马怀新自主研发超临界MW循环流化床锅炉有关情况介绍

马怀新自主研发超临界MW循环流化床锅炉有关情况介绍
马怀新自主研发超临界MW循环流化床锅炉有关情况介绍

关于自主研发超临界600MW循环流化床锅炉有关情况介绍国家发展和改革委员会自主研发超临界600MWCFB锅炉

专家组组长马怀新

2009年1月7日(一)关于专家组情况

按照原国家计委计基础[1999]27号文《关于四川白马30万千瓦循环流化床示范工程项目建议书》的批复”在引进国外技术并完成30万千瓦循环流化床锅炉国产化的同时,自主开发更大容量等级的循环流化床锅炉”精神,为了调动和组织全国循环流化床研发力量联合攻关,2006年10月经国家发改委能源局领导同意,成立了在国家发改委能源局直接领导下的自主研发600MW 超临界循环流化床锅炉专家组。专家组由中国机械联合会,清华大学,西安交通大学,中国科学院,中国国际咨询工程公司,中国电力顾问集团公司,中国华电集团公司,国家电网新源公司白马30万千瓦循环流化床示范电站有限责任公司,西安热工研究院,四川电力试验研究院,上海、东方、哈尔滨三大锅炉制造厂等单位共二十一名在循环流化床研究领域有深厚理论功底和丰富实践经验的专家组成。专家组由我担任专家组组长,中国机械联合会设备制造中心张科主任和清华大学岳光溪教授担任副组长。根据国家发改办能源[2008]1776号《国家发展改革委办公厅关于同意四川白马60万千瓦循环流化床机组示范工程开展前期工作的函》之精神,能源局提议专家组增加了中国环境科学院、

清华大学、重庆大学、国家电网公司和国网能源开发公司等单位专家,调整后的专家组正式专家共25位,并增补国网能源开发公司徐钦田副总经理为专家组副组长。[2008]1776号文中正式明确由国家发改委60万千瓦循环流化床机组示范工程建设领导小组组建自主研发60万千瓦循环流化床锅炉专家组,负责技术方案和重大课题论证、评审及相关工作。

(二)专家组成立后的主要工作:

在国家发改委能源局直接领导下专家组成立以来做了以下主要工作:

1、2006年9月在成都召开了有三大锅炉制造厂等12个单位参加的600MW超临界循环流化床方案准备会议,发改委能源局领导听取汇报后同意600MW循环流化床锅炉为超临界参数比选方案。

2、2006年10月在北京召开会议正式成立了“国家发展和改革委员会自主研发600MW超临界循环流化床锅炉专家组”,并通过了专家组“工作规则”、“工作计划”和“600MW超临界循环流化床锅炉研发重点”,并正式向三大锅炉厂布置了于2006年12月向专家组提供评审的600MW超临界循环流化床锅炉初步设计方案任务。

3、2007年1月7日至11日,在北京召开了专家组第二次全体会议,集中了五天时间对东方、哈尔滨、上海三大锅炉制造厂提交的初步设计方案进行了认真评审。专家组在评审基础上完

成了近二十万字的《自主研发600MW超临界循环流化床锅炉初步设计方案评审报告》,并于2007年1月20日正式上报能源局。

4、为了降低600MW超临界循环流化床研发风险,从2007年3月至8月历时半年遍及全国12个省市由我带领部分专家组成员对已投运的300MW循环流化床锅炉存在的主要问题,主要配套辅机包括引送风机、一、二次风机、高压流化风机;碎煤机及分筛、输送设备;碎石机及分筛、输送设备;电除尘器及除灰设备;冷渣器及输渣设备等22家设备制造厂进行了调研,并提交了《自主研发600MW超临界循环流化床锅炉配套辅机专题调研报告》。本月13-14日前往广州梅县宝丽华新能源有限责任公司对已完成168小时试运的东锅厂自主开发的我国第一台单炉膛、双烟道、汽冷旋风分离器、无外置床300MW循环流化床锅炉进行了考察。

5、2007年9月在北京召开了第三次全体专家组会议。会上调研组向全体专家介绍了我国已投运的引进阿尔斯通技术制造的300MW循环流化床锅炉运行情况;重点介绍了可能为600MW超临界循环流化床锅炉提供辅机产品的制造厂现状及存在问题、调研组建议其研发重点及方向;检查了各制造厂元月专家组对初步设计方案评审中提出的研发改进意见执行情况;听取了西安交通大学关于600MW超临界循环流化床锅炉水动力试验情况。

