列的分析,以求找到失效的根本原因。对变色材料的研究主要集中在基体材料、颜料、污染及分解等几个方面。本文运用了多种分析方法

,如液相色谱、紫外可见光谱、薄层层析色谱、差示扫描热分析等,对失效样品及对比样品做了大量详细的表征分析,并模拟加工条件重现了聚碳酸酯的热历史,最终找到了导致变色的根本原因:加工温度过高使得及颜料出现分解以及颜色污染。最后提出了改进措施:控制加工条件,减少污染,尽量减少回收料的使用。这一发现加强了聚碳酸酯塑料变色的分析能力,对于今后类似的变色问题的研究有较高的指导意义,同时也对生产实践有较强的指导意义。

4.期刊论文魏东炜.崔金华.李复生.殷金柱.宋光复聚碳酸酯的生产和市场分析-现代化工2003,23(10)

分析了国内外聚碳酸酯,PC,的生产现状,包括已有、在建及计划建设的装置产能,并预测了今后生产和需求的展趋势;展示了国内PC工业化技术的开发现状.2002年全球PC产能约为200万t/a,预计到2006年产能将增加到250万t/a,需求将达到300万t,并且在光学介质和汽车行业将会表现出强劲的扩张性需求.我国2002年PC进口量超过40万t,预计今后几年国内需求增长速度仍较快.建议国内企业应加大科研投入,加速我国PC工业的发展.

5.期刊论文孙彦洁.SUN Yan-jie国内外聚碳酸酯的生产状况比较分析-塑料工业2008,36(z1)

介绍了聚碳酸酯生产工艺技术的进展,综述了国内外聚碳酸酯的生产情况.对我国聚碳酸酯的生产和消费发展趋势进行了分析和预测.并对我国聚碳酸酯工业的发展提出了几点建议.

6.期刊论文孙欲晓聚碳酸酯的生产及市场-化工科技2002,10(2)

介绍了聚碳酸酯生产工艺技术的进展,综述了国内外聚碳酸酯的生产及市场情况.对我国聚碳酸酯的市场发展趋势进行了分析和预测.并对我国聚碳酸酯工业的发展提出了几点建议.

7.期刊论文范存良聚碳酸酯的生产与应用-化工技术经济2003,21(10)

简要介绍了聚碳酸酯的生产情况,分析了它在不同领域的应用,提出了我国聚碳酸酯生产要引进国外先进技术、加快现有装置的改造、加强应用研究和开发新工艺的发展思路.

8.学位论文殷年伟增韧聚碳酸酯/苯乙烯-丙烯腈共混物的制备与性能研究2007

本文利用高胶ABS和弹性体SEBS与PC、SAN共混制备了性能优良的PC/SANh高胶ABS共混物和PC/SAN/SEBS共混物,共混过程中不需加入任何增容剂。制备的这两种共混物在力学性能、流变性能、热性能等方面均优于普通的PC/ABS共混物,并且由于SEBS中不含有不饱和的双键,PC/SAN/SEBS共混物还具有良好的耐候性,这为工业上生产耐候性工程塑料共混物提供了一条新途径。

将高胶ABS与SAN、PC经共混挤出后制备了PC/SAN/高胶ABS共混物,共混过程中不需加入任何增容剂。研究了不同PC含量、高胶ABS含量以及外加增容剂等对PC/SAN/高胶ABS共混物性能的影响。结果表明,只需高胶ABS含量为2.5%时,其常温冲击强度就可获得很大提高,达到562J/m。而当高胶ABS含量为5%时,低温冲击强度可达到550J/m。随着PC含量的降低,共混物的缺口冲击强度、弯曲强度和拉伸强度均降低,但降低幅度较小,30%PC含量的共混物相比于70%PC含量的共混物其常温冲击强度仅降低80 J/m。扫描电镜结果表明,当PC含量为70%时,PC相为连续相,SAN相为分散相:而当PC含量为30%时,PC相为分散相,SAN相为连续相。

将弹性体SEBS引入到PC/SAN共混物中,制备了性能优良的PC/SAN/SEBS共混物。研究了SEBS含量和PC含量对共混物力学性能的影响,以及SEBS在PC相和SAN相中的分布及其对共混物力学性能的影响。结果表明,SEBS的加入大大提高了PC/SAN共混物的冲击强度和断裂伸长率,使共混物的冲击强度从不含SEBS的130J/m增加到SEBS含量为7%的971J/m,同时断裂伸长率从23.8%增加到119%;但共混物的拉伸和弯曲强度以及维卡软化温度却有所降低。DSC分析和SEM研究表明,在PC/SAN/SEBS共混物中,SEBS不但分布在SAN相中,还有相当一部分分布在PC相中。而在PC/SAN/高胶ABS共混物中,高胶ABS都分布在SAN相中。这可能就是前者比后者具有更好的冲击强度的原因。利用旋转流变仪和毛细管流变仪系统研究了PC、SAN以及PC/SAN/SEBS共混物的动态线性粘弹性、稳态流变、瞬态流变以及毛细管流变性能;以及SEBS和PC含量对PC、SAN以及PC/SAN共混物的动态、稳态流变性能的影响。研究结果表明

,SEBS的加入使PC、SAN和PC/SAN共混物的线性粘弹性范围变窄,复数粘度也随频率的增加而逐渐降低,表现出明显的剪切变稀行为。随着SEBS含量的增加,复数粘度随着频率的增加而降低,共混物的剪切变稀行为越明显。并且随着SEBS含量的增加,共混物储能模量和损耗模量与剪切频率的关联系数降低,使共混物表现出明显的类固体现象。毛细管流变仪测试表明,在更高的剪切速率下(1000s<'-1>)下,PC/SAN/SEBS共混物表现出更明显的剪切变稀行为,这有利于实际生产加工。

本论文的创新之处在于:制备了两种具有优异冲击性能的PC/SAN/高胶ABS共混物和PC/SAN/SEBS共混物,研究了增韧剂含量对共混物性能的影响,以及增韧剂在共混物中的分布及对共混物性能的影响,研究了共混物流变性能的变化规律,可以指导两种共混物的实际加工生产。

9.期刊论文吕咏梅国外聚碳酸酯生产现状与发展趋势-国际化工信息2001,""(7)

本文着重介绍了国外聚碳酸酯生产现状、市场需求和发展趋势.近年来,国外聚碳酸酯发展很快,整个世界聚碳酸酯的生产、应用、开发与合作异常活跃.

