微波技术与天线

微波技术与天线
微波技术与天线

微波技术与天线

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

课程名称:微波技术与天线课程代码:02367(理论)

第一部分课程性质与目标

一、课程性质与特点

《微波技术与天线》是电子与信息工程专业、通信技术专业的一门专业基础课。该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术。

二、课程目标与基本要求

通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法。并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础。

三、与本专业其他课程的关系

本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论。是无线通信技术的基础课程。

第二部分考核内容与考核目标

第一章场论与静态电磁场

一、学习目地与要求

本章主要研究静态电磁场的基本规律和分析方法。通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的

电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程。

二、考核知识点与考核目标

(一)场论(一般)

识记:矢量运算中的相关规则及矢量恒等式

理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度。

应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律。

(二)静电场(次重点)

识记:电荷与电荷密度、电场强度、均匀介质中的电场

理解:、电场强度的相关计算公式、库仑定律

应用:用静电场的基本方程高斯定律求解静电场、计算点电荷系统和一些连续分布电荷系统的电位

(三)稳恒电流场(一般)

识记:电流密度、欧姆定律、焦耳定律的微分形式

理解:、电荷守恒定律、稳恒电流场的基本方程

(四)恒定磁场(次重点)

识记:磁感应强度、介质的磁化

理解:稳恒磁场的基本方程、矢量磁位、磁介质中的安培定律

应用:运用安培环路定律求解具有一定对称性分布的磁场、利用矢量磁位求解一些简单的磁场分布问题

第二章电磁波原理

一、学习目地与要求

本章主要讨论了时变电磁场的普遍规律、电场和磁场在交替变化的过程中所形成的电磁波的相关特性,并重点讲述了均匀平面电磁波在无界空间的传播特性和在分界面上的反射和透射特性。通过本章的学习,要求学生们必须牢固掌握麦克斯韦方程组的积分形式、微分形式,深刻理解其物理意义;必须正确理解和使用边界条件、深刻理解坡印廷矢量的物理意义并能用其分析计算电磁能量的传输情况;掌握电磁场的波动方程以及理解矢量位和标量位的概念和满足的相应方程;深刻理解和掌握均匀平面电磁波在无界理想介质中的传播特性,理解描述传播特性的参量的物理意义;掌握三种极化方式的产生条件;熟练掌握平面电磁波对理想导体和理想介质垂直入射时的分析方法和过程;理解平面电磁波向理想导体界面的斜入射。

二、考核知识点与考核目标

(一)时变电磁场(重点)

识记:正弦电磁场的复数表示法、坡印廷定理、波动方程、唯一性定理

理解:麦克斯韦方程、时变场的边界条件、坡印廷矢量

应用:从麦氏方程出发,结合边界条件求解相关问题。

(二)平面电磁波(重点)

识记:沿任意方向传播的平面波

理解:理想介质中的均匀平面波、波的极化

应用:计算在自由空间传播的均匀平面波的电场强度或磁场强度;计算描述均匀平面波传播特性的参量(如波矢量、波阻抗等);计算坡印廷矢量

(三)平面电磁波的反射与折射(次重点)

识记:垂直极化波、平行极化波、

理解:垂直极化波入射、平行极化波入射、全透射与全反射

(四)平面电磁波向理想导体界面的斜入射(一般)

识记:垂直极化波斜入射、平行极化波斜入射

第三章导行电磁波

一、学习目地与要求

本章主要讨论电磁波在导波系统中的传输问题。通过本章的学习,要求同学们必须掌握求解波导中场的重要方法—纵向场分析法,该方法中所涉及到的有关物理量,如传播常数、截止波数的物理意义必须深刻理解,计算公式必须牢固掌握;牢固掌握波沿规则波导传输的一般特性;熟知波沿不同形状的波导传输的相关特性,如矩形波导、圆形

TE模;必须了解同轴线中的传输模波导等,重点掌握矩形波导中的主要传输模式—

10

式,并能通过恰当选择尺寸的情况下,保证TEM波的传输;了解波导激励与耦合的方式。

二、考核知识点与考核目标

(一)规则波导的分析方法和一般特性(重点)

识记:波导中的波型—TE ,TM 和TEM 波、波的速度—相速度,群速度、波导波长、波阻抗

理解:不同模式的传输条件、截止现象和截止波长

应用:能用纵向场法求解波导中电磁波的场解、应用相关公式求出波导中描述波传输特性的相关参量。

(二)金属矩形波导的场解(重点)

理解:矩形波导中不同波型的场解、矩形波导中的传输特性、波导的功率容量

应用:计算不同模式的截止波长、能确定波导中能传输或截止的模式、熟悉单模

传输条件、能绘出10TE 模式的场结构,壁电流分布、计算10TE 模式的相关传输参量

(三)圆柱形波导(次重点)