6、6月27日专家组在白马现场向国家发改委能源局副局长赵小平汇报了专家组工作情况。

7、根据国家发改委[2008]1776号文关于“本工程要在总结30万千瓦循环流化床机组示范工程建设经验的基础上”和赵小平局长在白马现场讲话精神,在2008年7月11日分析总结预备会基础上,经过专家组充分准备情况下,于2008年8月20日至21日在成都召开了全体专家和特邀专家参加的《四川白马300MWCFB示范电站技术、经济、环保指标分析讨论会》,专家们从实践和理论上对白马300MWCFB锅炉测试的以下主要技术经济指标进行了分析:

(1)锅炉效率为什么先进(达到93.29%)?飞灰含碳量(3.65%,最低1.6%)底灰含碳量(2.3%,最低1.86%)为什么低?它们对应的供电标煤耗为什么又显得高(333.09g/kwh)?

(2)钙硫摩尔比(Ca/S)为什么低(1.69),而脱硫效率仍达94%以上?

(3)为什么白马公司四电场电除尘器除尘效率高达99.96%,粉尘排放浓度达到14~36mg/Nm3?

(4)影响厂用电较高的主要因素是什么?

此次分析会为超临界600MW锅炉设计提供了宝贵的借鉴。

8、2008年10月10日,专家组在成都再次对东方公司在专家组原审查基础上修改的初步设计方案和提交的十个专题进行了预审查。

9、10月25日至27日在北京对东方公司修改、细化的600MWCFB锅炉初步设计方案召开了除25位专家组专家外并特邀

16位专家参加的终审会。专家组于10月29日报出《终审报告》并获得国家能源局批准,同意以此次审查方案开展详细设计。

此后,还对西南设计院、东方锅炉公司设计中遇到的需专家组研究解决的问题召开了配套辅机选型、锅炉效率计算的专题讨论会。目前东方锅炉公司已经开展详设,确保建设进度。(三)研发主要内容及重点

一、锅炉本体关键技术

1、燃烧系统特性及设计

(1)炉膛热负荷的变化规律及其二维分布、计算方法;

(2)锅炉热循环主回路的布置(锅炉炉膛、分离器、回料阀及外置换热器)及炉膛尺寸和计算方法;

(3)CFB条件下再热器、过热器在对流烟道和外置换热床受热的热偏差计算;

(4)二次风穿透及燃烧室宽度设计研究;

(5)外置床提高吸热份额及其床内受热面布置研究;

(6)煤、石灰石粒径选择。

2、水动力特性及设计

(1)垂直管圈水动力特性试验、水循环计算和水冷壁壁温计算及程序开发;

(2)锅炉启动过程研究和启动系统设计;

(3)垂直管圈水冷壁在CFB燃烧室条件下的动态特性研究。

3、锅炉变工况计算平台及动态分析

二、关键部件制造技术及工艺

1、炉膛密相区和烟道受热面防磨设计的研究;

2、锅炉关键部件(布风板、分离器、外置床)型式及制造工艺。

三、锅炉动态特性计算模型研究和仿真机研制

四、锅炉辅机选型及系统设计

1、配套辅机选型、研制(如一、二次风机、流化风机、冷渣器、破碎机等)

2、锅炉岛系统设计研究,特别是改善给煤仓防堵研究

五、节能、减排研究

在保证运行稳定、可靠技术研发基础上还要着力研究节能与减排措施。

1、节能方面:

(1)提高锅炉效率。

(2)降低发电煤耗,重点研究降低机械不完全燃烧损失和飞灰、底灰含碳量措施。

(3)降低厂用电率。

(4)提高石灰石活性,减少石灰石用量。

2、环保减排方面:

(1)降低钙硫比,抑NO x生成。

(2)提高脱硫率,降低SO2、NO x、CO2排放浓度。

(3)提高除尘效率,降低粉尘排放浓度。

(4)降低噪声。

(四)自主研发基本原则和保障措施

一、研发原则:

自主研发、建设超临界60万千瓦CFB示范电站工作遵循“统一组织、依托项目、合作攻关、成果共享”的原则。尽可能利用国际循环流化床技术资源,在保证我自主研发知识产权大前提下,开展有效的国际合作。

二、保障措施:

1、组织保障

为保障研发工作有序成功实施,研发工作由国家发展和改革委员会和国家能源局60万千瓦循环流化床机组示范工程建设领导小组直接领导。其主要职责:负责自主研发超临界60万千瓦CFB锅炉的重大决策,协调指导设备研发和示范工程建设的重大事项,国家能源局负责日常工作。

