da=read.table("q-gnp4710.txt",header=T)>head(da)YearMonDatVALUE1194711238.12194741241.53194771245.6419" />

金融时间序列的线性模型__自回归

金融时间序列的线性模型__自回归
金融时间序列的线性模型__自回归

金融时间序列的线性模型——自回归R实例

例2.3

> setwd("C:/Users/Mr.Cheng/Desktop/课件/金融数据分析导论基于R/DataSets/ch2 data")%设置工作目录

> da=read.table("q-gnp4710.txt",header=T)

> head(da)

Year Mon Dat VALUE

1 1947 1 1 238.1

2 1947 4 1 241.5

3 1947 7 1 245.6

4 1947 10 1 255.6

5 1948 1 1 261.7

6 1948 4 1 268.7

> G=da$VALUE

> LG=log(G)

> gnp=diff(LG)

> dim(da)

[1] 253 4

> tdx=c(1:253)/4+1947 %创建一个时间序列指数,从1947开始,每次增加一个季度,一共253个季度。

> par(mfcol=c(2,1))画两行一列的小图

> plot(tdx,LG,xlab='year',ylab='GNP',type="l

> plot(tdx[2:253],gnp,type='l',xlab='year',ylab='growth')

> acf(gnp,lag=12)%画滞后12阶的对数增长率的自相关图

> pacf(gnp,lag=12)%画滞后12阶的对数增长率的偏自相关图

> m1=arima(gnp,order=c(3,0,0))%计算AR(3) > m1

Call:

arima(x = gnp, order = c(3, 0, 0))

Coefficients:

ar1 ar2 ar3 intercept 0.4386 0.2063 -0.1559 0.0163 s.e. 0.0620 0.0666 0.0626 0.0012

sigma^2 estimated as 9.549e-05: log likelihood = 808.56, aic = -1607.12 > tsdiag(m1,gof=12)%模型检验

> p1=c(1,-m1$coef[1:3])%设置多项式方程的系数:

1-0.438z-0.206z2+0.156z3=0

> r1=polyroot(p1)%解多项式方程得到特征根

> r1

[1] 1.616116+0.864212i -1.909216-0.000000i 1.616116-0.864212i

> Mod(r1)%计算特征根的模

[1] 1.832674 1.909216 1.832674

> k=2*pi/acos(1.616116/1.832674)%计算周期

> k

[1] 12.79523

> mm1=ar(gnp,method='mle')%用AIC准则自动为AR(P)定阶,方法为极大似然估计> mm1$order%查看阶数

[1] 9

> names(mm1)%得到mm1的名字

[1] "order" "ar" "var.pred" "x.mean" "aic"

[6] "https://www.360docs.net/doc/995396301.html,ed" "order.max" "partialacf" "resid" "method"

[11] "series" "frequency" "call" "asy.var.coef"

> print(mm1$aic,digits = 3)%查看mm1中的aic值,保留三位小数

0 1 2 3 4 5 6 7 8 9 10 11

77.767 11.915 8.792 4.669 6.265 5.950 5.101 4.596 6.541 0.000 0.5 09 2.504

12

2.057

> aic=mm1$aic

> length(aic)

[1] 13

> plot(c(0:12),aic,type='h',xlab='order',ylab='aic')%画aic竖线图

> lines(0:12,aic,lty=2)%画aic连线图(虚线)

> vw=read.table('m-ibm3dx2608.txt',header=T)[,3]%读取第3列数据> t1=prod(vw+1)%计算35年后的终值

> t1

[1] 1592.953

> head(vw)

[1] 0.000724 -0.033374 -0.064341 0.038358 0.012172 0.056888 > t1^(12/996)-1%折算回平均每年的回报

[1] 0.09290084

模型的检验

> vw=read.table('m-ibm3dx2608.txt',header=T)[,3]

> m3=arima(vw,order=c(3,0,0))%用AR(3)拟合

> m3

Call:

arima(x = vw, order = c(3, 0, 0))