识记:圆波导中不同波型的场解

理解:圆波导中的三个主要波型及其应用

(四)同轴传输线(次重点)

识记:、同轴线中的高模及尺寸选择

理解:同轴线中的TEM 波

(五)波导的激励与耦合(一般)

识记:波导激励的方式及激励装置

第四章微波传输线的基本理论

一、学习目地与要求

本章以双导线为例用路的分析方法主要讨论了微波传输线上的传输特性和电压电流的分布规律,同时推出了一种重要的计算工具—阻抗圆图,并将这一计算工具应用于工程实际中,如阻抗匹配技术。通过本章的学习,要求同学们必须深刻理解微波传输线的分布参数概念,了解传输线方程及其解以及传输线的工作特性参数;必须掌握传输线的三种不同工作状态的条件和特点;必须掌握用阻抗圆图来解决传输线应用中的计算问题;了解不同阻抗匹配器的匹配方法,学会在阻抗匹配时用阻抗圆图来进行计算;了解微波集成电路的主要组成部分—微带线

二、考核知识点与考核目标

(一)微波传输线的分析(次重点)

识记:分布参数概念、传输线方程及其一般解

理解:传输线方程的定解(已知终端电压和电流)、传输线的工作参数,如特性阻抗、反射系数、输入阻抗、传播常数、相速及波长。

应用:应用相关公式计算传输线上的电压和电流、反射系数、输入阻抗

(二)均匀无耗传输线的工作状态(重点)

理解:形成行波状态、驻波状态、行驻波状态的条件和特点

应用:求出不同工作状态下的电压、电流、输入阻抗、驻波比,并能绘制出相关图形。

(三)阻抗圆图(重点)

应用:在传输线问题的相关运算中使用阻抗圆图来进行计算。

(四)传输线的阻抗匹配(重点)

应用:会采用不同的阻抗匹配器进行传输线的阻抗匹配

(五)微带传输线(一般)

识记:对称微带和不对称微带的演变过程及结构、它们中所传输的波型

第五章微波网络与元器件

一、学习目地与要求

本章主要讨论了微波等效电路的方法,这就是将本质上是场的问题转化为电路问题来处理的重要方法,这对处理横截面形状不均匀物体时极为有用,如微波元器件的分析和处理。通过本章的学习,要求同学们必须掌握如何将波导等效为双线传输线、不均匀体等效为网络,必须深刻理解模式电压和模式电流的意义;必须深刻理解网络参量的物理意义,并学会用任意网络参量去描述一个具体的微波电路。对于二端口网络的级联其重点放在A参量,其余参量中的S参量是微波网络所乐于采用的重要参量;微波网络理论的主要应用场合就是对各种微波元器件的分析和处理,对于各种不同的元器件,必须了解其功能及结构,熟知其工作原理及应用场合。

二、考核知识点与考核目标

(一)微波网络的等效(重点)

理解:模式电压和模式电流的概念、模式矢量函数的归一化条件、归一化模式电压和归一化模式电流的概念。

应用:根据相关条件求对应模式的模式电压和模式电流

(二)双端口网络的阻抗矩阵、导纳矩阵及A矩阵(A重点,Z、Y次重点)识记: 阻抗矩阵、导纳矩阵的特点及性质

理解:A参量的特点及性质以及不同电路的A矩阵

应用:用A矩阵解决二端口网络的级联问题

(三)双端口网络的散射矩阵(重点)

理解:散射参量的物理意义、散射参量的性质

应用:求解具体电路的S参量

(四)多端口网络的散射矩阵(一般)

识记:多口网络的特点及性质

(五)微波元件(一般)

识记:各元件的功能及工作原理

第六章天线基本原理

一、学习目地与要求

本章主要讨论了天线产生辐射场的基本原理和各种不同天线的辐射性能。通过本章的学习,要求同学们必须掌握基本振子的辐射性能;必须深刻理解为了增加辐射电阻,提高天线的辐射能力所采用的振子天线的工作原理;必须了解为了获得较强的方向性和其它特性所采用的天线阵列的性能;必须熟知发射天线和接收天线的电参数;简单了解各种线天线和面天线的辐射性能和应用场合。

二、考核知识点与考核目标

(一)基本振子的辐射(重点)

理解:电流的场解、电基本振子场解、电偶极子的近区场、电偶极子的远区场、磁基本振子。

应用:分析和计算天线的辐射场、辐射方向性、半功率宽度、零功率宽度和副瓣电平以及辐射电阻。

(二)振子天线(重点)