2、技术保障

成立由国家发展和改革委员会和国家能源局60万千瓦循环流化床机组示范工程建设领导小组直接领导的《自主研发超临界60万千瓦CFB锅炉专家组》。其主要职责:贯彻国家发改委和能源局决定,组织评审研发重大课题, 及时向国家能源局提交评审报告,提出需决定的问题及相关工作建议。

3、工程保障

由国家能源局确定依托项目,根据研发进度按基本建设程序及时开展前期工作和开工建设并确保2010年建成投产。

4、政策保障

(1)资金支持

超临界60万千瓦CFB锅炉设计研发费用拟由研发单位、项目单位共同承担。为体现国家对自主创新、技术进步的支持,国家将对研发费用、建设资金给予支持。

(2)政策支持

由于超临界60万千瓦CFB锅炉属自主创新项目,为鼓励自主创新,国家可在执行电价、按机组可用率进行调度及税收激励(如研发期间税前抵扣、进口关税和增值税减免、机组投产后税收减免等)等方面给予一定优惠政策。

5、设备保障

由于目前超临界60万千瓦CFB锅炉世界上无制造、运行业绩,为保证研发、建设工作的顺利开展,考虑地域优势和东方锅炉公司在白马30万千瓦循环流化床机组示范工程上积累的经验,国家发改委和国家能源局确定首台超临界60万千瓦CFB锅炉主要由东方锅炉公司承担,哈尔滨和上海锅炉厂参与,设计成果由三家锅炉公司共享。

循环流化床锅炉的技术特点

编号:SM-ZD-33151 循环流化床锅炉的技术特 点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

循环流化床锅炉的技术特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。这就为新加入燃料的预热、着火创造了十分有利的条件。而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。 2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧

过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在800-1000oC之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。而这一区间正是脱硫反应效率最高的温度区间。因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。

哈锅循环流化床锅炉技术情况介绍

哈锅循环流化床锅炉技术情况介绍 哈锅的循环流化床锅炉技术主要源于与国外公司的技术合作,技术引进以及国内科研院所的合作。结合国内的市场情况以及用户的特殊要求,哈锅将合作、引进的技术进行有机的结合,并进行多方面的优化设计,推出具有哈锅特色、符合中国国情的循环流化床锅炉技术,为哈锅打开并占领国内循环流化床锅炉市场创造了技术上的优势。多年来,哈锅在原有的基础上,总结多台投运锅炉的运行经验,不断改革创新,推出新技术新产品,大大丰富了自己的设计思路和设计方案,从而满足了不同用户的各种要求。到目前为止,哈锅设计的燃料包括烟煤,贫煤、褐煤,无烟煤,煤矸石,煤泥以及煤+气混烧等,涉及燃料覆盖面很广;采用的回料阀包括单路回料阀和双路回料阀;采用的风帽包括大直径的钟罩式风帽和猪尾巴管式风帽;使用的冷渣器包括风水联合冷渣器、滚筒冷渣器和螺旋冷渣器;采用的点火启动方式包括床上点火、床下点火以及床上+床下联合点火启动;给煤方式包括前墙给煤、后墙给煤和前墙+后墙联合给煤。 下面详细介绍一下哈锅循环硫化床锅炉技术改进情况: 1、分离器 哈锅利用引进技术对分离器设计进行了优化,以提高分离器的分离效率,这些优化措施主要有: a、分离器入口烟道向下倾斜,使进入分离器的烟气带有向下倾角,给烟气中的固体颗粒一个向下的动能,有助于气固分离。 b、偏置分离器中心筒,即可减轻中心筒的磨损,又可改善中心筒周围的流场提高分离效率。 c、独有的导涡器(中心筒)设计,有效控制上升气流的流速,减少漩涡气流对颗粒的裹带,提高分离效率。 d、分离器入口烟道设置成加速段,提高分离器的入口烟速,有利于气固分离。 经过优化后分离器分离效率可达到99.5%以上,切割粒径d50=10-30um、d99=70-80um。高效分离器是降低飞灰可燃物的有效措施,同时也是实现高循环倍率的重要保证。

(整理)600MW超超临界机组资料

600MW超超临界汽轮机介绍第一部分 两缸两排汽 600MW超超临界汽轮机介绍 0 前言 近几年来我国电力事业飞速发展,大容量机组的装机数量逐年上升,同时随着国家对环保事业的日益重视及电厂高效率的要求,机组的初参数已从亚临界向超临界甚至超超临界快速发展。根据我国电力市场的发展趋势,25MPa/600℃/600℃两缸两排汽 600MW 超超临界汽轮发电机组将依据其环保、高效、布局紧凑及利于维护等特点占据相当一部分市场份额,下面对哈汽、三菱公司联合制造生产的25MPa/600℃/600℃两缸两排汽600MW超超临界汽轮机做一个详细的介绍。 1 概述 哈汽、三菱公司联合制造生产的600MW超超临界汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压汽轮机采用一个48英寸末级叶片的双分流低压缸,这种设计降低了汽轮机总长度,紧缩电厂布局。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。 机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大地降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后进入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。 进入喷嘴室的蒸汽流过冲动式调节级,然后流过反动式高压压力级,做功后通过外缸下半的排汽口进入再热器。 再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