Coefficients:

ar1 ar2 ar3 intercept

0.1158 -0.0187 -0.1042 0.0089

s.e. 0.0315 0.0317 0.0317 0.0017

sigma^2 estimated as 0.002875: log likelihood = 1500.86, aic = -2991.73 > (1-.1158+.0187+.1042)*mean(vw)%计算phi(0)

[1] 0.008967611

> sqrt(m3$sigma2)%计算残差标准误

[1] 0.0536189

> Box.test(m3$residuals,lag=12,type="Ljung")%检验残差的自相关函数,如果显示出额外的序列相关性,则应该考虑到这些相关性并进行扩展

Box-Ljung test

data: m3$residuals

X-squared = 16.352, df = 12, p-value = 0.1756

> pv=1-pchisq(16.35,9)%由上一步算得Q(12)=16.352,并且基于它所渐进服从的自由度为9(修正自由度12-2)的卡方分布,得到p值为0.06,因此在5%的显著水平下无法拒绝原假设

> pv

[1] 0.05992276

> m3=arima(vw,order=c(3,0,0),fixed=c(NA,0,NA,NA))%改进模型:由于间隔为2的A R系数在5%的水平下不显著,因此修改后的模型去除2阶滞后项。(下面有补充计算)Warning message:

In arima(vw, order = c(3, 0, 0), fixed = c(NA, 0, NA, NA)) :

一些AR参数是固定的:把transform.pars设成FALSE

> m3

Call:

arima(x = vw, order = c(3, 0, 0), fixed = c(NA, 0, NA, NA))

Coefficients:

ar1 ar2 ar3 intercept

0.1136 0 -0.1063 0.0089

s.e. 0.0313 0 0.0315 0.0017

sigma^2 estimated as 0.002876: log likelihood = 1500.69, aic = -2993.38 > (1-.1136+.1063)*.0089 %计算phi(0)

[1] 0.00883503

> sqrt(m3$sigma2)

[1] 0.05362832

> Box.test(m3$residuals,lag=12,type='Ljung')

Box-Ljung test

data: m3$residuals

X-squared = 16.828, df = 12, p-value = 0.1562

> pv=1-pchisq(16.83,10)%修正自由度(12-2)

> pv

[1] 0.07821131

%改进后的模型对数据的动态线性相依性的建模是充分的。

关于系数显著性的计算:

> vw=read.table('m-ibm3dx2608.txt',header=T)[,3]

> m3=arima(vw,order=c(3,0,0),fixed=c(NA,0,NA,NA))

Warning message:

In arima(vw, order = c(3, 0, 0), fixed = c(NA, 0, NA, NA)) : 一些AR参数是固定的:把transform.pars设成FALSE

> names(m3)

[1] "coef" "sigma2" "var.coef" "mask" "loglik" "aic"

[7] "arma" "residuals" "call" "series" "code" "n.cond"

[13] "nobs" "model"

> tratio=m3$coef/sqrt(diag(m3$var.coef))%diag函数用于提取对角线上的元素。Warning message:

In m3$coef/sqrt(diag(m3$var.coef)) :

longer object length is not a multiple of shorter object length

> tratio

ar1 ar2 ar3 intercept

3.6301072 0.0000000 -62.0713895 0.2859641

显著性取0.05时就把|t|和1.96(查正态分布表的0.975对应的值)比较,大于就显著,小于就不显著。显著性取0.01时对比2.575,显著性取0.1时对比1.645.

画自相关函数

> po=1

> p1=0.8

> T=5000

> x=rep(0,T)%重复产生T个0的向量存储在x中。

> a=rnorm(T)

> for(i in 2:T)

+ x[i]=po+p1*x[i-1]+a[i]

> p2=-.8

> y=rep(0:T)

> for(i in 2:T)

+ y[i]=po+p2*y[i-1]+a[i]

> par(mfcol=c(1,2))

> acf(x,lag=12)

> acf(y,lag=12)

