丹东机械能守恒定律中考真题汇编[解析版]

丹东机械能守恒定律中考真题汇编[解析版]
丹东机械能守恒定律中考真题汇编[解析版]

一、第八章 机械能守恒定律易错题培优(难)

1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针

转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为

210m/s 。下列说法正确的是( )

A .物块在传送带上运动的时间为2s

B .物块在传送带上运动的时间为4s

C .整个运动过程中由于摩擦产生的热量为16J

D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】

AB .滑块先向右匀减速,根据牛顿第二定律有

mg ma μ=

解得

22m/s a g μ==

根据运动学公式有

010v at =-

解得

13s t =

匀减速运动的位移

0106

3m 9m 8m 22

v x t L +=

=?==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移

2212m 1m 222

v x a ===?

用时

22

s 1s 2

v t a =

== 向左运动时最后3m 做匀速直线运动,有

233

=

s 1s 3

x t v == 即滑块在传送带上运动的总时间为

1234s t t t t =++=

物块滑离传送带时的速率为2m/s 。 选项A 错误,B 正确;

C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为

110.211041J 6J f W f x x mg x x μ=--=--=-???-=-()()()

选项C 错误;

D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为

114m l vt ==

物体向左加速过程,传送带运动距离为

222m l vt ==

121[]Q fS mg l x l x μ==++-()()

代入数据解得

28J Q =

选项D 正确。 故选BD 。

2.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。图中SD 水平,位置R 和Q 关于S 对称。现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。下列关于小环C 下落过程中的描述正确的是( )

A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒

B .小环

C 下落到位置S 时,小环C 的机械能一定最大

C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大

D.小环C到达Q点时,物体A与小环C的动能之比为

cos

2

θ

【答案】BD

【解析】

【分析】

【详解】

A.在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C、物体A和轻弹簧组成的系统机械能守恒,选项A错误;

B.小环C下落到位置S过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S时,小环的机械能最大,选项B 正确;

C.小环在R、Q处时弹簧均为拉伸状态,且弹力大小等于B的重力,当环运动到S处,物体A的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C错误;

D.在Q位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有

cos

C

T m g

θ=

对A、B整体,根据平衡条件有

2

A

T m g

=

2cos

C A

m mθ

=

在Q点将小环v速度分解

可知

cos

A

v vθ

=

根据动能2

1

2

k

E mv

=可知,物体A与小环C的动能之比为

2

2

1

cos

2

12

2

A

A

A

k

kQ

C

m v

E

E m v

θ

==

选项D正确。

故选BD。

3.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是

A .a 球和b 球所组成的系统机械能守恒

B .b 球的速度为零时,a 球的加速度大小一定等于g

C .b 22gL +()

D .a 2gL

【答案】AC 【解析】 【详解】

A .a 球和b 球组成的系统没有外力做功,只有a 球和b 球的动能和重力势能相互转换,因此a 球和b 球的机械能守恒,故A 正确;

B .当再次回到初始位置向下加速时,b 球此时刻速度为零,但a 球的加速度小于g ,故B 错误;

C .当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候球b 的速度达到最大,此时由运动的关联可知a 球的速度为0,因此由系统机械能守恒有:

22122b mg L L mv ??+= ? ???

得:

()2+2b v gL =

故C 正确;

D .当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由运动的关联可知此时b 球的速度为零,有系统机械能守恒有:

2

2122

a

mg L mv ?= 得:

2a v gL =

此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将继续向下运动到加

速度为0时速度达到最大,故D 错误.

4.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。轻杆OB 一端固定在墙上,一端为定滑轮。若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。已知C 、E

两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为

2

mg

,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。下列说法正确的是( )

A .小球在D 点时速度最大

B .若在E 点给小球一个向上的速度v ,小球恰好能回到

C 点,则2v gh = C .小球在C

D 阶段损失的机械能等于小球在D

E 阶段损失的机械能

D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD 【解析】 【详解】

A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:

其中

T BP F kx =

将T F 正交分解,则

N T sin sin 2

BP BC mg

F F kx kx θθ?====

f N 14

F F mg μ==

T F 的竖直分量

T T cos cos y BP CP F F kx kx θθ===

据牛顿第二定律得

f T y m

g F F ma --=

解得

T 33

44y CP F kx a g g m m

=

-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;

B .对小球从

C 运动到E 的过程,应用动能定理得

T F 0104mgh W mgh ??

-+-=- ???

若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得

T 2F 11()042mgh W mgh mv ??

-++-=- ???