循环流化床锅炉部分部件原理

基本原理篇 第一章循环流化床锅炉的基本原理 第一节流态化过程循环流化床锅炉燃烧是一个特殊的气固两相流动体系中发生的物理化学过程,是一种新型燃用固体燃料的的锅炉。粒子团不断聚集、沉降、吹散、上升又在聚集物理衍变过程,是循环床中气体与固体粒子间发生剧烈的热量与质量交换,形成炉内的循环;同时气流对固体颗粒有很大的夹带作用,使大量未燃尽的燃料颗粒随烟气一起离开炉膛,被烟气带出的大部分物料颗粒经过旋风分离器的分离又从新回到炉膛,来保持炉内床料不变的连续工作状态,这就是炉外的物料循环系统,也是循环流化床锅炉所特有的物料循环—循环从此而来。 咱们看一下这幅燃烧、循环分离图

1. 流态化:当气体以一定的速度流过固体颗粒层时,只要气体对固体颗粒产生作用力与固体颗粒所受的外力(主要是固体的重力)相平衡时,颗粒便具有了类似流体的性质,这种状态成为流态化, 简称流化。固体颗粒从固体床、起始流态化、鼓泡流态化、‘柱塞’流态化、湍流流态化、气力输送状态的六种流化状态。 2. 临界流化速度:颗粒床层从静止状态转变为流态化时的最低速度, 称为临界流化速度。此时所需的风量称为临界流化速度。 3. 流化床表现在流体方面的特性。 流化床看上去非常象沸腾的液体, 在许多方面表

现出类似液体的特性, 主要表现在以下几个方面: 1) 床内颗粒混合良好。因此,当加热床层时, 整个床层的温度基本均匀。 2) 床内颗粒可以象流体一样从容器侧面的孔喷出, 并能像液体一样从一个容器流向另一个容器。 3) 高于床层表观密度的颗粒会下沉, 小于床层表观密度的颗粒会浮在床面上。 4) 当床体倾斜时, 床层的上表面保持水平。 第二节循环流化床的基本原理 1. 循环流化床的特点: 1) 不再有鼓泡床那样清晰的界面,固体颗粒充面整个上升段空间。 2) 有强烈的热量、质量、和动量的传递过程。 3) 床层压降随流化速度和颗粒质量流量变化。 4) 低温的动力控制燃烧,也就是我们所说的床温在850-950℃之间范围,因为这个范围对灰的不会软化、碱金属不会升华受热面会减轻结渣和空气中不能生成大量的NOx。 5) 通过上升段内的存料量,固体物料在床内的停留时间可在几分钟至数小时范围内调节。 2.循环流化床锅炉的传热 1)颗粒与气流之间,以对流换热为主;

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

循环流化床锅炉的优缺点

是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这是循环流化床锅炉的重要优点。循环流化床 锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、 炉渣、树皮、垃圾等。他的这一优点,对充分利用劣质燃料具

有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4. 燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高是循 环流化床锅炉的另一主要优点。其截面热负荷约为 3.5~ 4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉 需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5.负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量和物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循

循环流化床锅炉详细资料

循环流化床锅炉机组控制Automation Control in CFBB Unit 徐昌荣张小辉 2000.5 北京和利时系统工程股份有限公司Beijing HollySys Co., Ltd