10.会议论文金栋聚碳酸酯的生产及应用改性技术进展2007

聚碳酸酯(PC)是一种重要的热塑性工程塑料,其生产方法主要有溶液光气法、酯交换熔融缩聚法、界面缩聚光气法、非光气酯交换熔融缩聚法等,其中非光气法是今后的发展方向。合金改性、光学性能改进、耐热性能和阻燃性能的改进等技术是改进聚碳酸酯的性能,扩大其应用途径的重要手段,发展前景广阔。

引证文献(3条)

1.张新兰.李博.张琴.傅强.周楠含抗氧剂聚碳酸酯的制备及降解性能研究[期刊论文]-塑料工业 2009(1)

2.张新兰.张琴.傅强.周楠聚碳酸酯热降解与稳定性的研究进展[期刊论文]-塑料工业 2008(9)

3.周晴超临界醇类降解聚碳酸酯[学位论文]硕士 2006

本文链接:https://www.360docs.net/doc/9917043079.html,/Periodical_hxgcs200411015.aspx

授权使用:华东理工大学图书馆(hdlgdxtsg),授权号:f0c5e880-0c32-4999-9254-9de800a4d59d

下载时间:2010年9月5日

聚碳酸酯的改性及其应用

聚碳酸酯的改性及其应 用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

(2014-2015学年第一学期)《表面材料改性》课程论文 题目:聚碳酸酯的改性及其应用 姓名: 学院:材料与纺织工程学院 专业:高分子材料与工程 班级: 学号: 联系方式: 任课教师: 2014年12月28日

摘要 本文主要介绍了聚碳酸酯的四个改性方向,分别把它作为光学材料、医疗器械材料、阻燃材料、合金材料及其在这四个方面的应用。 关键词:聚碳酸酯光学材料医疗器械材料阻燃材料合金材料

Abstract This essay mainly introduce PC four modified directions, include optical material、medical apparatus and instruments、 Flame-resistant material、alloy material and different use in life. Keyword:PC,optical material,medical apparatus and instruments,Flame-resistant material,alloy material

前言 聚碳酸酯(PC)是一种通用工程塑料,具有综合均衡的力学、电气及耐热性能,特别以优异的冲击强度和耐蠕变性着称,透光率高,力学性能好,特别是冲击韧性在工程塑料中最佳,它的玻璃化转变温度高,吸水率低,制品尺寸相当稳定,其体积电阻率和介电强度与聚酯薄膜相当,介电损耗角正切仅次于聚乙烯(PE)和聚苯乙烯(PS),在10~130e下几乎不变。由于PC的优良性能, 现已成为五大工程塑料中增长速度最快的通用工程塑料,其制品及其共混(或合金)材料在电子、电器、机械、汽车、纺织、轻工及建筑等行业获得了广泛的应用。

国内外聚碳酸酯市场发展状况

国内外聚碳酸酯市场发展情况 高利平,中国化工信息中心咨询事业部 聚碳酸酯(PC)是一种线型聚合物,可分为脂肪族、脂肪-芳香族、芳香族 3种类型。在实验室里虽已合成出了许多种类的PC,但是到目前为止,大规模工业化生产的PC品种仍以双酚A型为主,因此,我们一般所说的PC为双酚A型PC。PC无味、无臭、无毒,是一种综合性能优良的热塑性工程塑料。PC具有一定的耐化学腐蚀性,室温下耐无机和有机稀酸溶液、食盐溶液和饱和的溴化钾溶液,耐脂肪烃、环烷烃及大多数醇类和油类;PC溶于二氯甲烷、间甲酚、环己酮、吡啶和二甲基甲酰胺;在乙酸乙酯、四氢呋喃和苯中只能溶胀;可与其他树脂共混形成PC共混物或PC合金,改善其抗溶剂性和耐磨性;PC具有突出的抗冲击、耐蠕变性能,较高的拉伸强度、弯曲强度、断裂伸长率和刚性,并具有较高的耐热性和耐寒性,可在-100~140℃温度范围内使用。PC的电性能优良,吸水率低,透光性好,可见光的透过率可达90%,是五大通用工程塑料中唯一具有良好透明性的品种,广泛应用于电子电器、数据载体、汽车部件、医疗设备、建筑、纺织和包装等领域。 1. 生产工艺 PC工业化生产方法有溶液光气法、界面缩聚光气法、酯交换熔融缩聚法、非光气酯交换熔融缩聚法4种。前3种为光气法,第4种为非光气法。目前,世界上约80%左右的PC采用界面缩聚光气法生产;其次是非光气法;传统酯交换熔融缩聚法工业化装置较少;溶液光气法基本被淘汰。 (1)界面缩聚光气法 界面缩聚光气法是目前工业上应用最为广泛的工艺。双酚A首先与氢氧化钠溶液反应生成双酚A钠盐;然后加入二氯甲烷,通入光气,使物料在界面上聚合,生成低分子量PC,然后经缩聚、分离得到高分子量PC。主要的专利商有SABIC、拜耳、日本三菱化学、日本帝人、斯泰隆公司(Styron,原为Dow 化学的合成树脂子公司,2010以16.3亿美元出售给Bain Capital Partners公司)。 (2)非光气酯交换熔融缩聚法 该法是在酯交换熔融缩聚法工艺的基础上开发成功的,因工艺过程中彻底不使用光气,又称“全非光法”。该工艺分为两步:首先,以甲醇羰基化法或碳酸乙烯酯(或碳酸丙烯酯)与甲醇酯交换生产碳酸二甲酯(DMC);其次,苯酚和DMC反应生成甲基苯基碳酸酯(MPC),MPC和苯酚进一步反应生成碳酸二苯酯(DPC),同时MPC发生歧化反应也生成DPC;然后DPC在熔融状态下与

聚碳酸酯的生产及应用

聚碳酸脂的生产及应用 系(分院):××× 专业班级 : ××× 学生姓名:××× 学号:××× 指导教师:××× 2012年5月16日星期三

目录 1.前言 (2) 2.聚碳酸脂的生产工艺 (2) 2.1 溶液光气法 (2) 2.2 酯交换熔融缩聚法 (2) 2.3 界面缩聚光气法 (3) 2.4 非光气酯交换熔融缩聚法 (3) 2. 5 双酚A氧化羰基化法合成PC (3) 3.聚碳酸脂的应用 (4) 3.1用于建材行业 (4) 3.2 用于汽车制造工业 (4) 3.3 用于生产医疗器械 (4) 3.4 用于航空、航天领域 (5) 3.5 用于包装领域 (5) 3.6 用于电子电器领域 (5) 3.7 用于光学透镜领域 (5) 3.8 用于光盘的基础材料 (5) 4.我国聚碳酸酯的发展建议[4] (6) 4.1 通过各种途径引进国外先进技术 (6) 4.2 加强聚碳酸酯的应用研究 (6) 4.3 合作开发非光气法 (6) 5.致谢! (7)