我国通货膨胀的混合回归和时间序列模型

2000年9月系统工程理论与实践第9期 文章编号:100026788(2000)0920138203 我国通货膨胀的混合回归和时间序列模型 叶阿忠,李子奈 (清华大学经济管理学院,北京100084) 摘要: 回归模型的残差项反映了对被解释变量有影响但未列入解释变量的因素所产生的噪音,这 部分噪音可由时间序列模型进行拟合Λ本文对通货膨胀建立了一个混合回归和时间序列模型,并将该 模型的预测结果与单纯用回归模型的预测结果进行了比较Λ 关键词: 通货膨胀;回归模型;时间序列模型;自相关函数;预测误差 中图分类号: O212 α T he Com b ined R egressi on2ti m e2series M odel of Ch inese Inflati on YE A2zhong,L I Zi2nai (Schoo l of Econom ics&M anagem en t,T singhua U n iversity,Beijing100084) Abstract: T he residual term in the regressi on model is the no ise generated by the om itted variab les that influen t dependen t variab le in the model.T he ti m e series model can fit th is no ise.W e estab lish the com b ined regressi on-ti m e-series model fo r Ch inese inflati on and compare its fo recast resu lts to that of regressi on model. Keywords: inflati on;regressi on model;ti m e2series model;au toco rrelati on functi on; fo recast erro r 1 引言 一般我们对通货膨胀建立模型或是采用回归模型或是采用时间序列模型,但回归模型中解释变量解释被解释变量的能力总是有限的,且由于存在对被解释变量有影响但未列入解释变量的因素而产生了回归模型无法预测的噪音,因而预测的效果不佳;而时间序列模型只反映时间序列过去行为的规律,没有利用经济现象的因果关系,再加上A R I M A(p,d,q)模型识别的困难,造成预测精度的下降Λ本文将两种方法结合起来,对我国通货膨胀建立一个混合回归和时间序列模型,并进行预测Λ 2 混合回归和时间序列模型 假定我们喜欢利用一个回归模型预测变量y tΖ一般地,这样的模型包括可解释的一些解释变量,它们之间不存在共线性Ζ假定我们的回归模型有k个解释变量x1,…,x k,回归模型如下: y t=Β0+Β1x1t+…+Βk x k t+Εt(1)其中误差项Εt反映除了解释变量外其它变量对y t的影响Ζ方程被估计后,R2将小于1,除非y t与解释变量完全相关,R2才等于1Ζ然后,方程可被用于预测y tΖ预测误差的一个来源是附加的噪声项,它的未来不可预测Ζ 时间序列分析的一个有效应用是对该回归的残差Εt序列建立A R I M A模型Ζ我们将原回归方程的误α收稿日期:1999203202 资助项目:国家教委“九五”重点教材基金

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

向量自回归模型简介

一、Var模型的基本介绍 向量自回归模型(Vector Autoregressive Models,VAR)最早由Sims(1980)提出。他认为,如果模型设定和识别不准确,那么模型就不能准确地反应经济系统的动态特性,也不能很好地进行动态模拟和政策分析。因此,VAR模型通常使用最少的经济理论假设,以时间序列的统计特征为出发点,通常对经济系统进行冲击响应(Impulse-Response)分析来了解经济系统的动态特性和冲击传导机制。由于VAR模型侧重于描述经济的动态特性,因而它不仅可以验证各种经济理论假设,而且在政策模拟上具有优越性。 VAR模型主要用于替代联立方程结构模型,提高经济预测的准确性。用联立方程模型研究宏观经济问题,是当前世界各国经济学者的一种通用做法,它把理论分析和实际统计数据结合起来,利用现行回归或非线性回归分析方法,确定经济变量之间的结构关系,构成一个由若干方程组成的模型系统。联立方程模型适合于经济结构分析,但不适合于预测:联立方程模型的预测结果的精度不高,其主要原因是需要对外生变量本身进行预测。与联立方程模型不同,VAR模型相对简洁明了,特别适合于中短期预测。目前,VAR模型在宏观经济和商业金融预测等领域获得了广泛应用。 二、VAR模型的设定 VAR模型描述在同一样本期间内的n个变量(内生变量)可以作为它们过去值的线性函数。 一个VAR(p)模型可以写成为: 或: 其中:c是n × 1常数向量,A i是n × n矩阵,p是滞后阶数,A(L)是滞后多项式矩阵,L是滞后算子。是n × 1误差向量,满足: 1. —误差项的均值为0 2. Ω—误差项的协方差矩阵为Ω(一个n × 'n正定矩阵) 3.(对于所有不为0的p都满足)—误差项不存在自相关 虽然从模型形式上来看比较简单,但在利用VAR模型进行分析之前,对模型的设定还需要意以下两点: 一是变量的选择。理论上来讲,既然VAR模型把经济作为一个系统来研究,那么模型中