第一章循环流化床锅炉 一、前言 目前工业世界正在面临三个严重问题:能源(En e rg y)、环境(E nv i ro nm en t)、经济(E c on om y),即三“E”问题。流态化燃烧技术正是解决三“E”问题的有力工具。现在世界各国已认识到采用循环流化床锅炉能经济地解决能源和环境保护问题。因此各工业发达国家对循环流化床(C F B)锅炉技术的开发、研制都给予很大的重视。世界各国对环境保护的要求日趋严格,由于煤粉炉对所用燃料品质要求高(发热量和挥发分必须大于一定值,否则难以燃烧)且脱硫装置的投资和运行、费用昂贵(如尾部烟气脱硫装置的投资要占发电机组总投资的15~20%),传统煤粉燃烧锅炉受到严重挑战。应运而生的循环流化床锅炉具有两段低温燃烧、强化传热、燃料适应广以及负荷调节范围大能减少NOx(N O、N O2的总称)生成量和加入石灰石脱硫的优点,更适应目前的环保要求。 现在世界已有50多家公司提供循环流化床锅炉产品,对锅炉设计,各个公司和制造厂对循环流化床锅炉制造技术已提供大量的数据资料,而对循环流化床锅炉控制系统设计与运行方面的资料确很少。至今,国内一些循环流化床锅炉机组由于控制系统设计的缺陷和运行人员对循环流化床锅炉燃烧过程了解不够而造成一些事故和自动投入率低。另外,还存在因对循环流化床锅炉的控制不够熟悉,而造成启动延迟、水冷壁爆管等问题。实际上还有许多是由于确乏对运行人员的培训造成的。 循环流化床锅炉是在沸腾炉基础上发展起来的,它完全是一种‘反应器’,其性能与常规煤粉炉不同,其原因之一是它的燃烧室内的床料具有相当大的惰性和蓄热能力,如果采用常规煤粉炉运行经验的控制手段来控制、监视循环流化床锅炉,那就势必

循环流化床锅炉的优缺点

就是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论与概念可以用于循环流化床锅炉。但就是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床与快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床与快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这就是循环流化床锅炉的重要优点。循环流化 床锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、炉渣、树皮、垃圾等。她的这一优点,对充分利用劣质燃

料具有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因就是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤就是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床就是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4、燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高就是 循环流化床锅炉的另一主要优点。其截面热负荷约为3、5~4、5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5、负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量与物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循环

超超临界机组介绍

超超临界锅炉介绍 国家政策情况 节能调度 一、基本原则和适用范围 (一)节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。 (二)基本原则。以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 (三)适用范围。节能发电调度适用于所有并网运行的发电机组,上网电价暂按国家现行管理办法执行。对符合国家有关规定的外商直接投资企业的发电机组,可继续执行现有购电合同,合同期满后,执行本办法。 二、机组发电序位表的编制 (四)机组发电排序的序位表(以下简称排序表)是节能发电调度的主要依据。各省(区、市)的排序表由省级人民政府责成其发展改革委(经贸委)组织编制,并根据机组投产和实际运行情况及时调整。排序表的编制应公开、公平、公正,并对电力企业和社会公开,对存在重大分歧的可进行听证。 (五)各类发电机组按以下顺序确定序位: 1.无调节能力的风能、太阳能、海洋能、水能等可再生能源发电机组; 2.有调节能力的水能、生物质能、地热能等可再生能源发电机组和满足环保要求的垃圾发电机组; 3.核能发电机组; 4.按“以热定电”方式运行的燃煤热电联产机组,余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组; 5.天然气、煤气化发电机组; 6.其他燃煤发电机组,包括未带热负荷的热电联产机组; 7.燃油发电机组。 (六)同类型火力发电机组按照能耗水平由低到高排序,节能优先;能耗水平相同时,按照污染物排放水平由低到高排序。机组运行能耗水平近期暂依照设备制造厂商提供

循环流化床锅炉的技术特点(通用版)

循环流化床锅炉的技术特点 (通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0564

循环流化床锅炉的技术特点(通用版) 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。这就为新加入燃料的预热、着火创造了十分有利的条件。而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。 2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热

效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在 800-1000oC之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。而这一区间正是脱硫反应效率最高的温度区间。因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。 4、锅炉负荷适应性好 循环流化床锅炉中床料绝大部分是高温循环灰,这就为新加入燃料的迅速着火和燃烧提供了稳定的热源。因而循环流化床锅炉的