理解:对称振子的场解、对称振子的方向性,辐射电阻,输入阻抗、发射天线的参数、天线的极化和天线的频带宽度

应用:对称振子天线的辐射与电长度之间的关系,重点掌握半波振子天线的方向图

(三)天线阵(次重点)

理解: 直线阵列天线的方向图、波瓣宽度、旁瓣电平等的分析与计算

(四)接收天线(一般)

识记:接收天线的电参数

(五)常用线天线(一般)

识记:各种常用线天线的工作原理

(六)面天线(一般)

识记:抛物面天线和双反射面天线的工作原理

说明:该项需编纲教师全面考量该课程内容,并对各章节都给出相应的知识层次(重点、次重点、一般),在知识层次下对各知识点提出相应的能力层次要求(识记、理解、应用)。在分配知识层次和能力层次过程中,应注意以下问题:

1、知识层次包括“重点、次重点、一般”三个层次,此三层次在命题中的固定比重分别为:65% ,25%,10%。要求编纲教师在分配知识层次时,除考虑知识点本身的重要性外,兼顾各层次在命题中的比例要求。避免出现某一层次知识点过少,不能满足命题中比例要求的情况。

2、①能力层次包括“识记、理解、应用”三个层次,此三层次在命题中无固定比重要求,需编纲教师结合本课程的具体考核要求给出比例(在“有关说明与实施要求”中给出比例),并在分配知识点能力层次时结合命题比例,做到大纲与试卷要求统一。

②大纲中知识点的能力层次分配应全面涵盖三个能力层次,尽量不要缺少,但各章节不是必须全有三个层次的知识点,应根据各章实际情况具体安排。

3、大纲中的考核知识点只具体到章,不需要将知识点细化到节。

第三部分有关说明与实施要求

一、考核的能力层次表述

本大纲在考核目标中,按照“识记”、“理解”、“应用”三个能力层次规定其应达到的能力层次要求。各能力层次为递进等级关系,后者必须建立在前者的基础上,其含义是:

识记:能知道有关的名词、概念、知识的含义,并能正确认识和表述,是低层次的要求。

理解:在识记的基础上,能全面把握基本概念、基本原理、基本方法,能掌握有关概念、原理、方法的区别与联系,是较高层次的要求。

应用:在理解的基础上,能运用基本概念、基本原理、基本方法联系学过的多个知识点分析和解决有关的理论问题和实际问题,是最高层次的要求。

说明:省考委统一加以说明,编纲教师不需自行解释。

二、教材

1、指定教材

电磁波工程国防科技大学出版社朱建清(第一版)

2、参考教材

微波技术与天线电子工业出版社殷际杰(第一版)

说明:

1、大纲中的指定教材为省自考委核准的指定教材,此次配合我省自考教材清理工作,部分课程教材已由主考校提出审核意见并要求调整为推荐教材,如编纲教师认为需更换指定教材或推荐教材不合理,需提交由主考校盖章的《教材变更报告》,经批准后,方可更改。

2、所列教材均需写明:书名、出版社、作者、版本,参考教材可以没有。

三、自学方法指导

1、在开始阅读指定教材某一章之前,先翻阅大纲中有关这一章的考核知识点及对知识点的能力层次要求和考核目标,以便在阅读教材时做到心中有数,有的放矢。

2、阅读教材时,要逐段细读,逐句推敲,集中精力,吃透每一个知识点,对基本概念必须深刻理解,对基本理论必须彻底弄清,对基本方法必须牢固掌握。

3、在自学过程中,既要思考问题,也要做好阅读笔记,把教材中的基本概念、原理、方法等加以整理,这可从中加深对问题的认知、理解和记忆,以利于突出重点,并涵盖整个内容,可以不断提高自学能力。

4、完成书后作业和适当的辅导练习是理解、消化和巩固所学知识,培养分析问题、解决问题及提高能力的重要环节,在做练习之前,应认真阅读教材,按考核目标所要求的不同层次,掌握教材内容,在练习过程中对所学知识进行合理的回顾与发挥,注重理论联系实际和具体问题具体分析,解题时应注意培养逻辑性,针对问题围绕相关知识点进行层次(步骤)分明的论述或推导,明确各层次(步骤)间的逻辑关系。

说明:该项省考委统一说明,若编纲教师需做个别说明,该部分也可自行撰写。

四、对社会助学的要求

1、应熟知考试大纲对课程提出的总要求和各章的知识点。

2、应掌握各知识点要求达到的能力层次,并深刻理解对各知识点的考核目标。

3、辅导时,应以考试大纲为依据,指定的教材为基础,不要随意增删内容,以免与大纲脱节。

4、辅导时,应对学习方法进行指导,宜提倡"认真阅读教材,刻苦钻研教材,主动争取帮助,依靠自己学通"的方法。

5、辅导时,要注意突出重点,对考生提出的问题,不要有问即答,要积极启发引

导。

6、注意对应考者能力的培养,特别是自学能力的培养,要引导考生逐步学会独立学习,在自学过程中善于提出问题,分析问题,做出判断,解决问题。

7、要使考生了解试题的难易与能力层次高低两者不完全是一回事,在各个能力层次中会存在着不同难度的试题。

8、助学学时:本课程共4学分,建议课时为72学时,其中助学学时分配如下:

说明:

1、该项1-7省考委统一说明。若编纲教师需做个别说明,该部分也可自行撰写。

2、该项中对助学学时的分配,需由编纲教师完成。高等教育自学考试规定每学分18学时,请教师按此规定分配学时。涉及实践考核的课程,实践与理论课时应分别列出。

五、关于命题考试的若干规定

(包括能力层次比例、难易度比例、内容程度比例、题型、考试方法和考试时间等)

1、本大纲各章所提到的内容和考核目标都是考试内容。试题覆盖到章,适当突出重点。

2、试卷中对不同能力层次的试题比例大致是:"识记"为 20 %、"理解"为 30 %、"应用"为 50%。

3、试题难易程度应合理:易、较易、较难、难比例为2:3:3:2。

4、每份试卷中,各类考核点所占比例约为:重点占65%,次重点占25%,一般占10%。

5、试题类型一般分为:试题类型一般分为:填空题、简答题、证明题、计算题等。

6、考试采用闭卷笔试,考试时间150分钟,采用百分制评分,60分合格。

说明:

1、该部分1、3、4、6项省考委统一规定,编纲教师不用自行填写。

2、其中第2项“不同能力层次的试题比例”需编纲教师结合大纲中各章知识点能力层次分配给定。

3、第5项“试题类型”,也需编纲教师结合命题要求给出。应尽量全面的涵盖该课程考试中可能出现的试题类型,避免出现考试中出现的题型在大纲中没有举出的情况。六、题型示例(样题)

一、填空题:

1、 已知在自由空间中传播的电磁波的电场强度为y e z t E ?)2106cos(7.378ππ+?= v/m ,可见此波的波长为 ,自由空间的波数为 ,它是沿 方向传播的。

2、终端接任意负载L Z 时,距终端为2λ

整数倍的各处,其输入阻抗为 ;距终端为4λ

奇数倍的各处其输入阻抗为 。

二、简答题:

1、空气填充的矩形波导其单模传输条件是什么若兼顾功率容量,该条件有什么变化

3、何谓简并圆波导中有几类简并试举例说明。

三、证明题:

在无耗传输线某选定参考面上测得sc in Z (接短路负载时)、oc

in Z (接开路负载时)、

in Z (接实际负载时),试证明负载阻抗

四、计算题:

1、有一个二端口网络,如下图,图中jx = j2 为归一化电抗,jb = j1为归一化电纳, 试求:

(1)散射参量矩阵[]S 。

(2)插入衰减a L (用分贝表示)及插入相移θ。

4、已知某天线在E 平面上的方向函数为

(1)画出其E 面方向图

(2)计算其半功率波瓣宽度。

最新《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

微波技术与天线考试复习重点(含答案)

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值, 其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为 衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电 流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ= ;4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2π λβ==。

7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。 8. 均匀传输线输入阻抗的特性,与哪些参数有关? 9. 均匀传输线反射系数的特性 10. 简述传输线的行波状态,驻波状态和行驻波状态。 11. 什么是行波状态,行波状态的特点 12. 什么是驻波状态,驻波状态的特性 13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分 布 14. 介绍传输功率、回波损耗、插入损耗 15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?

微波技术与天线傅文斌习题答案第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 () () ?? ?-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为 ?? ?+=+=2221212 2 121111I Z I Z U I Z I Z U ?? ?? ??????-=??????=c d c c bc ad c a Z Z Z Z 1 2221 1211 Z 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 ???? ? ?????=1123 13 231112 131211S S S S S S S S S S 由无耗性,I S S =* T ,即 ?????? ????=????????? ???????????100010001*11*23 *13*23 *11* 12 * 13 * 12* 11 1123 13 2311121312 11 S S S S S S S S S S S S S S S S S S 得

实用文档之微波技术与天线课后题答案

1-1 实用文档之"解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> " 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低 频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线 上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点 绪论 微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。 微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~ 0.1mm 微波的特点(要结合实际应用): 似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析) 第一章均匀传输线理论 均匀无耗传输线的输入阻抗(2个特性) 定义: 传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注: 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性: 无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)