联立解得

T F 3

4

W mgh =

,v gh = B 错误;

C .除重力之外的合力做功等于小球机械能的变化,小球在C

D 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在D

E 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。 故选AD 。

5.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A 点,已知传送带AB 两点的距离为1.2 m ,那么在通过安全检查的过程中,g 取10 m/s 2,则 ( ).

A .开始时行李箱的加速度为0.2 m/s 2

B .行李箱从A 点到达B 点时间为3.1 s

C .传送带对行李箱做的功为0.4 J

D .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m 【答案】BCD 【解析】 【分析】 【详解】

行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22v t s s a =

==,此时物体的位移:110.042

x vt m ==,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间2

2 2.9x t s v

=

=,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=12

mv 2

="0.4" J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22

vt vt

s vt m =-

==,故D 正确.故选BCD .

6.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质点,重力加速度大小为,则

A .a 减少的重力势能等于b 增加的动能

B .轻杆对b 一直做正功,b 的速度一直增大

C .当a 运动到与竖直墙面夹角为θ时,a 、b 的瞬时速度之比为tanθ

D .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg 【答案】CD 【解析】 【分析】 【详解】

ab 构成的系统机械能守恒,a 减少的重力势能大于b 增加的动能.当a 落到地面时,b 的速度为零,故b 先加速后减速.轻杆对b 先做正功,后做负功.由于沿杆方向的速度大小相等,则

cos sin

a b

v v

θθ

=

tan

a

b

v

v

θ

=

当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg.综上分析,CD正确,AB 错误;

故选CD.

7.质量是m 的物体(可视为质点),从高为h,长为L的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则()

A.到斜面底端时重力的瞬时功率为

B.下滑过程中重力的平均功率为

C.下滑过程中合力的平均功率为

D.下滑过程中摩擦力的平均功率为

【答案】AB

【解析】

试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:

P=mgvcosα=mgv.故A 正确.B 、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:

.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错误.

考点:功率、平均功率和瞬时功率.

8.如图所示,竖直固定的光滑直杆上套有一个质量为m的滑块,初始时静置于a点.一原长为l的轻质弹簧左端固定在O点,右端与滑块相连.直杆上还有b、c、d三点,且b

与O 在同一水平线上,Ob =l ,Oa 、Oc 与Ob 夹角均为37°,Od 与Ob 夹角为53°.现由静止释放小滑块,在小滑块从a 下滑到d 过程中,弹簧始终处于弹性限度内,sin37°=0.6,则下列说法正确的是

A .滑块在b 点时速度最大,加速度为g

B .从a 下滑到c 点的过程中,滑块的机械能守恒

C .滑块在c 3gL

D .滑块在d 处的机械能小于在a 处的机械能 【答案】CD 【解析】 【分析】 【详解】

A 、从a 到b,弹簧对滑块有沿弹簧向下的拉力,滑块的速度不断增大.从b 到c,弹簧对滑块沿弹簧向上的拉力,开始时拉力沿杆向上的分力小于滑块的重力,滑块仍在加速,所以滑块在b 点时速度不是最大,此时滑块的合力为mg,则加速度为g.故A 错误.

B 、从a 下滑到c 点的过程中,因为弹簧的弹力对滑块做功,因此滑块的机械能不守恒.故B 错误.

C 、对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,由机械能守恒定律得2

12sin 372

c mg l mv ?=

,解得3c v gL =,故C 对; D 、弹簧在d 处的弹性势能大于在a 处的弹性势能,由系统的机械能守恒可以知道,滑块在d 处的机械能小于在a 处的机械能,故D 对; 故选CD 【点睛】

滑块的速度根据其受力情况,分析速度的变化情况确定.加速度由牛顿第二定律分析.对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,但滑块的机械能不守恒.根据系统的机械能守恒求滑块在c 点的速度.

9.如图所示,劲度系数k =40N/m 的轻质弹簧放置在光滑的水平面上,左端固定在竖直墙上,物块A 、B 在水平向左的推力F =10N 作用下,压迫弹簧处于静止状态,已知两物块不粘连,质量均为m =3kg 。现突然撤去力F ,同时用水平向右的拉力F '作用在物块B 上,同时控制F '的大小使A 、B 一起以a =2m/s 2的加速度向右做匀加速运动,直到A 、B 分离,此过程弹簧对物块做的功为W 弹=0.8J 。则下列说法正确的是( )

A .两物块刚开始向右匀加速运动时,拉力F '=2N

B .弹簧刚好恢复原长时,两物块正好分离

C .两物块一起匀加速运动经过

10

10

s 刚好分离 D .两物块一起匀加速运动到分离,拉力F '对物块做的功为0.6J 【答案】AC 【解析】 【分析】 【详解】

A .两物块刚开始向右匀加速运动时,对A

B 整体,由牛顿第二定律可知

2F F ma '+=

解得

2232N 10N 2N F ma F '=-=??-=

故A 正确;