600MW超临界机组给水控制的分析

一、超临界机组给水系统的控制特性 汽包炉通过改变燃料量、减温水量和给水流量控制蒸汽压力(简称汽压)、蒸汽温度(简称汽温)和汽包水位,汽压、汽温、给水流量控制相对独立。而直流炉作为一个多输入、多输出的被控对象,其主要输出量为汽温、汽压和蒸汽流量(负荷),其主要的输入量是给水量、燃烧率和汽机调门开度,由于是强制循环且受热区段之间无固定界限,一种输入量扰动将对各输出量产生作用,如单独改变给水量或燃料量,不仅影响主汽压与蒸汽流量,过热器出口汽温也会产生显著的变化,所以比值控制(如给水量/蒸汽量、燃料量/给水量及喷水量/给水量等)和变定值、变参数调节是直流锅炉的控制特点。 实践证明要保证直流锅炉汽温的调节性能,维持特定的煤水比来控制汽水行程中某一点焓(分离器入口焓)达到规定要求,是一个切实有效的调温手段。当给水量或燃料量扰动时,汽水行程中各点工质焓值的动态特性相似;在锅炉的煤水比保持不变时(工况稳定),汽水行程中某点工质的焓值保持不变,所以采用微过热蒸汽焓替代该点温度作为煤水比校正是可行的,其优点在于: 1) 分离器入口焓(中间点焓)值对煤水比失配的反应快,系统校正迅速; 2) 焓值代表了过热蒸汽的作功能力,随工况改变焓给定值不但有利于负荷控制,而且也能实现过热汽温(粗)调正。 3) 焓值物理概念明确,它不仅受温度变化影响,还受压力变化影响,在低负荷压力升高时(分离器入口温度有可能进入饱和区),焓值的明显变化有助于判断,进而能及时采取相应措施。 因此,静态和动态煤水比值及随负荷变化的焓值校正是超临界直流锅炉给水系统的主要控制特征。 二、超临界机组给水系统工艺介绍 某电厂2×600MW超超临界燃煤锅炉(HG-1792/26.15-YM1),由哈尔滨锅炉厂引进三菱技术制造,其形式为超超临界、П型布置、单炉膛、墙式切园燃烧方式,炉膛采用内螺纹管垂直上升膜式水冷壁、带再循环泵的启动系统、一次中间再热。锅炉采用平衡通风、半露天布置、固态排渣、全钢构架、全悬吊结构,燃用烟煤。主要参数见表一:

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

循环流化床锅炉给煤机介绍

循环流化床给煤机介绍 1、产品概述 目前世界上,专业研制开发循环流化床给煤、给料设备的制造商仍然是美国STOCK设备公司,我国最早的流化床电厂:宁波中华纸业自备电厂,镇海炼化自备电厂均采用美国STOCK给煤机。即便现在,在流化床锅炉给煤设备基本国产化的情况下,国内首台300MW 循环流化床电厂-四川白马电厂的给煤机仍然采用美国STOCK给煤机。 循环流化床电厂在我国发展的历史并不是很长,九十年代初在我国沿海城市开始建设,我公司是国内首家提供与循环流化床锅炉配套的计量给煤机、计量石灰石给料机和埋刮板给煤机的设备制造厂家。目前,国内最早的CFB用户-杭州热电厂、重庆爱溪电厂给煤机已运行8、9年,情况较好。这些电厂是我公司第一代产品。2001年,芬兰FW公司总包的上海石化自备电厂,2004年我国投建的300MW循环流化床电厂云南小龙潭电厂、内蒙蒙西电厂,这些电厂系统及设备的复杂程度均高于目前国内流化床电厂的给煤形式,给煤机和给料机在国内唯一选中沈阳STOCK公司。 微机控制称重式计量给煤机是燃煤电厂锅炉系统中的关键辅机设备之一,在CFB锅炉系统中称重式计量给煤机的首要功能是将煤连续均匀的送入锅炉中,同时通过微机控制系统,在运行过程中完成

准确称量并显示给煤情况,同时根据锅炉燃烧情况自动调节控制不同煤种给煤量,使供煤量与燃烧空气量配比科学,保证燃烧始终处于最佳状态,即保证实际给煤量与锅炉负荷相匹配,进而保证电厂获得最佳经济效益。 我公司生产的给煤机是集十几年研制,生产给煤机的经验,并融合目前世界上先进美国STOCK公司称重式给煤机和其他类型给煤机的优点研制开发的结构合理,性能先进,运行安全可靠的理想给煤设备。 2、产品组成系统说明 对于CFB锅炉系统,称重式计量给煤机系统主要由:煤仓出口煤闸门,上部落煤管,可调联接节,称重式计量给煤机等部分组成。其中称重式计量给煤机由给煤机本体,微机控制系统、主驱动电机、主驱动减速机、清扫机构驱动电机、清扫机构驱动减速机、称重系统、报警保护系统等主要部分组成。 在CFB锅炉系统中,由于燃料(煤)是由给煤机直接给到锅炉中的,因此给煤机能否连续,可靠的运行是尤为重要的。如果给煤机不能可靠的运行,实现连续给煤不仅加大设备的维护量,更为严重的是影响锅炉的运行,降负荷甚至停炉。