毕业论文 摘要:本文论述了聚碳酸酯的各种生产工艺路线, 对其在各种领域的应用进行了分析, 并提出了建设新的聚碳酸酯装置的建议。 关键词:聚碳酸脂,生产,应用,发展建议 1.前言 聚碳酸酯简称PC,是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高; 蠕变性小,尺寸稳定; 具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在- 60 ~ 120 ℃下长期使用; 无明显熔点,在20 ~230 ℃呈熔融状态; 其应用领域非常广泛, 已进入到汽车、电子电气、建筑、办公设备、包装、运动器械、医疗保健、家庭用品等领域。目前, PC 正迅速地扩展到航空、航天、电子计算机、光盘等高新技术领域, 尤其在光盘的应用上发展更快。PC 还可与其它树脂共混形成PC 共混物或PC 合金, 改善其抗溶剂性和耐磨性较差的缺点, 使之性能更加完善, 能适应多种特定应用领域对成本和性能的要求。在五大工程塑料中, PC 树脂是增长速度最快的通用工程塑料。 2.聚碳酸脂的生产工艺 自从1956 年, 第一个工业化PC 装置投产以来, PC 工业见证了工艺进展的重大变化。 60 年代, 界面光气法、酯交换法( 熔融法) 和溶液光气法是3 个主要工艺路线。由于经济性原因,溶液法不再采用。目前工业上生产PC 绝大多数采用界面光气法工艺。近年来, 非光气熔融工艺也得到迅速发展[1]。 2.1 溶液光气法 溶液光气法是以光气和双酚A 为原料,在碱性水溶液和二氯甲烷( 或二氯乙烷) 溶剂中进行界面缩聚,得到的PC 胶液经洗涤、沉淀、干燥、挤出造粒等工序制得PC 产品。此工艺经济性较差,且存在环保问题,已完全淘汰。 2.2 酯交换熔融缩聚法 酯交换法其实也是一种间接光气法工艺。在该工艺中,酚经过光气法反应生成碳酸二苯酯,然后在卤化锂或氢氧化锂等催化剂和添加剂存在下和双酚A 进行酯交换反应,生成低聚物,再进一步缩聚得到聚碳酸酯产[2]品。酯交换法生产PC 的主要化学反应为:

光气法聚碳酸酯的生产工艺与设备

光气法聚碳酸酯的生产工艺与设备 化学与材料科学系 08级高分子材料与工程 08150119 康颖指导老师:张少华教授 摘要:本文主要是介绍利用光气法来生产聚碳酸酯。 关键词:光气法聚碳酸酯双酚A 通用工程塑料 一、前言 聚碳酸酯结构式: 常用缩写PC(Polycarbonate)化学名:2,2-双(4- 羟基苯基)丙烷聚碳酸酯,它是一种无味、无毒、透明的无定性热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称。聚碳酸酯可分为脂肪族、脂环族、芳香族等几大类[1]。双酚A 型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一[2]。本文所述聚碳酸酯即为双酚A 型聚碳酸酯。 PC(Polycarbonate)与PA(尼龙,Polyamide,聚酰胺)、POM(Polyacetal, Polyoxy Methylene,聚甲醛)、PBT(Polybutylece Terephthalate,聚对苯二甲酸丁二醇酯)及改性PPO(Poly Phenylene Oxide,聚苯醚)一起被称为五大通用工程塑料。聚碳酸酯由于具有优异的综合性能,尤其以耐冲击强度高而被誉为塑料之“冠”,是使用范围十分广泛、性能优异、备受欢迎的主要热塑性工程塑料品种之一。聚碳酸酯是五十年代末开始发展的合成材料。聚碳酸酯树脂的可见光透过率在90﹪以上,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好及耐化学腐蚀性,耐热、吸水率低、无毒、介电性能优良,还有自熄、易增强阻燃性等优良性能。被广泛用于电

子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、 医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。预测我国聚碳酸酯市场的年均增长率将达到10.2%,至2010 年工程塑料需求 量将接近400 万t。聚碳酸酯产量年增长可能达到9%,销售量年增长将达10%[3~6]。物理性质: 密度:1.20-1.22 g/cm 线膨胀率:3.8×10 cm/cm°C;热变形温度:135°C。 化学性质: 聚碳酸酯耐弱酸,耐中性油;聚碳酸酯不耐紫外光,不耐强碱。 二、生产工艺 [7~10] 聚碳酸酯(PC)树脂生产工艺分为有溶液光气法、酯交换熔融缩聚法、界面缩聚光气法以及非光气酯交换熔融缩聚法四种。 2.1溶液光气法 溶液光气法是以光气和双酚A为原料,在碱性水溶液和二氯甲烷(或二氯乙烷)溶剂中进行界面缩聚.得到的聚碳酸酯胶液经洗涤、沉淀、干燥、挤出造粒等工序制得聚碳酸酯产品。此工艺经济性较差,且存在环保问题,已完全淘汰。 2.2酯交换熔融缩聚法 酯交换熔融缩聚法简称酯交换法,又称本体聚合法.是一种间接光气法工艺。以苯酚为原料,经光气法反应生成碳酸二苯酯(DPC);然后在微量卤化锂或氢氧化锂等催化剂和添加剂存在下与双酚A在高温、高真空下进行酯交换反应,生成低聚物;再进一步缩聚制得聚碳酸酯产品。该工艺流程短,无溶剂,全封闭,无污染,生产成本略低于光气法;但产品光学性能较差.催化剂易污染。副产品酚难以去除,产品相对分子质量低,应用范围有限;再加上搅拌、传热等问题的限制,难以实现大吨位工业化生产。 2.3界面缩聚光气法

聚碳酸酯(简称PC)