BC .两物体刚好分离的临界条件;两物体之间的弹力为零且加速度相等。设此时弹簧的压缩量为x ,则有

kx ma =

代入数据,可得

32

m 0.15m 40

ma x k ?=

== 弹簧最初的压缩量

010

m=0.25m 40

F x k =

= 故两物块一起匀加速运动到分离的时间为

2

012

at x x =- 解得

02()2(0.250.15)10

s 210

x x t a --=

== 故B 错误,C 正确;

D .对AB 整体,从一起匀加速运动到分离,由动能定理可得

21

22

F W W mv '+=?弹

10102m/s 105

v at ==?

= 解得

22

1110223()J 0.8J 0.4J 225

F W mv W '=?-=???-=弹

故D 错误。 故选AC 。

10.如图所示,质量为m 的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离l ,物体始终与斜面保持相对静止.则在斜面水平向左匀速运动距离l 的过程中( )

A .摩擦力对物体做的功为-μmglcos θ

B .斜面对物体的弹力做的功为mglsin θcos 2θ

C .重力对物体做的功为mgl

D .斜面对物体做的功为0 【答案】D 【解析】

试题分析:物体处于静止,对物体受力分析可得,在竖直方向 mg ="Ncosθ+fsinθ" ; 在水平分析 Nsinθ=fcosθ

解得 N=mgcosθ;f=mgsinθ;支持力与竖直方向的夹角为θ,摩擦力做的功 W f =-fcosθ?l=-mglsinθcosθ,故A 错误;支持力做的功为W N =Nsinθ?s=mgssinθcosθ,支持力做功的功率为:mgcosθ?vsinθ,故B 错误;重力做功为零,故C 错误;由于匀速运动,所以斜面体对物体作用力的合力与速度方向垂直,则作用力做的总功为零,故D 正确;故选D .

考点:功

11.如图,在竖直平面内有一光滑水平直轨道,与半径为R 的光滑半圆形轨道相切于B 点,一质量为m (可视为质点)的小球从A 点通过B 点进入半径为R 的半圆,恰好能通 过轨道的最高点M ,从M 点飞出后落在水平面上,不计空气阻力,则( )

A .小球在 A 点时的速度为

B .小球到达B 点时对轨道的压力大小为mg

C .小球从B 点到达M 点的过程中合力的冲量大小为

D .小球运动到与圆心等高处对轨道的压力大小为3mg 【答案】D 【解析】 【分析】 【详解】

A .小球恰好能通过半圆的最高点M ,由重力提供向心力,由牛顿第二定律得

2M

v mg m R

= 解得

M v 由A 到M ,由动能定理得

22M A 11222

mg R mv mv -?=

- 解得

A v 故A 错误;

B .由A 到B ,速度不变

B A v v =在B 点时,对B 点进行受力分析重力提供向心力,由牛顿第二定律得

2

B

N v F mg m R

-=

所以

2

2B

=+=6N v F mg m mg m

mg R

R

+=

由牛顿第三定律得,小球到达B 点时对轨道的压力大小为

==6N F F mg 压

故B 错误;

C .小球在B 点时速度向右,大小为B v =,在M 点时,速度向左,大小为

M v =B 点到达M 点的过程中,取向右为正,合力的冲量为动量的变化

=M B I mv mv --=-

故C 错误;

D .小球运动到与圆心等高处时,由动能定理知

22A 1122

mg R mv mv -?=

- 在那一点,弹力提供向心力

2

3mv F mg R

==

由牛顿第三定律得,小球到达B 点时对轨道的压力大小为

==3F F mg 压

故D 正确; 故选:D 。

12.如图所示,某同学将三个完全相同的物体从A 点沿三条不同的路径抛出,最终落在与A 点同高度的三个不同位置,三条路径的最高点是等高的,忽略空气阻力,下列说法正确的是( )

A .沿路径1抛出的物体在空中运动的时间最短

B .沿路径3运动的物体落地时重力的瞬时功率最大

C .三个物体落地时的动能相等

D .三个物体在运动过程中的任意相等时间内速度变化量相等 【答案】D 【解析】 【分析】 【详解】

A .它们的最高点是等高的,所以这三个物体在竖直方向的分速度v y 是相等的,所以这三个斜抛运动的物体在空中的运动时间

2y v t g

=

均相同,故A 错误;