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

时间序列分析在金融市场价格波动分析中应用

时间序列分析在金融市场价格波动分析中应用

B 题 金融市场价格波动分析 摘要 本文基于),,(q d p ARIMA 模型以及GARCH 模型结合数据图法,自相关函数检验法,差分法,借助SAS 软件和views E 软件建立数学模型,针对金融市场特性与走势并检验金融指数序列的平稳性及波动性,分析不同金融市场的风险并进行拟合与预测,并对不同金融市场的波动溢出等问题进行了检验与分析,最后给出了结论。 对于问题一,我们直接运用数据图法对纽约道琼斯指数进行分析。通过运 用SAS 软件编程得到2012年纽约道琼斯连续两百天的收盘指数时序图,得出道琼斯指数呈现循环上升下降的特性,总体呈现上升的走势。 对于问题二,我们运用GARCH 模型与自相关函数检验法对道琼斯指数进行指数序列的波动性及平稳性检验。通过建立GARCH 模型并结合views E 给出了波动性检验表,最后得出了过去的波动对未来的影响是逐渐减小的结论。运用自相关函数检验法,用SAS 程序得出道琼斯指数序列的自相关图,通过对自相关图的分析,我们得出金融时间序列存在一定的非平稳性。 对于问题三,我们运用差分法对道琼斯价格指数进行平稳化处理和白噪声 检验。我们先对先对时间序列进行一阶差分运算,然后用SAS 画出时序图,判断出经过一阶差分后的时间序列为平稳的,并且用自相关函数检验法进行检验再次验证了一阶差分后的时间序列为平稳的,即完成了平稳化处理。 对于问题四,我们建立),,(q d p ARIMA 模型通过SAS 程序对道琼斯价格指数与上证指数进行拟合,然后进行了模型的适应性检验、参数的显著性检验和残

差的白噪声检验并且都通过了,最后对两个股市指数进行了未来五个时刻的预测并且给出了区域,预测效果比较好。 对于问题五,我们运用GARCH模型通过views E对道琼斯股市和上证股市两个市场的波动是否存在波动溢出进行了分析。通过对提取的条件方差GARCH01和GARCH02进行ranger G因果检验最后得出了两个股票市场不存在明显的溢出效应的结论。 关键词:金融指数自相关函数检验差分法) p d ARIMA模型SAS (q , , G因果检验 views E GARCH模型ranger 一.问题重述 2008年全球金融危机昭示了金融市场价格波动的严重后果。金融时间序列收益率序列的波动是动态变化的,是不可知,或可知但不可测。不同金融市场的波动还存在波动溢出。 请收集不同金融市场的指标数据(如上海、深圳、新加坡、纽约等地的股市指数)进行如下建模与分析: 1、单个分析金融市场的特性与走势 2、分析与检验金融指数序列的平稳性及波动性 3、根据价格波动性,进行平稳化处理 4、分析每个市场的风险,并进行拟合和预测 5、请讨论多个不同金融市场之间的波动溢出问题 二.问题分析