2、λ/4变换性:Zin(z)-Z in(z+λ/4)=Z 02 证明题: (作业题) 均匀无耗传输线的三种传输状态(要会判断)参数 |Γ|ρZ 1行波01 匹配驻波1∞ 短路、开路、纯 电抗行驻波 0<|Γ|<1 1<ρ<∞ 任意负载 能量电磁能量全部 被负载吸收电磁能量在原 地震荡 1.行波状态: 无反射的传输状态 匹配负载:

负载阻抗等于传输线的特性阻抗 沿线电压和电流振幅不变 电压和电流在任意点上同相 2.纯驻波状态: 全反射状态 负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态: 传输线上任意点输入阻抗为复数 传输线的三类匹配状态(知道概念) 负载阻抗匹配: 是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。源阻抗匹配: 电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 共轭阻抗匹配: 对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) 阻抗圆图的应用(*与实验结合)

微波技术与天线复习大纲

微波技术与天线复习大纲 绪论 一、基本概念 1、什么是微波,微波的波段如何划分? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率围从300MHz到30 00GHz,波长从0.1mm到1m。 通常,微波波段分为米波、厘米波毫米和亚毫米波四个波段。 2、微波有何特点及特性? 答:似光性;穿透性;宽频带特性;热效应性;散射性;抗低频干扰性;视距传播性;分布参数的不确定性;电磁兼容和电磁环境污染。 第一章均匀传输线理论 一、基本概念 1、什么是微波传输线(或导波系统)? 答:微波传输线(或导波系统)是用以传输信息和能量的各种形式的传输系统的总称。它的作用是引导电磁波沿一定的方向传输,因此又称为导波系统,它所引导的电磁波称为导行波。 2、什么是均匀传输线,它是如何分类的? 答:截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统成为规则导波系统或均匀传输线。 可大致分为三种类型: (1)双导体传输线(或TEM波传输线);由两根或两根以上的平行导体构成,主要包括平行双线、同轴线、带状线和微带线等。由于其上传输的电磁波是TEM波或准TEM波,所以又称为TEM波传输线。 (2)波导:均匀填充介质的金属波导管,主要包括矩形波导,圆波导、脊形波导和椭圆波导等。 (3)介质传输线:因电磁波沿此类传输线表面传播,故又称为表面波波导,主要包括介质波导,镜像线和单根表面波传输线等。 二、计算题(一般是课后练习题) 1.1 设一特性阻抗为50Ω的均匀传输线终端接负载R1=100Ω,求负载反射系数。在负载0.2,0.25及0.5处的输入阻抗及反射系数分别为多少?

解:, ,, 由于,,故当分别为0.2,0.25及0.5时有: , 将上述所算得的反射系数带入求输入阻抗的公式则有 (化简略) 1.4 有一特性阻抗=50Ω的无耗均匀传输线,导体间的媒质参数= 2.25,=1,终接=1Ω的负载。当=100MHz时,其线长度为。试求: (1)传输线的实际长度。(2)负载终端反射系数。(3)输入端反射系数。(4)输入端阻抗。 解:先求波长,欲求波长应知道波的传播速度(一下简称为波速)。 波速 其中,分别是自由空间中电介质常数和磁导率常数,分别是相对电介质常数和相对磁导率常数,为光速。 ,,于是, (1)传输线的实际长度 (2)负载终端反射系数 (3)输入端反射系数 (4)输入端阻抗 1.11 设特性阻抗为=50Ω的无耗均匀传输线,终端接有负载阻抗Ω为复阻抗时,可以用一下方法实现阻抗变换器匹配:即在终端或在阻抗变换器前并接一段终端短路线,试分别求这两种情况下阻抗变换器的特性阻抗及短路线长度。 解:图(a)中的短路线的输入导纳为,, 由,可得到短路线的长度,此时终端等效为纯电阻,即。因此阻抗变换器的特性阻抗为。

《微波技术与天线》实验指导书

微波技术与天线实验指导书 南京工业大学信息科学与工程学院 通信工程系

目录 实验一微波测量系统的熟悉和调整.................. - 2 -实验二电压驻波比的测量......................... - 9 -实验三微波阻抗的测量与匹配 .................... - 12 -实验四二端口微波网络阻抗参数的测量 ............. - 17 -

实验一 微波测量系统的熟悉和调整 一、实验目的 1. 熟悉波导测量线的使用方法; 2. 掌握校准晶体检波特性的方法; 3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE 10波的电场分量沿轴向方向上的分布。 二、实验原理 1. 传输线的三种状态 对于波导系统,电场基本解为ift rm ift r e E e a b r V E --== ) /ln(0 (1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( 00π π -=- 在x=a/2处 z E e e E E y ift ift y y βsin 2)(00-=+=+- 其模值为:z E E y y βsin 20= 最大值和最小值为: 2min 0max ==r r r E E E (2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( ' 00π π +=- 在x=a/2处 z E e E E e E e E e E e E e E e E E y ift y y fit y fit y fit y ift y fit y fit y y βcos 2)()()('0 ' 0'0 '0'00'00+-=++-=+=----- 由此可见,行驻波由一行波与一驻波合成而得。其模值为:

微波技术与天线复习题

微波技术与天线复习题 一、填空题 1微波与电磁波谱中介于(超短波)与(红外线)之间的波段,它属于无线电波中波长(最短)的波段,其频率范围从(300MHz)至(3000GHz),通常以将微波波段划分为(分米波)、(厘米波)、(毫米波)和(亚毫米波)四个分波段。 2对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 3无耗传输线的状态有(行波状态)、(驻波状态)、(行、驻波状态)。 4在波导中产生各种形式的导行模称为波导的(激励),从波导中提取微波信息称为波导的(耦合),波导的激励与耦合的本质是电磁波的(辐射)和(接收),由于辐射和接收是(互易)的,因此激励与耦合具有相同的(场)结构。 5微波集成电路是(微波技术)、(半导体器件)、(集成电路)的结合。 6光纤损耗有(吸收损耗)、(散射损耗)、(其它损耗),光纤色散主要有(材料色散)、(波导色散)、(模间色散)。 7在微波网络中用(“路”)的分析方法只能得到元件的外部特性,但它可以给出系统的一般(传输特性),如功率传递、阻抗匹配等,而且这些结果可以通过(实际测量)的方法来验证。另外还可以根据

微波元件的工作特性(综合)出要求的微波网络,从而用一定的(微波结构)实现它,这就是微波网络的综合。 8微波非线性元器件能引起(频率)的改变,从而实现(放大)、(调制)、(变频)等功能。 9电波传播的方式有(视路传播)、(天波传播)、(地面波传播)、(不均匀媒质传播)四种方式。 10面天线所载的电流是(沿天线体的金属表面分布),且面天线的口径尺寸远大于(工作波长),面天线常用在(微波波段)。 11对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 12微波具有的主要特点是(似光性)、(穿透性)、(宽频带特性)、(热效应特性)、(散射特性)、(抗低频干扰特性)。 13对传输线等效电路分析方法是从(传输线方程)出发,求满足(边界条件)的电压、电流波动解,得出沿线(等效电压、电流)的表达式,进而分析(传输特性),这种方法实质上在一定条件下是(“化场为路”)的方法。 14传输线的三种匹配状态是(负载阻抗匹配)、(源阻抗匹配)、(共轭阻抗匹配)。 15波导的激励有(电激励)、(磁激励)、(电流激励)三种形式。

微波与天线习题

第一章 均匀传输线理论 1.在一均匀无耗传输线上传输频率为3GHZ 的信号,已知其特性阻抗0Z =100Ω,终端接 l Z =75+j100Ω的负载,试求: ① 传输线上的驻波系数; ② 离终端10㎝处的反射系数; ③ 离终端2.5㎝处的输入阻抗。 2.由若干段均匀无耗传输线组成的电路如图,已知g E =50V ,Z 0=g Z = 1l Z =100Ω,Z 01=150Ω,2l Z =225Ω,求: ① 分析各段的工作状态并求其驻波比; ② 画出ac 段电压、电流振幅分布图并求出极值。 3.一均匀无耗传输线的特性阻抗为500Ω,负载阻抗l Z =200-j250Ω,通过4 λ 阻抗变换器及并联支节线实现匹配,如图所示,已知工作频率f =300MHZ ,求4 λ 阻抗变换段的特性阻抗01Z 及并联短路支节线的最短长度min l 。

4.性阻抗为0Z 的无耗传输线的驻波比为ρ,第一个电压波节点离负载的距离为min1l ,试证明此时终端负载应为 min1 min1 1tan tan l j l Z j l ρβρβ-Z =- 5 明无耗传输线上任意相距 4 λ 的两点处的阻抗的乘积等于传输线特性阻抗的平方。 6某一均匀无耗传输线特性阻抗为0Z =50Ω,终端接有未知负载l Z ,现在传输线上测得电压最大值和最小值分别为100mV 和200mV ,第一个电压波节的位置离负载min13 l λ =,试求 负载阻抗l Z 。 7.传输系统如图,画出AB 段及BC 段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值。(图中R=900Ω) 8.特性阻抗0150Z =Ω的均匀无耗传输线,终端接有负载250100l j Z =+Ω,用 4 λ 阻抗

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章

————————————————————————————————作者:————————————————————————————————日期: 2

17 第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将1.0

微波技术与天线考试试卷(A)