循环流化床热水锅炉工作原理

随着工业技术的不断创新,锅炉行业通过创新的研发,生产出了一种高效、低污染的循环流化床热水锅炉设备,因此,很多用户对其工作原理难免会不太了解,所以,下面就给大家介绍一下该锅炉的工作原理,希望对大家的了解有所帮助。 循环流化床热水锅炉其原理主要是基于循环流态化的原理组织煤的燃烧过程,以携带燃料的大量高温固体颗粒物料的循环燃烧为主要特征。固体颗粒充满整个炉膛,处于悬浮并强烈掺混的燃烧方式。但与常规煤粉炉中发生的单纯悬浮燃烧过程相比,颞粒在循环流化床燃烧室内的浓度远大于煤粉炉,并且存在显著的揪粒成闭和床料的颗粒间混,颗粒与气体间的相对速度大,这一点显然与基于气力输送方式的煤粉悬浮燃烧过程完全不同。 预热后的一次风(流化风)经风室由炉膛底部穿过布风板送入,使炉膛内的物料处于快速流化状态,燃料在充满整个炉膛的惰件床料中燃烧。较细小的颗粒被气流夹带飞出炉膛,并由K灰分离装置分离收粜,通过分离器下的回料管与飞

灰回送器(返料器)送W炉膛循坏燃烧;燃料在燃烧系统内完成燃烧和卨温烟气向X质的部分热M 传递过程。烟气和未被分离器捕集的细颗粒排入拥环流化床锅炉炉内燃烧与烟风系统尾部烟逬,继续受热曲进行对流换热,最后排出锅炉。 在这种燃烧方式下,燃烧室密相区的湿度水T受到燃煤过稈中的高温结液、低温结焦和最佳脱硫温度的限制,一般维持在850℃左右,这一温度范围也恰与垃圾脱硫温度吻合。由于循环流化床锅炉较煤粉炉炉膛的温度水平低的特点,带来低污染物排放和避免燃煤过程中结渣等问题的优越性。 以上就是循环流化床热水锅炉有关工作原理的介绍,如有不清楚的可咨询中鼎锅炉股份有限公司,该公司不仅拥有A级锅炉制造许可证和I、II类压力容器设计制造许可证、一级锅炉安装许可证,且设备质优价廉,性价比高,因此,现深受客户的好评。

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

关于超超临界1000MW机组参数选型的报告(锅炉)

关于沙洲二期超超临界机组参数选型的报告 一、百万超超临界机组材料选型范围 1、锅炉方面 目前百万超超临界机组锅炉受热面管材选型主要考虑奥氏体钢TP347HFG、Super304、HR3C、NF709,材料方面国内外均没有新的突破。 表1-1奥氏体钢Super304、HR3C主要规格及使用条件 *数据来源于北京科技大学《新型奥氏体耐热钢HR3C的研究进展》2010.10 再热器出口管道目前百万超超临界机组全部采用P92,P92的温度使用上限为650℃。 2、汽机方面 汽轮机叶片、转子、汽缸、阀体选用材料为铁素体9-12%Cr耐热钢,目前主要形成两个等级,600℃/625℃。 上表数据来源:上海发电设备成套设计研究院《超超临界机组材料》 我公司二期工程主机参数选型目前涉及到两大方案,即600℃/600℃型和600℃/620℃型。 1)600℃的9-10%Cr耐热钢汽轮机至今已运行10年以上,无论含W或不含W都能在600℃下安全运行,属于有成熟运行业绩产品。 2)625℃的9%Cr钢已完成用于产品前的全部试验,试验数据表明“625℃的超超临界参数”汽轮机已不存在材料技术问题。但目前此参数机组国内仅有产

品订单但无投运业绩(安徽田集660MW机组)。国外德国达特尔恩有产品业绩,无投运业绩。仅日本有投运业绩,时间不长。 二、再热器出口603℃提升到623℃技术 1、技术上的实现手段主要是增加低温再热器和高温再热器的受热面面积 2、材料使用情况:从选材上可以看出,为了确保再热蒸汽温度提高至623℃后锅炉再热器的安全性,将高温再热器的出口散管由T92材料提升至SA-213 S 304H,高温段的材料仍然采用Super304、HR3C。 三、选用623℃参数后,管壁温度的运行情况分析: 1、根据AMSE的标准一般炉内管壁温度取蒸汽温度+(25 ~ 39)℃,国内计算取50℃,选用623℃参数后,高温再热器出口段平均壁温在(648 ~ 662)℃,HR3C的允许管壁温度672℃,上限壁温还有10℃的安全余量,但是由于并列管排的热偏差的存在,炉内可能有局部管壁超过672℃。 热偏差一般塔式炉比Π型炉小,热偏差系数选取1.2左右。 2、再热器汽温选用623℃,根据运行控制(-10 ~ +5)℃,炉侧再热器汽温最高628℃连续运行,考虑并列管偏差的存在,局部联箱、出口管道的温度640℃,据P92的允许管壁温度650℃,有10℃的余量。如果选用623℃炉型,考虑选用P122管道,因为600℃以上9%Cr钢的蒸汽氧化性能略显不足。 3、主汽压力的选取,一般百万超超临界机组压力等级从27.0 MPa~29.27 MPa不等,现建议主汽压力选取锅炉侧压力为29.27 MPa,相应汽机侧为28.0MPa。因为从安全、经济角度考虑,主汽压力每提高 1.0 MPa,机组热效率上升0.18%~0.29%。 不建议继续提高主汽压力的原因: a)目前主蒸汽集箱及出口管道采用的材质是P92,属于9%C钢,允许的承压为30MPa。29.27 MPa的参数选型能够充分将材料的性能发挥至极限,如果继续提高压力等级,管道的壁厚增加量过多,投资费用大幅增加,且联箱、管道管壁过厚,温差应力大,容易导致材料过早失效。 b)压力的提高不仅关系到材料强度及结构设计,而且由于汽轮机排汽湿度的原因,压力提高到某一等级后,必须采用更高的再热温度或二次再循环,目前技术上还没有成熟。