第十三章 时间序列回归

第十三章 时间序列回归 本章讨论含有ARMA 项的单方程回归方法,这种方法对于分析时间序列数据(检验序列相关性,估计ARMA 模型,使用分布多重滞后,非平稳时间序列的单位根检验)是很重要的。 §13.1序列相关理论 时间序列回归中的一个普遍现象是:残差和它自己的滞后值有关。这种相关性违背了回归理论的标准假设:干扰项互不相关。与序列相关相联系的主要问题有: 一、一阶自回归模型 最简单且最常用的序列相关模型是一阶自回归AR(1)模型 定义如下:t t t u x y +'=β t t t u u ερ+=-1 参数ρ是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。 二、高阶自回归模型: 更为一般,带有p 阶自回归的回归,AR(p)误差由下式给出: t t t u x y +'=β t p t p t t t u u u u ερρρ++++=--- 2211 AR(p)的自回归将渐渐衰减至零,同时高于p 阶的偏自相关也是零。 §13.2 检验序列相关 在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),Eviews 提供了几种方法来检验当前序列相关。 1.Dubin-Waston 统计量 D-W 统计量用于检验一阶序列相关。 2.相关图和Q-统计量 计算相关图和Q-统计量的细节见第七章 3.序列相关LM 检验 检验的原假设是:至给定阶数,残差不具有序列相关。 §13.3 估计含AR 项的模型 随机误差项存在序列相关说明模型定义存在严重问题。特别的,应注意使用OLS 得出的过分限制的定义。有时,在回归方程中添加不应被排除的变量会消除序列相关。 1.一阶序列相关 在EViews 中估计一AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。例如:估计一个带有AR(1)误差的简单消费函数 t t t u GDP c c CS ++=21 t t t u u ερ+=-1 应定义方程为: cs c gdp ar(1) 2.高阶序列相关 估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。如果想估计一个有1-5阶自回归的模型 t t t u GDP c c CS ++=21 t t t t u u u ερρ+++=--5511 应输入: cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5) 3.存在序列相关的非线性模型 EViews 可以估计带有AR 误差项的非线性回归模型。例如: 估计如下的带有附加AR(2)误差的非线性方程 t c t t u GDP c CS ++=21

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

金融时间序列分析英文试题(芝加哥大学) (1)

Graduate School of Business,University of Chicago Business41202,Spring Quarter2008,Mr.Ruey S.Tsay Solutions to Midterm Problem A:(30pts)Answer brie?y the following questions.Each question has two points. 1.Describe two methods for choosing a time series model. Answer:Any two of(a)Information criteria such as AIC or BIC,(b)Out-of-sample forecasts,and(c)ACF and PACF of the series. 2.Describe two applications of volatility in?nance. Answer:Any two of(a)derivative(option)pricing,(b)risk management,(c)portfolio selection or asset allocation. 3.Give two applications of seasonal time series models in?nance. Answer:(a)Earnings forecasts and(b)weather-related derivative pricing or risk man-agement. 4.Describe two weaknesses of the ARCH models in modelling stock volatility. Answer:Any two of(a)symmetric response to past positive and negative shocks, (b)restrictive,(c)Not adaptive,and(d)provides no explanation about the source of volatility clustering. 5.Give two empirical characteristics of daily stock returns. Answer:any two of(a)heavy tails,(b)non-Gaussian distribution,(c)volatility clus-tering. 6.The daily simple returns of Stock A for the last week were0.02,0.01,-0.005,-0.01,and 0.025,respectively.What is the weekly log return of the stock last week?What is the weekly simple return of the stock last week?Answer:Weekly log return is0.03938; weekly simple return is0.04017. 7.Suppose the closing price of Stock B for the past three trading days were$100,$120, and$100,respectively.What is the arithmetic mean of the simple return of the stock for the past three days?What is the geometric average of the simple return of the stock for the past three days? Answer:Arithmetic mean=1 2 120?100 100 +100?120 120 =0.017.and the geometric mean is 120×100?1=0. 8.Consider the AR(1)model r t=0.02+0.8r t?1+a t,where the shock a t is normally distrib- uted with mean zero and variance1.What are the variance and lag-1autocorrelation function of r t? Answer:Var(r t)=1 1?0.82 =2.78and the lag-1ACF is0.8. 1

自回归分布滞后模型

案例六自回归分布滞后模型(ADL)的运用实验指 导 一、实验目的 理解ADL模型的原理与应用条件,学会运用ADL模型来估计变量之间长期稳定关系。理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。理解ADL模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。而进行标准的协整分析前,必须把变量分类成 和 。 二、基本概念 Jorgenson(1966)提出的( )阶自回归分布滞后模型ADL(autoregressive distributed lag): ,其中 是滞后 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为 , 是参数向量。当不存在外生变量时,模型就退化为一般ARMA( )模型。 如果模型中不含有移动平均项,可以采用OLS方法估计参数,若模型中含有移动平均项,线性OLS估计将是非一致性估计,应采用非线性最小二乘估计。