一、填空(102?) 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为 mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别()() 70120104,F 1085.8,ln 2ln 2--?==?===πμμεπμπεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最_ __________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两 个分量,它们在空间上___________(选填:平行,垂直),在 时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。 5、 旋转抛物面天线由两部分组成, ___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来 的球面波沿抛物面的___________向反射出去,从而获得很强 ___________。 二、判断(101?) 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时, 该传输线为短线。( ) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。( )

3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°, 它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( ) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大 功率。( ) 5、微带线在任何频率下都传输准TEM 波。( ) 6、导行波截止波数的平方即一定大于或等于零。( ) 7、互易的微波网络必具有网络对称性。( ) 8、谐振频率、品质因数和等效电导是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。( ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。( ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) 2、在波导激励中常用哪三种激励方式?(6分) 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) 四、计算题(41分) 1、矩形波导BJ-26的横截面尺寸为22.434.86a mm b ?=?,工作频率为3GHz ,在终端接负载时测得行波系数为0.333,第一个电场波腹点距负载6cm ,今用螺钉匹配。回答以下问题。 (1)波导中分别能传输哪些模式?(6分) (2)计算这些模式相对应的p νλ,p 及。(9分)

微波技术与天线试卷B

1 2007 /2008学年第 2 学期 课程名称:微波技术与天线 共 5 页 试卷: B 考试形式: 闭 卷 一、 填空题(每空1分,共10分) 1、微波的频率范围从 到 。 2、圆波导的主模是 。 3、微带线的高次模有两种模式,其中波导模式存在于 与 之间。 4、无耗传输线上任意相距λ/2处的阻抗 。 5、矩形波导中传输的主模是__________。 6、圆波导中损耗最小的的模式是_______________。 7、电基本振子的远区场是一个沿着径向向外传输的 电磁波。 8、天线的有效长度越长,表明天线的辐射能力___________。 二、选择题(每题2分,共20分) 1、若传输线上全反射时,驻波比等于 。 A :0 B :1 C :2 D :∞ 2、双导体传输系统中传输的是 。 A :TE 波 B :TM 波 C :TEM 波 D :TE 和TM 波 3、匹配双T 的四个端口 。 A :只有两个端口匹配 B : 完全匹配 C :只有三个端口匹配 D :完全不匹配 4、当单极天线的高度h<<λ时,其有效高度约为实际高度的 。 A :2/3 B :1/3 C : 1/2 D :1/4

5、无耗传输线,终端断短路时在电压波腹点处,相当于。A:并联谐振B:串联谐振C:纯电感D:纯电容 6、在微波视距通信设计中,为使接收点场强稳定,希望反射波的成分 _________。 A:愈小愈好B:愈大愈好C:适当选择D:不确定 7、传输线的工作状态与负载有关,当负载开路时,传输线工作在何种状态?( ) A.混合波 B.行波 C.驻波 D.都不是 8、可以导引电磁波的装置称为导波装置,传播不受频率限制的导波装置是( ) A. 方波导 B.同轴线 C. 圆波导 D.以上都可以 9.天线是发射和接收电磁波的装置,其关心的主要参数为( ) A.增益 B.驻波比 C. 方向图 D.以上都是 10、在规则金属波导中波的传播速度比无界空间媒质中传播的速度。A:快B:慢C:相等D:无法确定 三、简答题(每题6分,共24分) 1、对均匀传输线的分析方法通常有哪两种?各自特点是什么? 2

最新微波技术与天线 考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

《微波技术与天线》习题答案

《微波技术与天线》习题答案 章节 微波传输线理路 1.1 设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数 1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.0213 1 )2.0(j z j e e --=Γ=Γ 31 )5.0(=Γλ (二分之一波长重复性) 31 )25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010 l jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性) 1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。 解:同轴线的特性阻抗a b Z r ln 60 0ε= 则空气同轴线Ω==9.65ln 600a b Z 当25.2=r ε时,Ω== 9.43ln 60 0a b Z r ε 当MHz f 300=时的波长: m f c r p 67.0== ελ 1.3题 设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,

试证明此时的终端负载应为1 min 1 min 01tan tan 1l j l j Z Z βρβρ--? = 证明: 1 min 1min 010)(1 min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ ββ--? =∴=++?=由两式相等推导出:对于无耗传输线而言:)( 1.4 传输线上的波长为: m f r 2c g == ελ 因而,传输线的实际长度为: m l g 5.04 ==λ 终端反射系数为: 961.051 49 01011≈-=+-= ΓZ R Z R 输入反射系数为: 961.051 49 21== Γ=Γ-l j in e β 根据传输线的4 λ 的阻抗变换性,输入端的阻抗为: Ω==25001 2 0R Z Z in 1.5 试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。 证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距 4 λ 处看进去的输入阻抗为' in Z ,则有: z jZ Z z jZ Z Z ββtan tan Z 10010 in ++=