Panlite ? AD-5503 TEIJIN LIMITED - Polycarbonate Monday,November 24,2014 Disclaimer: ■The numerical values described in the data sheet are typical numerical values produced with a standard test method,and they do not guarantee the product’s performance in a particular application.■The flammability as described in the data sheet is an evaluation that resulted from a small-scale test,and it cannot be applied as it is to evaluate the actual risk of fire.■Please contact us if you wish to use the product in medical equipment,food containers and packaging,and toys. ■If you wish to use various additives (antibacterial agents,stabilizers and flame retardants)or coloring agents with this resin,please consult with Teijin Ltd.beforehand.However,please note that Teijin Ltd.does not offer any kind of guarantee or bear any responsibility with regards to using this resin in any of these applications.■The contents of the data sheet may change without notice. ■For other details,please see the Material Safety Data Sheet (MSDS)before use. General Information Product Description Optical glade General Material Status ?Commercial:Active Availability ?Africa &Middle East ?Asia Pacific ?Europe ?Latin America ?North America Features ?Ultra Low Viscosity Uses ?Lenses ?Optical Applications Appearance ?Clear/Transparent Forms ?Pellets Processing Method ?Injection Molding ASTM &ISO Properties 1 Physical Nominal Value Unit Test Method Density 1.20g/cm3ISO 1183Melt Volume-Flow Rate (MVR)(300°C/1.2kg)54.0cm3/10min ISO 1133Molding Shrinkage Internal Method Across Flow :4.00mm 0.50to 0.70%Flow :4.00mm 0.50to 0.70% Water Absorption (23°C,24hr)0.20% ISO 62Mechanical Nominal Value Unit Test Method Tensile Modulus 2450MPa ISO 527-2/1Tensile Stress (Yield)63.0MPa ISO 527-2/50Tensile Strain (Yield) 6.0%ISO 527-2/50Tensile Strain (Break)>50%ISO 527-2/50Flexural Modulus 22400MPa ISO 178Flexural Stress 296.0MPa ISO 178Impact Nominal Value Unit Test Method Charpy Notched Impact Strength 3.0kJ/m2ISO 179Charpy Unnotched Impact Strength No Break ISO 179Thermal Nominal Value Unit Test Method Heat Deflection Temperature (0.45MPa,Unannealed)138°C ISO 75-2/B Heat Deflection Temperature (1.8MPa,Unannealed)124°C ISO 75-2/A Vicat Softening Temperature 143°C ISO 306/B50CLTE -Flow 7.0E-5cm/cm/°C ISO 11359-2CLTE -Transverse 7.0E-5cm/cm/°C ISO 11359-2Electrical Nominal Value Unit Test Method Surface Resistivity >1.0E+15ohm IEC 60093Volume Resistivity >1.0E+15ohm·cm IEC 60093Electric Strength 3 30kV/mm IEC 60243-1

聚碳酸酯的技术发展及国内外市场分析

聚碳酸酯的技术发展及国内外市场分析 摘要:介绍了聚碳酸酯(PC)技术进展现状,特别介绍了中国聚碳酸酯研发历程和研发现状,并对改性技术方向做了介绍。对世界聚碳酸酯市场进行了深度分析,对中国市场进行了展望,指出了存在的问题和解决方法。 关键词:聚碳酸酯技术进展 聚碳酸酯(PC)是具有高强度、高韧性、高抗热性、抗震及加工性能好、有极好的形状和颜色稳定性的透明树脂。它既可单独使用,也可以掺混物和合金方式使用,在六大工程塑料中消费量仅次于聚酰胺(P A)。 在50多年的发展历程中,PC的应用领域不断拓展。近年来由于生产工艺和技术的提高,PC材料在性能完善和个性化设计方面取得了更快的进展,PC制品的应用已渗透到建筑、医学、服装、光盘片、汽车材料、建筑材料、包装材料、宽波透光的光学器械等行业之中,正在迅速改善和提升着人们的生活质量。 关于PC新用途的研究报告也不断问世,如,原美国GE全球研究公司推出了一种新的基片技术,可用于柔性有机光发射二极管(OLED);英国塑料电子产品开发商Plastic Logic公司开发了25.4cm的柔性有机基体显示器材;用于太阳能电池板的光伏发电是聚碳酸酯又一个增长中的应用领域;随着首支耐高压的PC针剂管的问世,PC的应用领域更加广阔了。PC可制成用于心脏搭桥手术的充氧器外壳,PC 还被用于做肾透析时的贮血池及过滤器外壳,其高透明度可以保证血液流通的快速检查,这使透析变得简单实用。 除此之外,游泳池底部的自照明系统、太阳能采集系统、高清晰大型电视屏幕、纺织品中可进行织物材料识别的芯片标记纤维等一些全新的领域都少不了PC材料的身影,PC制品正在为各行各业作出贡献,其应用潜力还将得到进一步的开发。 1 技术进展 目前,国际上聚碳酸酯工业化生产技术主要有三种:光气化界面缩聚法(简称光气法)、酯交换熔融

化工领域的新材料PC聚碳酸酯PC

一、什么是聚碳酸酯? 聚碳酸酯是一类分子主链中含有—[O-R-O-CO]—链节的高分子化合物及以它为基质而制得的各种材料的总称。英文名Polycarbonate, 简称PC。 二、分类.(聚碳酸酯是分子主链中含有—[O-R-O-CO]—链节的热塑性树脂。) 按分子结构中所带酯基不同分为: (1).脂肪族聚碳酸酯 (2).脂肪族聚碳酸酯 (3).脂肪-芳香族聚碳酸酯 (4).芳香族聚碳酸酯 三、性质 1.物性:密度:1.18-1.22 g/cm^3 线膨胀率:3.8×10^-5 cm/°C 热变形温度:135°C 低温-45°C 聚碳酸酯无色透明,耐热,抗冲击,阻燃BI级,在普通使用温度内都有良好的机械性能。同性能接近聚甲基丙烯酸甲酯相比,聚碳酸酯的耐冲击性能好,折射率高,加工性能好,不需要添加剂就具UL94 V-0级阻

燃性能。但是聚甲基丙烯酸甲酯相对聚碳酸酯价格较低,并可通过本体聚合的方法生产大型的器件。 2.化性:聚碳酸酯(PC)是碳酸的聚酯类,碳酸本身并不稳定,但其衍生物(如光气,尿素,碳酸盐,碳酸酯)都有一定的稳定性。 聚碳酸酯耐弱酸,耐弱碱,耐中性油。不耐紫外光,不耐强碱。PC 材料具有阻燃性,耐磨。抗氧化性。 PC是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可两者皆有。双酚A型PC是最重要的工业产品。几乎是无色的玻璃态的无定形聚合物,有很好的光学性。PC高分子量树脂有很高的韧性,悬臂梁缺口冲击强度为 600~900J/m,未填充牌号的热变形温度大约为130°C ,玻璃纤维增强后可使这个数值增加10°C。PC的弯曲模量可达2400MPa以上,树脂可加工制成大的刚性制品。低于100°C 时,在负载下的蠕变率很低。PC耐水解性差,不能用于重复经受高压蒸汽的制品。 PC主要性能缺陷是耐水解稳定性不够高,对缺口敏感,耐有机化学品性,耐刮痕性较差,长期暴露于紫外线中会发黄。和其他树脂一样,PC容易受某些有机溶剂的浸浊。 四、主要性能 a、机械性能: 强度高、耐疲劳性、尺寸稳定、蠕变也小(高温条件下也极少有变化); b. 耐热老化性: 增强后的UL温度指数达120~140℃(户外长期老化性也很好); c、耐溶剂性: 无应力开裂; d、对水稳定性: 高温下遇水易分解(高温高湿环境下使用需谨慎); e、电气性能: 1、绝缘性能:优良(潮湿、高温也能保持电性能稳定,是制造电子、电气零件的理想材料); 2、介电系数:3.0-3.2; 3、耐电弧性:120s;