国内外循环流化床锅炉发展概况

国内外循环流化床锅炉发展概况 循环流化床锅炉是在常规流化床锅炉的基础上加上飞灰循环燃烧而发展起来的。因此要了解什么是循环流化床锅炉必须先了解什么是流化床锅炉,从固体粒子流态化过程来看,从固定床(煤粒在炉蓖上静止不动,即层燃炉)开始,随着风量的增加,即空筒流速(通常叫表观流速或流化速度)的增加→细粒在煤层表面流化,是为细粒流态化→炉蓖上开始产生气包,是称鼓泡流态化(即常规流化床,又名鼓泡流化床或沸腾床,此时的沸腾床有明显的上界面)→湍流流态化(湍流流化床,此时气泡变细狭窄状,波动振幅增大,上界面已不甚清晰)→快速流态化(高速流化床,此时的流化床内已无气泡,也无上界面,颗粒聚合成絮团状粒子束,粒子束不断形成与解体,形成强烈的固体返混,此时煤粒与气流的相对速度达最大,因此大大强化了燃烧与传热)→气力输送(即煤粉燃烧,此时煤粉与气流间的相对速度近于零,即已无相对速度)。 经典的循环流化床锅炉的炉内流态化工况应为高速流化床工况,故严格而言,循环流化床锅炉不仅是在炉膛出口处加一个分离器收集部分飞灰返回炉膛燃烧而已,而是其炉内流态化工况应属于高速流化床工况,但实际存在的循环流化床其下部浓相区为鼓泡流化床或湍流床,上部稀相区为高速流化床。但国内有相当数量的流化床锅炉仅是在鼓泡流化床炉膛出口加一个分离器收集部分飞灰返回炉膛燃烧(即其上部稀相区未达高速流化床工况),现也称为循环床。 循环流化床锅炉的优缺点 优点: ①燃料适应性广——几乎可燃用各种优、劣质燃料。如优、劣质烟煤(包括高硫煤),无烟煤,泥煤,煤泥,矸石,炉渣,油焦,焦炭,生活垃圾,生物质废料等等。 ②燃烧效率高——对无烟煤可达97%,对其他煤可达98~99.5%,可与煤粉燃烧相竞争。 ③环保性能好 a)炉内可直接加石灰石脱硫,成本低,脱硫效率高,当Ca/S比为1.5~2.5时,脱硫效率可达85%~90%,石灰石循环利用,其利用率比常规流化床提高近一倍。 b)分段送风,低温燃烧,NOx排放量低(~120ppm),即为煤粉炉排放量的1/3~1/4。 ④燃烧强度高,床面积小,给煤点少,利于大型化。 ⑤负荷调节范围大(110~25%),调节速度可快,利于调峰。也可压火。 ⑥燃料仅需破碎到10mm以下,无需磨煤制粉系统。 ⑦灰渣可综合利用,减少环境污染。因其低温燃烧,灰渣可保持活性,可制作水泥,提炼稀有金属(硒、锗)等。 缺点: 高循环倍率流化床锅炉的炉膛高大,初投资大;分离循环系统复杂,自身电耗大;循环灰浓度大,受热面磨损大等。 我国在上世纪80年代初开始研究开发循环流化床燃烧技术,与西方国家不同,原我国发展循环流化床锅炉的主要目的是解决劣质煤的应用问题。近年来,我国环保要求日益严格,再加上煤价上涨,煤质变化大,大量中、小型(130t/h以下)层燃炉与煤粉炉要求进行技术改造等原

相关文档
最新文档