微波技术与天线实验4利用HFSS仿真分析矩形波导

实验3:利用 HFSS 仿真分析矩形波导 一、 实验原理 矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。 图1 矩形波导 1) TE 模,0=z E 。 cos cos z z mn m x n y H H e a b γππ-= 2 cos sin x mn c z n m x n y E H b a b j k e γπππωμ-= 2 sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπ ππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k =2 2 m n a b ππ???? ? ????? +而mn H 是与激励源有关的待定常数。 2) TM 模 Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模, m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即

c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波技术与天线实验3利用ADS设计集总参数匹配电路

一、实验目的 学会用ADS进行集总参数匹配电路设计。 二、实验步骤 1、打开“ADS(Advanced Design System)”软件:点击图标。 2、点击“Close”键,关闭Getting start with ADS窗口(如图1)。 图1 3、在“Advanced Design System 2009(Main)”窗口中点击“File>New Project”(如图2), 图2 在“New project”窗口中的“C:\users\default\”后输入“matching”,点击“OK”(如图3)。

图3 4、默认窗口中的选项(如图4(a)),关闭窗口“Schematic Wizard:1”,进入 “[matching-prj]untitled1(Schematic):1”窗口(如图4(b))。 图4(a) 图4(b) 5、找到“Smith Chart Matching”,并点击(如图5)。

图5 点击“Palette”下的“Smith chart”图标,弹出“Place SmartComponent:1”窗口,点击“OK”按钮(如图6(a))。在操作窗口中点击出一个smith chart,然后点击鼠 标右键选择“End Command”(如图6(b))。 图6 (a)

图6(b) 6、点击“Tools>Smith Chart”(如图7(a)),出现“Smith Chart Utility”以及 “SmartComponent Sync”窗口,点击“Smartcomponent Sync”窗口中的“OK”(如 图7(b))。 图7 (a)

《微波技术与天线实验》2

《微波技术与天线实验》课程实验报告 实验二: 学院通信工程 班级13083414 学号13041403 姓名李倩 指导教师魏一振 2015年11 月12 日

实验名称:集总参数滤波器设计 1.实验目的 (1)通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来进一步熟悉MWO2003 的各种基本操作。 (2)本次实验我们需要用到MWO2003 的优化和Tune 等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧。 2.实验内容 设计一个九级集总参数低通滤波器,要求如下: 通带频率范围:0MHz~400MHz 增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB 阻带内600MHZ以上S 21 <-50dB 反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 3.实验结果 实验电路原理结构图:

运行结果: 4.思考题 (1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤? 带宽和截止频率参数的设计、结构图的设计需要改变,所以原理图属性设置、画结构图、元件参数设置、参数优化步骤需要改变。 首先需要改变电路图的结构,如下图

将原来的电容接地改成电感接地。 之后在优化参数进行重新设置。也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。原来的600~MAX的改为0~600MHZ的频率范围。如下图

之后重复上述仿真可以得到如下结果 可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。反射系数在某个区域内比较符合。 (2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)在优化过程中,电容c1和c0的参量调节对优化结果影响最大。

微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长0.1m). 微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性. 与低频区别:趋肤效应,辐射效应,长线效应,分布参数。 微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。 集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。 这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。 分布参数: 电路是指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 分布参数电路的实际尺寸能和电路的工作波长相比拟。 对于分布参数电路由传输线理论对其进行分析。 均匀传输线方程(电报方程): t t z i L t z Ri z t z u ? ? + = ? ?) , ( ) , ( ) , (, t t z u C t z Gi z t z i ? ? + = ? ?) , ( ) , ( ) , ( 传输线瞬时电压电流: ) cos( ) cos( ) , ( 2 1 z t e A z t e A t z u z zβ ω β ωα α- + + =- + )] cos( ) cos( [ 1 ) , ( 2 1 z t e A z t e A Z t z i z zβ ω β ωα α- + + =- + 特性阻抗: C j G L j R Z ω ω + + = (无耗传输线R=G=0.) 平行双导线(直径为d,间距为 D): d D Z r 2 ln 120 ε = 同轴线(内外导体半径a,b): a b Z r ln 60 ε = 相移常数: λ π ω β 2 = =LC 输入阻抗: ) tan( ) tan( 1 1 0z Z Z z Z Z Z Z inβ β + + = 反射系数:z j z j e e Z Z Z Z zβ β- -Γ = + - = Γ 1 1 1 ) ( 终端反射系数:1 | | 1 1 1 1 φj e Z Z Z Z Γ = + - = Γ

相关文档
最新文档