浅谈聚碳酸酯行业发展情况以及最新应用

浅谈聚碳酸酯行业发展情况以及最新应用 本刊讯我国聚碳酸酯的研制始于1958年,并于1965年实现工业化生产。先后有上海天原集团申聚化工厂、江苏常隆化工有限公司、重庆长风化工厂等从事生产,产品大部分自用。但由于装置规模小、技术水平落后、产品质量差、生产成本高,产品竞争力低,无法与国外产品相抗衡。2005年之后,我国掀起聚碳酸酯投资热潮,世界级聚碳酸酯生产商帝人化成和拜耳先后在我国投资建厂,到2012年我国聚碳酸酯产能达44.1万吨/年。 作为全球著名的聚合物制造商之一,拜耳材料科技公司早在2001年就在上海创建了聚合物研发中心,并在上海一体化基地投运了一条年产量为10万吨/年的聚碳酸酯工厂和4条其他聚碳酸酯分级掺混材料厂,为生产线提供了强大的技术支撑。另外,帝人化学公司投资9亿日元830万美元在其上海聚碳酸酯混配料工厂内新建的装置已于2009年建成投产,此次扩能完成后,该工厂成为世界级的聚碳酸酯混配料工厂。未来仍有内资、外资新扩建聚碳酸酯装置在我国陆续建成投产。 三菱瓦斯化学公司在上海漕泾化学工业区新建8万吨/年聚碳酸酯产能,于2013年底建成投产,该聚碳酸酯树脂联合项目的总投资约为300亿日元。中石化与沙特基础工业公司沙伯签署的26万吨/年聚碳酸酯项目预计于2015年投产,该项目是中国石化与沙伯在天津现有100万吨/年乙烯合资项目中新增的合作内容,采用世界上最先进的非光气法生产工艺,总投资约110亿元人民币,双方股比50%:50%,将生产包括混合级、挤出级、光学级及注塑级四大类聚碳酸酯。拜耳材料科技公司于2010年已经宣布计划到2016年使其在上海漕泾生产联合装置的聚碳酸酯产能翻一番以上,将达到50万吨/年,拜耳材料科技公司也将大大增强在漕泾的研发能力,并将其聚碳酸酯业务部从德国Leverkusen迁往上海,此举将使其业务更贴近迅速发展的亚洲聚碳酸酯市场。另外,拜耳材料科技公司位于广州经济技术开发区永和经济区的聚碳酸酯单层板工厂已于2011年10月开建,设计生产能力1.2万吨/年已于今年投产,到2015年,这家工厂聚碳酸酯总产能将翻番达到2.4万吨/年。 现如今,聚碳酸酯的应用领域日渐广泛,据悉,牙医用其新型探照灯检测病人牙齿时,健康牙齿会显示绿色,而含有大量细菌及新陈代谢残余物的龋齿则变为红色,牙医可以轻松找到病人的龋齿,并进行处理。研发人员表示,探照灯效果显著主要是其内置的PC过滤器采用了拜耳Makrolon LQ3187 PC生产而成的灯光过滤器,它能切断一些可见光谱,将注意力集中于红光和绿光身上,可以辨别龋齿和健康牙齿。Makrolon LQ3187是一种高透明性PC材料,其光学性能十分优异,并具备良好的抗冲击性和抗断裂性。化工厂1万吨/年PC装置也将于未来两年内投产。 是金子总会发光的,聚碳酸酯拥有良好的透光性,抗冲击性,耐紫外线辐射及其制品的尺寸稳定性和良好的成型加工性能,使其比建筑业传统使用的无机玻璃具有明显的技术性能优势。同样的在医疗领域聚碳酸酯以其良好的性质得到了

聚碳酸酯(PC)加工工艺

加工工艺: 1、加工特性 PC是无定形材料,它的熔体粘度对温度敏感。由于PC在高温下易发生水解,制品质量对原料的含湿量很敏感,在成型前必须将原料须干燥至小于0.02%。PC 可采用注塑、挤出、吹塑、流延等分法加工,也可进行粘合、焊接和冷加工。2、注塑工艺 (1)塑料的处理 PC的吸水率较大,加工前一定要预热干燥,纯PC干燥120℃,改性PC一般用110℃温度干燥4小时以上。干燥时间不能超过10小时。一般可用对空挤出法判断干燥是否足够。再生料的使用比例可达20%。在某些情况下,可100%的使用再生料,实际份量要视制品的品质要求而定。再生料不能同时混合不同的色母粒,否则会严重损坏成品的性质。 (2)注塑机的选用 现在的PC制品由于成本及其它方面的原因,多用改性材料,特别是电工产品,还须增加防火性能,在阻燃的PC和其它塑料合金产品成型时,对注塑机塑化系统的要求是混合好、耐腐蚀,常规的塑化螺杆难以做到,在选购时,一定要预先说明。 (3)模具及浇口设计 常见模具温度为80~100℃,加玻纤为100~130℃,小型制品可用针形浇口,浇口深度应有最厚部位的70%,其它浇口有环形及长方形。浇口越大越好,以减低塑料被过度剪切而造成缺陷。排气孔的深度应小于0.03~0.06mm,流道尽量短而圆。脱模斜度一般为30′~1°左右。 (4)熔胶温度 可用对空注射法来确定加工温度高低。一般PC加工温度为270~320℃,有些改性或低分子量PC为230~270℃。 (5)注射速度 多见用偏快的注射速度成型,如打电器开关件。常见为慢速→快速成型。 (6)背压 10bar左右的背压,在没有气纹和混色情况下可适当降低。 (7)滞留时间 在高温下停留时间过长,物料会降质,放也CO2,变成黄色。勿用LDPE、POM、ABS或PA清理机筒。应用PS清理。 (8)注意事项 有的改性PC,由于回收次数太多(分子量降低)或各种成分混炼不均,易产生深褐色液体泡。 结构与性能: PC是一种无定形的热塑性塑料,由于主链由柔软的碳酸酯链与刚性的苯环相连接,使之具有许多优良的工程性能。 (1)力学性能 PC具有均衡的刚性和韧性,拉伸强度高达(6l~70)MPa。有突出的冲击强度,在一般工程塑料中居首位,抗蠕变性能优于聚酰胺和聚甲醛。 (2)热性能与聚酰胺和聚甲醛不同,PC是非结晶性塑料,但由于主链上存在苯环。使PC具有较高的耐热性,它的玻璃化转变温度和软化温度分别高达150℃