三、实验内容及要求 (1)实验内容 运用ADL模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt和对数可支配收入xt之间的长期稳定关系。 (2)实验要求 在认真理解模型应用条件的基础上,通过实验掌握ADL模型的实际应用方法,并熟悉Eniews的具体操作过程。 四、实验指导 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated-regular frequency”,在“Data specification”栏中“Frequency”中选择“Monthly”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok,见图6-1,这样就建立了一个工作文件。 图6-1 建立工作文件窗口

多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

, 设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年 年份 @ 人口自然增长率 (%。) 国民总收入 (亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15037 1366 1989 … 17001 18 1519 1990 18718 1644 1991 【 21826 1893 1992 26937 2311 1993 . 35260 2998 1994 48108 4044 1995 — 59811 5046 1996 70142 5846 1997 ~ 78061 6420 1998 83024 6796 1999 【 88479 7159 2000 98000 7858 2001 [ 108068 8622 2002 119096 9398 2003 : 135174 10542 2004 159587 12336 2005 、 184089 14040 2006 213132 16024

金融时间序列分析

《金融时间序列分析》讲义 主讲教师:徐占东 登录:https://www.360docs.net/doc/995396301.html,徐占东《金融时间序列模型》 参考教材: 1.《金融时间序列的经济计量学模型》经济科学出版社米尔斯著2.《经济计量学手册》章节 3.《Introductory Econometrics for Finance》 Chris Brooks 剑桥大学出版社 4.《金融计量学:资产定价实证分析》周国富著北京大学出版社5.《金融市场的经济计量学》 Andrew lo等上海财经大学出版社6.《动态经济计量学》 Hendry著上海人民出版社 7.《商业和经济预测中的时间序列模型》中国人民大学出版社弗朗西斯著 8.《No Linear Econometric Modeling in Time series Analysis》剑桥大学出版社 9.《时间序列分析》汉密尔顿中国社会科学出版社10.《高等时间序列经济计量学》陆懋祖上海人民出版社11.《计量经济分析》张晓峒经济科学出版社 12.《经济周期的波动与预测方法》董文泉高铁梅著吉林大学出版社 13.《宏观计量的若干前言理论与应用》王少平著南开大学出版社14.《协整理论与波动模型——金融时间序列分析与应用》张世英、樊智著清华大学出版社 15.《协整理论与应用》马薇著南开大学出版社 16.(NBER working paper)https://www.360docs.net/doc/995396301.html,

17.(Journal of Finance)https://www.360docs.net/doc/995396301.html, 18.(中国金融学术研究网) https://www.360docs.net/doc/995396301.html, 教学目的: 1)能够掌握时间序列分析的基本方法; 2)能够应用时间序列方法解决问题。 教学安排 1单变量线性随机模型:ARMA ; ARIMA; 单位根检验。 2单变量非线性随机模型:ARCH,GARCH系列模型。 3谱分析方法。 4混沌模型。 5多变量经济计量分析:V AR模型,协整过程;误差修正模型。

第九章时间序列计量经济学模型案例

第九章时间序列计量经济学模型案例 1、1949—2001年中国人口时间序列数据见表8,由该数据(1)画时间序列图和差分图;(2)求中国人口序列的相关图和偏相关图,识别模型形式;(3)估计时间序列模型;(4)样本外预测。 表9.1 中国人口时间序列数据(单位:亿人) 年份人口y t 年份人口y t年份人口y t年份人口y t年份人口y t 1949 5.4167 1960 6.6207 1971 8.5229 1982 10.159 1993 11.8517 1950 5.5196 1961 6.5859 1972 8.7177 1983 10.2764 1994 11.985 1951 5.63 1962 6.7295 1973 8.9211 1984 10.3876 1995 12.1121 1952 5.7482 1963 6.9172 1974 9.0859 1985 10.5851 1996 12.2389 1953 5.8796 1964 7.0499 1975 9.242 1986 10.7507 1997 12.3626 1954 6.0266 1965 7.2538 1976 9.3717 1987 10.93 1998 12.4761 1955 6.1465 1966 7.4542 1977 9.4974 1988 11.1026 1999 12.5786 1956 6.2828 1967 7.6368 1978 9.6259 1989 11.2704 2000 12.6743 1957 6.4653 1968 7.8534 1979 9.7542 1990 11.4333 2001 12.7627 1958 6.5994 1969 8.0671 1980 9.8705 1991 11.5823 1959 6.7207 1970 8.2992 1981 10.0072 1992 11.7171 (1)画时间序列图 y的数据窗口 打开 t 得到中国人口序列图