B .由上面的分析可以知道,这三个做斜抛运动的物体在落地时竖直方向的分速度也是相等的,落地时重力的瞬时功率

G y P mgv =

一样大,故B 错误;

C .同学对小球做的功即为小球获得的初动能,由于三个小球竖直方向分速度相同,第3个

小球水平位移大,则第3个小球水平分速度大,故第3个小球落地时的动能大,故C 错误;

D .小球在空中只受重力作用,即小球所作的运动是匀变速运动,加速度g 恒定,所以在相等的时间内速度变化相等,故D 正确。 故选D 。 【点睛】

斜抛运动可看成水平方向的匀速直线运动和竖直方向的竖直上抛运动。

13.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大圆环上的质量为m 的小环(可视为质点),从大圆环的最高处由静止滑下,重力加速度为g .当小圆环滑到大圆环的最低点时,大圆环对细杆的拉力大小为:

A .5mg

B .Mg+4mg

C .Mg+5mg

D .Mg+10mg

【答案】C 【解析】 【分析】

利用机械能守恒、竖直平面内的圆周运动、力的合成、牛顿运动定律求解. 【详解】

设大环底端处为重力势能零点,大环半径为R ,小环在最低点速度为v ,由于小环运动过程中只受弹力和重力,弹力和运动方向始终垂直,所以弹力不做功,只有重力做功,所以根据机械能守恒可得:

2

122

mv mgR = 解得:

42v gR gR ==当小环到达大环最低点时,分析小环的受力得:

2

mv F mg R

-=支 把2v gR =

5F mg =支

分析大环的受力,大环受到自身重力和小环竖直向下的压力5mg ,故大环对轻杆的拉力为:5Mg mg +,C 符合题意.

14.如图所示,一质量为M 的人站在台秤上,一根长为R 的悬线一端系一个质量为m 的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是( )

A .小球运动到最高点时,小球的速度为零

B .当小球运动到最高点时,台秤的示数最小,且为Mg

C .小球在a 、b 、c 三个位置时,台秤的示数相同

D .小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态 【答案】C 【解析】 【分析】 【详解】

A .小球恰好能通过圆轨道最高点,由

2

v mg m R

=

v gR =

A 项错误;

B .小球运动到最高点时,细线中拉力为零,台秤的示数为Mg ,但不是最小,当小球处于如图所示状态时,

设其速度为v 1,由牛顿第二定律有

2

1cos v T mg m R

θ+=

由最高点到该位置,由机械能守恒定律

22111

(1cos )22

mv mgR mv θ+-= 解得悬线拉力为

T =3mg (1-cosθ)

其分力为

T y =T cosθ=3mgcosθ-3mgcos 2θ

当cosθ=0.5,即θ=60°时,台秤的最小示数为

F min =Mg -T y =Mg -0.75mg

故B 错误;

C .小球在a 、b 、c 三个位置,竖直方向的加速度均为g ,小球均处于完全失重状态,台秤的示数相同,故C 正确;

D .人没有运动,不会有超重失重状态,故D 错误。 故选C 。

15.如图所示,一竖直轻质弹簧固定在水平地面上,其上端放有一质量为m 的小球,小球可视为质点且和弹簧不拴接。现把小球往下按至A 位置,迅速松手后,弹簧把小球弹起,小球上升至最高位置C ,图中经过位置B 时弹簧正好处于自由状态。已知B 、A 的高度差为1h ,C 、B 的高度差为2h ,重力加速度为g ,空气阻力忽略不计。下列说法正确的是( )

A .从A 位置上升到

B 位置的过程中,小球的动能一直增大 B .从A 位置上升到

C 位置的过程中,小球的机械能守恒 C .小球在A 位置时,弹簧的弹性势能等于()12mg h h +

D .小球在A 位置时,弹簧的弹性势能小于()12mg h h + 【答案】C 【解析】 【分析】 【详解】

A .小球从A 位置上升到

B 位置的过程中,先加速,当弹簧的弹力k x mg ?=时,合力为零,加速度减小到零,速度达到最大;之后小球继续上升,弹簧的弹力小于重力,小球做减速运动,故小球从A 上升到B 的过程中,动能先增大后减小,选项A 错误; B .从A 运动到B 的过程中,弹簧对小球做正功,小球的机械能增加。从B 运动到

C 的过程中,只受重力,机械能守恒,选项B 错误;

CD 、根据系统的机械能守恒可知小球在A 位置时,弹簧的弹性势能等于小球由A 到C 位置时增加的重力势能,为

21p E mg h h =+()

选项C 正确,D 错误。 故选C 。

相关主题
相关文档
最新文档