聚碳酸酯PC

聚碳酸酯PC 聚碳酸酯是在分子链中含有碳酸酯的一类高分子化合物的总称。聚碳酸酯是一种新型的热塑性塑料,透明度达90%,被誉为透明金属。刚硬而有韧性,具有高抗冲击性,高度的尺寸稳定性和范围很宽的使用温度,良好的绝缘性及耐热性和无毒性。聚碳酸酯燃烧特性:慢燃,离火后慢熄,火焰呈黄色,黑烟碳束。燃烧后塑料熔融,起泡,发出特殊的花果臭气味。聚碳酸酯比重1.20,透明,本色呈微黄。 聚碳酸酯性能:聚碳酸酯树脂通过共聚,共混,增强等途径发展了很多改性品种。聚碳酸酯是抗冲击韧性为一般热塑料之冠,尺寸稳定性很好.耐热性教好,可在-60~120度下长期使用,热变温度130~140玻璃化温度149度热分解大于310度.聚碳酸酯极性小,玻璃温度高,吸水率低,收缩率小,尺寸精度高,对光稳定,耐候性好.熔融粘度和注射温度降低,因而易于加工成形。聚碳酸酯与此20~ 40%的ABS树脂共混后,具有优良的综合性能,它既有聚碳酸酯树脂的高机械强度和耐热性,又具有ABS的流动性好,便于加工的特点,各项性能指标大都介于聚碳酸酯和ABS之间。 用途:聚碳酸酯主要用于生产工业制品,用来代替金属及其它合金,在机械工业上作耐冲击及高强度的零部件。玻璃纤维增强聚碳酸酯具有类似金属的特性,可代替铜,锌,铝等压铸件。聚碳酸酯可以进行注射成形,挤出成形,吹塑成形,旋转成形,真空成形和溶剂铸造膜片等技术。制件还可以机械加工,常温冲孔,锯切及焊接和粘合。聚碳酸酯树脂的注射成形,一般采用螺杆式注射机进行。料筒温度:250~320℃,注射压力:50~80MPa,模具温度:85~120℃,螺杆转速:40~60次/min,成品热处理:先在100~105℃的烘箱中烘烤10分钟,然后在120~125℃再烘烤30分钟,自然冷却到常温即可。 聚碳酸酯(PC)介绍,聚碳酸酯是分子主链中含有—[O-R-O-CO]—链节的热塑性树脂,按分子结构中所带酯基不同可分为脂肪族、脂环族、脂肪一芳香族型,其中具有实用价值的是芳香族聚碳酸酯,并以双酚A型聚碳酸酯为最重要,分子量通常为3 -10万。 聚碳酸酯,英文名Polycarbonate, 简称PC。PC是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在-60~120℃下长期使用;无明显熔点,在220-230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。 PC可注塑、挤出、模压、吹塑、热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温

2018-2020年中国聚碳酸酯(PC)行业发展前景分析报告

中国聚碳酸酯(PC)行业发展前景分析报告

内容目录 1. 聚碳酸酯(PC)材料价格持续攀升,景气度提高 (4) 1.1. PC是一种抗冲击、透明、耐热耐寒的工程塑料 (4) 1.2. PC价格持续上行,盈利大幅提升 (4) 2. 需求端:我国PC需求增速高于全球,电子电气与汽车领域的发展是动力 (5) 2.1. 全球PC行业处于成熟期,我国成为最大的PC消费市场 (5) 2.2. 电子电气、板材和汽车领域是未来PC主要的消费增长点 (6) 3. 供应端:产能高度集中在海外巨头企业,我国处于行业发展初期 (8) 3.1. 目前全球供应端呈现寡头格局,巨头扩产谨慎 (8) 3.2. 我国PC产能集中在外资企业,国内企业处于发展初级阶段 (8) 4. 未来两年PC国产化企业有望享受高盈利时期 (10) 4.1. 目前我国PC需求量大自给率低,严重依赖进口 (10) 4.2. 全球PC供需紧平衡,产能增量开始向中国转移,短期利好具备技术的国产化企业 . 11 4.3. 废塑料禁止进口的禁令助推国内PC行业景气上行 (12) 4.4. 高端化、差异化和产业链一体化建设是我国PC产业的未来发展重点 (14) 5. PC产业附加值较高,国内企业正依靠自主创新加快布局 (15) 5.1. 光气法是目前PC生产路线的主流,非光气法因绿色环保成为发展趋势 (15) 5.2. 国内PC产能在两大工艺路线中齐头并进 (16) 5.3. PC产品毛利较高,光气法壁垒较低但投资与成本高于非光气法 (17) 6. 重点关注标的 (17) 6.1. 鲁西化工(000830.SZ) (17) 6.2. 江山化工(现更名为浙江交科,002061.SZ) (17) 6.3. 万华化学(600309.SH) (18) 7. 风险提示 (18) 图表目录 图1:聚碳酸酯颗粒 (4) 图2:双酚A型PC化学分子结构 (4) 图3:PC市场价(华东地区)与价差 (5) 图4:全球PC消费量及增速 (5) 图5:我国PC消费量及增速 (5) 图6:2010年全球聚碳酸酯消费结构组成 (6) 图7:2015年全球聚碳酸酯消费结构组成 (6) 图8:2007年国内聚碳酸酯消费结构组成 (6) 图9:2014年国内聚碳酸酯消费结构组成 (6) 图10:PC材料的iPhone 5C、魅族魅蓝Note的外壳 (7) 图11:中国最大公共交通车辆制造商中国南车采用PC板材 (7) 图12:奔驰迈巴赫汽车车窗使用PC涂膜以起到防弹保护作用 (7) 图13:消防头盔使用耐高温PC材料 (7) 图14:全球5大PC龙头份额高达80% (8) 图15:我国PC产能、产量(万吨)及增速 (9) 图16:我国主要PC生产企业分布示意图 (10) 图17:我国PC供需情况汇总 (11) 图18:2014-2016年废塑料进口数量(吨) (12)