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

金融时间序列分析

金融时间序列分析 第一章绪论 第一节时间序列分析的一般问题 人们在日常生活和工作中会遇到大量的金融数据,如存款的利率、股票的价格、债券的收益等等, 例某支股票的价格。。。 如何从这些数据中总结、发现其变化规律,如何从这些数据中总结、发现其变化规律,从而预测或控制现象的未来行从这些数据中总结为,这就是时间序列分析这门课程所要研究的问题。 研究方式 数据建立模型预测 数据数据的类型。 横剖面数据:由若干现象在某一时点上所处的状态所形成的数据,称为横剖面数据,剖面数据,又称为静态数据。它反映一定时间、地点等客观条件下诸现象之间存在的内在数值联系。例如,上海证券交易所所有股票在某一时刻的价格;某一时刻全国各省会城市的温度,都是横剖面数据;研究方法:多元统计分析。纵剖面数据:由某一现象或若干现象在不同时点上的状态所形成的数据,称为纵剖面数据,纵剖面数据,又称为动态数据。它反映的是现象与现象之间关系的发展变化规律。例如,南京市1980 年至2005 年每年末的人口数;上海证券交易所所有股票在一年中每个周末收盘价,都是纵剖面数据研究方法:时间序列分析时间序列概念时间序列概念。时间序列:简单地说,时间序列就是按照时间顺序排成的一个数列,其中每一项的取值是随机的。严格的时间序列的定义需要随机过程的概念。设(, β , P ) 是一个概率空间,其中是样本空间,β 是上的σ -代数,P 是Copyright: Rongbao Gu, School of Finance, Nanjing University of Finance and Economics, 2006 金融时间序列分析上的概率测度。又设T 是一个有序指标集。概率空间(, β , P ) 上的随机变量{ X t : t ∈T } 的全体称为随机过程。随机过程。

金融时间序列实验报告

· 《金融时间序列分析》 综合实验二 金融系金融工程专业2014 级姓名山洪国 学号20141206031048 实验地点:实训楼B305 实验日期:2017.04,21 实验题目:ARIMA模型应用 实验类型:基本操作训练 实验目的: 利用美元对欧元汇率1993年1月到2007年12月的月均价数据,进行ARIMA模型的识别、估计、检验及预测。 实验容: 1、创建Eviews文件,录入数据,对序列进行初步分析。绘制美元对欧元汇率月均价数据折线图,分析序列的基本趋势,初步判断序列的平稳性。 2、识别ARIMA(p,d,q)模型中的阶数p,d,q。运用单位根检验(ADF检验)确定单整阶数d;利用相关分析图确定自回归阶数p和移动平均阶数q。初步选择几个合适的备选模型。 3、ARIMA(p,d,q)模型的估计和检验。对备选模型进行估计和检验,并进行比较,

从中选择最优模型。 4、利用最优模型对2008年1月美元对欧元汇率的月均价进行外推预测。 评分标准:操作步骤正确,结果正确,分析符合实际,实验体会真切。 实验步骤: 1、根据所给的Excel 表格的数据,将表格的美元对欧元的汇率情况录入到EViews9中,并对所录入数据进行图形化的处理,所得到的图形结果如下图所示。(时间段:1993.01至2007.12) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 EUR/USD 分析图形数据可得,欧元对美元的汇率波动情况较为明显,其中在1999年至2003年期间欧元和美元的比值一度在1.0以上。但近些年以来,欧元的汇率一度持续下滑,到了2007年底的时候和和美元的比值在0.7左右。

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

相关文档
最新文档