全球聚碳酸酯(PC)产业概况

全球聚碳酸酯(PC)产业概况 加拿大政府宣布,禁止进口、销售及推广含有双酚A 的聚碳酸酯塑胶婴儿奶瓶,正式将此物质列为有毒化学物质。我国环保署2009年将双酚A列成第四类管制毒性化学物,属于毒性尚未明确确立的疑似毒性物质,在国际贸易同步进行前提下,目前仅有加拿大将双酚A列为毒物,「一旦双酚A毒理确立,台湾也会跟进。」卫生署指出,双酚A其化学结构类似雌性激素,因此被视为环境荷尔蒙;研究显示,暴露于过量双酚A,可能会引起过敏外,还会降低精虫数,影响生育,并增加与荷尔蒙有关的癌症发生率,如乳癌、睪丸癌及前列腺癌等。聚碳酸酯(Polycarbonate, PC)的原料是双酚A (bisphenol A, BPA),聚碳酸酯最大问题不在制造时添加该化学物质,而是材质本身会释出双酚A,某些高效清洁剂甚至会把聚碳酸酯中的双酚A 溶解出来,容器表面若有刮伤,双酚A 也会溶进饮料里,是聚碳酸酯食具最大的隐忧。本文将针对聚碳酸酯产业的应用领域及供需作一概况说明。 聚碳酸酯产业应用领域 聚碳酸酯(Polycarbonate),简称PC, ,是一种无定型、无臭、高透明无色或带微黄色的热塑性工程塑胶,聚碳酸酯目前是泛用工程塑胶生产规模最大者,聚碳酸酯产业近年来朝向高复合、高功能、专用化及系列化方向发展,大宗使用在汽车工业和电子电器零组件、工业机械零件、电脑和光碟以及玻璃配装等,为近年来高科技产业的重要原料,产能及需求量也随之快速成长,聚碳酸酯产业的应用领域大致可分为七大领域。 1.电子及电器领域 全球对聚碳酸酯的需求逐年成长,其中电子和电器产业对聚碳酸酯的需求占全球聚碳酸酯需求量1/3以上。除了原有聚碳酸酯良好的物化性,聚碳酸酯/ABS 合金更降低聚碳酸酯的成本和熔体黏度,改善聚碳酸酯加工性能,减少产品内应力和冲击强度对制品厚度的敏感性,聚碳酸酯/ABS 合金的这些优点,使得聚碳酸酯在电子领域应用范围更广阔,主要可应用于手机外壳、电脑外壳、仪表屏、电器工具外壳及线圈框架等。 2.建筑领域 聚碳酸酯是五大泛用工程塑胶中唯一具有良好透明性的塑胶,可见光透率高达90%以上,加上材质轻、隔热性能比无机玻璃高25%,抗冲击强度是无机玻璃250倍,特别适用于玻璃及板材,聚碳酸酯板材在建筑方面需用量占聚碳酸酯总需求量40%以上。聚碳酸酯板材可制成的各种复杂的板材,可用于建筑物大面积屋顶、走廊、楼梯护栏、阳台围墙等,具有安全可靠,坚固耐用及外观美丽等优点。 3.汽车领域 由于聚碳酸酯的冲击强度、硬度、耐候性和耐热性,汽车应用领域包括汽车的离合器系统、仪表板、照明灯具、内外部嵌板和轮胎盖子及汽车玻璃等。而聚碳酸酯的光学特性及其独特的耐冲击性、耐候性以及量轻、强度高等特性,越来越多应用在汽车灯罩,近年美国、日本、欧洲汽车制造厂也开始以聚碳酸酯作为灯罩的材料。全球最大聚碳酸酯生产厂商GE 公司和拜耳公司也联手研发汽车车窗玻璃用聚碳酸酯,期许车窗玻璃全部用聚碳酸酯代替。4.航太领域 在航空航太领域,聚碳酸酯最初只用于飞机座舱罩和挡风玻璃,随着航太技术发展,对飞机和航空器各零件品质要求不断提高,使得聚碳酸酯在该领域的应用也日渐增加。1架波音747飞机所用的聚碳酸酯零件约2公吨,太空船上也是由数百种玻璃纤维补强的聚碳酸酯零件组成。 5.食品包装领域 在食品包装领域,聚碳酸酯主要用于饮用水瓶及奶瓶家用食品容器等,但是由于原料双酚A 列为危险化学物质,因此聚碳酸酯应用在食品包装领域将受到严峻的挑战,聚碳酸酯将来是否应用在食品包装领域仍是一个未知数。 6.光学材料领域 由于具有优良的加工成型性及尺寸安定性,聚碳酸酯在光学领域最大的应用是生产CD/DVD 光碟,然而随着科技不断发展,特别是网路的普及,光学级聚碳酸酯在CD/DVD 应用领域的需求也逐渐减少。由于聚碳酸酯的高透光率,光学级聚碳酸酯还可替代玻璃用来制作摄像机、照相机、显微镜、望远镜的光学镜片及各种眼镜镜片,其抗冲性和成型加工性能,都是传统的玻璃和其他塑胶镜片无法相较的。 7.医疗器材领域 聚碳酸酯具有优良的耐高温和耐冲击性以及透明的外观,为多样化医疗应用领域的首选材料,聚碳酸酯可采用超高温蒸汽、高能辐射或环氧乙烷消毒,也可利用雷射消毒,可完全避免其他材料面临的褪色或变黄问题。 全球聚碳酸酯产业生产概况 全球聚碳酸酯生产始于1956年,首先在德国、日本、西欧和美国工业化生产,产业扩建潮开始于2005年,目前全球聚碳酸酯生产能力达到407.2万公吨,全球前五大聚碳酸酯生产厂商为德国Bayer120万公吨、Sabic102万公吨、三菱瓦斯/三菱化学30.2万公吨,帝人化成(Teijin)及陶氏化学(Dow Chemical)紧接于后,前五大厂商产能占全球聚碳酸酯总产能87.4%。2009年全球聚碳酸酯生产厂商产能统计如表一所示。 表一 2009年全球聚碳酸酯生产厂商产能统计 国家 生产商 产能 ( 万公吨 ) 备注 美国 Bayer AG 26 介面缩聚法 Dow 7.5 介面缩聚法 Sabic Innovative Plastics 55 介面缩聚法 巴西 Policarbonatos do Brasil S.A 2 介面缩聚法 德国 Bayer AG 33 介面缩聚法 Dow 13.4 介面缩聚法 荷兰 Sabic Innovative Plastics 20 介面缩聚法 西班牙 Sabic Innovative Plastics 27 熔融聚合法 比利时 Bayer AG 24 熔融聚合法 日本 Idemitsu Kosan Co Ltd 4.7 介面缩聚法 Sumitomo Dow Ltd 8 介面缩聚法 GE 日本公司 4.5 非光气法 Teijin 12 介面缩聚法 三菱化学 8 熔融聚合法 三菱瓦斯化学 11 熔融聚合法 韩国 LG Dow Polycarbonate Ltd 17 介面缩聚法 Samyang Kasei Co Ltd 11 日本三菱化学技术

聚碳酸酯(PC)工程塑料知识简介

聚碳酸酯(PC)树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。目前广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。 一、生产状况聚碳酸酯工业化合成主要是界面光气化路线,以双酚A为原料,使用光气、氢氧化钠和二氯甲烷为原料及反应助剂,此法工艺成熟,产品质量较高,易于规模化和连续化生产,经济性好等,长期占据着聚碳酸酯生产的主导地位。但由于该法使用的原料光气剧毒,因此近年来各大公司纷纷研究非光气法生产路线。1993年非光气法工艺研究成功,并由GE塑料日本公司实现了工业化生产。主要以双酚A与碳酸二苯酯为原料,该工艺是一种符合环境要求的“绿色工艺”,已成为今后聚碳酸酯合成工艺的发展方向,预计未来在聚碳酸酯生产中将逐渐占据主导地位。2002年全球PC总生产能力约230万吨/年,PC生产主要集中在美国、西欧和日本,上述三大产地生产能力约占世界总生产能力的90%。目前世界聚碳酸酯工业发展呈现两大特点,一是生产更趋集中和垄断,德国拜耳公司、美国GE化学公司、道化学公司及日本帝人公司的生产能力占世界总生产能力的80%左右,这几大公司控制着世界聚碳酸酯的生产与市场,主宰着世界聚碳酸酯的命运。二是亚洲发展迅速,近年来随着亚洲经济逐步恢复,中国、印度经济的持续稳定发展,对工程塑料的需求越来

越强劲,世界著名聚碳酸酯生产商纷纷来亚洲投资建厂,据不完全统计.1997~2004年建设或拟建的聚碳酸酯装置70%在亚洲。我国原有10余家聚碳酸酯生产企业,目前能维持生产仅有3家,分别为常州合成化工总厂3000吨/年(光气法)、上海中联化工厂1200吨/年(酯交换法)、重庆长风化工厂1000吨/年(酯交换法),总产能约5000吨/年,年产量不足千吨。与国外公司相比,不仅规模极小,而且技术落后,远远不能满足国内需求。但是,我国将很快形成投资热潮。目前在华投资聚碳酸酯的国际跨国公司,主要有德国拜耳、日本帝人。拜耳公司在上海漕泾化工区18亿美元的第一期投资中,包括20万吨/年聚碳酸酯及配套的20万吨/年双酚A项目,将于2005年建成。日本帝人公司发言人宣布其制造和销售树脂的子公司帝人化成将从2005年4月开始在浙江省生产聚碳酸酯树脂,投资5亿美元,2007年形成年产10万吨聚碳酸酯的生产规模。从国内方面看,中国蓝星计划2004年在南通或兰州建10万吨/年聚碳酸酯装置,中国精细化工(常州)开发园区将建设5000吨/年特种聚碳酸酯。 二、市场需求1995年以前聚碳酸酯在国内主要用于制备纺织业用沙管,占总消耗量的50%左右。1995年以后逐渐转向电子/电气、光盘、建筑、汽车工业等领域,需求量急剧增加。1995年我国聚碳酸酯的消费量为4.2万吨,到2002年猛涨至34.3万吨,年均增长率高达35%左右,远远高于国民经济的平均增长速度和其它通用工程塑料的增长速度。由于国内产量极小,我国使用的聚碳酸酯主要从国外进口。2000、2001和2002年我国PC净进口量分别为23.5万吨、

塑胶原料介绍-聚碳酸酯PC

聚碳酸脂(PC - Polycarbonate) 聚碳酸酯(简称PC) 中文名称:聚碳酸酯(又作:聚碳酸脂) 英文名称:Polycarbonate 聚碳酸酯颗粒 比重:1.18-1.20克/立方厘米 成型收缩率:0.5-0.8% 成型温度:230-320℃ 干燥条件:110-120℃ 8小时 结构:-[-O-(C6H4)-C(CH3)2-(C6H4)-O-CO-]n- 聚碳酸酯结构图 缩写:PC 是分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用。目前仅有芳香族聚碳酸酯获的了工业化生产。由于聚碳酸酯结构上的特殊性,现已成为五大工程塑料中增长速度最快的通用工程塑料。 聚碳酸酯也叫聚碳酸脂(Polycarbonate)常用缩写PC 是一种韧的热塑性树脂,通常是由双酚A和光气生产的,现在也开发了不使用光气的生产方法,并已在20世纪60年代初实现工业化,90年代末实现大规模工业化生产。现在产量仅次于聚酰胺的第二大工程塑料。其名称来源于其内部的CO3基团。 2011年3月双酚A在食用瓶中已被欧美国家禁用,2.5m宽聚碳酸酯(PC)板已由无锡正成企业安装成功!大大改善了采光和版面效果 化学名:2,2'-双(4-羟基苯基)丙烷聚碳酸酯

CAS编号:25037-45-0 化学性质 聚碳酸酯耐弱酸,耐弱碱,耐中性油。 聚碳酸酯不耐紫外光,不耐强碱。 PC是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可两者皆有。双酚A型PC是最重要的工业产品。 PC是几乎无色的玻璃态的无定形聚合物,有很好的光学性。PC高分子量树脂有很高的韧性,悬臂梁缺口冲击强度为600~900J/m,未填充牌号的热变形温度大约为130°C ,玻璃纤维增强后可使这个数值增加10°C 。PC的弯曲模量可达2400MPa以上,树脂可加工制成大的刚性制品。低于100°C 时,在负载下的蠕变率很低。PC有较好的耐水解性,但不能用于重复经受高压蒸汽的制品。 PC主要性能缺陷是耐水解稳定性不够高,对缺口敏感,耐有机化学品性,耐刮痕性较差,长期暴露于紫外线中会发黄。和其他树脂一样,PC容易受某些有机溶剂的浸浊。 物理性质 密度:1.20-1.22 g/cm^3 线膨胀率:3.8×10 cm/cm°C 热变形温度:135°C 低温-45度聚碳酸酯无色透明,耐热,抗冲击,阻燃BI级,在普通使用温度内都有良好的机械性能。同性能接近聚甲基丙烯酸甲酯相比,聚碳酸酯的耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有UL94 V-0级阻燃性能。但是聚甲基丙烯酸甲酯相对聚碳酸酯价格较低,并可通过本体聚合的方法生产大型的器件。随着聚碳酸酯生产规模的日益扩大,聚碳酸酯同聚甲基丙烯酸甲酯之间的价格差异在日益缩小。 不耐强酸,不耐强碱,改性可以耐酸耐碱

相关文档
最新文档