风振系数及其计算取值

风振系数及其计算取值
风振系数及其计算取值

风振系数及其计算取值科技名词定义

中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科)风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。(PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。)

《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。

阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。

风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。

对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。

对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。

风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。

阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数。

阵风系数和风振系数

风速包括两部分,10分钟平均风速+脉动风速;相应风压也包括两部分,平均风压+脉动风压。 如果结构较柔,应考虑结构共振,即乘以风振系数。对于刚度较大的结构(T<0.25s),荷载规范规定可以不考虑风振影响 问题: 1、结构刚度较大,可不考虑共振,取风振系数=1。即只考虑平均风压,而不考虑瞬间风压增大,是否正确? 2、阵风系数,是考虑瞬间风速增大时风压相应增大,对平均风压值的放大系数,和结构振动周期无关。如果结构刚度较大不考虑共振,风压应为平均风压乘以阵风系数;如刚度较小,应考虑共振,风压应为平均风压乘以风振系数。风振系数应是阵风系数基础上考虑了共振影响,应比阵风系数更大的一个值。这个说法对不对? A: 结构刚度较大,可不考虑风荷载作用在结构上引起的动力放大,取风振系数=1。此时不需要再考虑瞬间风压增大。考虑瞬间风压体现在阵风系数上,用于围护结构的设计。考虑瞬间风压是由于玻璃幕墙等围护结构是脆性材料,因而将风速的时距由10分钟变为3秒(瞬时),具体就是将平均风压乘阵风系数。若结构刚度较小,要考虑风荷载作用在结构上引起的动力放大,即将平均风压乘风振系数,风振系数是通过结构随机振动计算得到的等效风荷载相对于平均风压的放大,与阵风系数无关。 B:(1)《建筑结构荷载规范》关于风荷载部分的第一条就规定,风振系数是用于结构整体设计;阵风系数是用于围护结构设计(如玻璃幕墙,膜结构等)。 (2)阵风系数与结构的动力特性无关,仅与风压时程的统计特性有关,也不能简单的认为是10分钟平均换算到3秒平均,应该是在统计的基础上、在一定失效概率的基础上的统计值,滦贵汉的硕士论文应该就是做了这个方面的工作(峰值因子的选取)。在规范中,简单的将阵风系数仅与高度有关,不能考虑建筑的干扰作用。最佳的做法应该是在风洞试验的基础上再通过统计的方法确定。 (3)结构刚度无穷大,也不能取风振系数=1。风振系数是随时间变化的风压对结构作用引起的结构响应的放大,一般认为包括三个部分:1)风压自身的脉动值对响应的放大;2)结构动力特性对响应的放大;3)气弹效应对结构的放大。结构刚度无穷大,只能认为第二项可以忽略不计(此时第3项当然也没有),脉动风压的影响还在,因此不能

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

风振系数及其计算取值

风振系数及其计算取值 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科)风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范

风压高度变化系数

风荷载: 风荷载(wind load)空气流动对工程结构所产生的压力。其大小与风速的平方成正比,即 式中ρ为空气质量密度,va和vb分别为风法结构表面前与结构表面后的风速。 基本含义: 风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。 计算公式: 垂直于建筑物表面上的风荷载标准值,应按下述公式计算: 1 当计算主要承重结构时,按式:wk=βzμsμzWo 式中wk—风荷载标准值(kN/m2); βz—高度z 处的风振系数; μs—风荷载体型系数; μz—风压高度变化系数; Wo—基本风压(kN/㎡)。 2 当计算围护结构时,按式:wk=βgzμslμzWo

式中βgz—高度z 处的阵风系数; μsl--风荷载局部体型系数。 风荷载是膜结构设计控制荷载之一,一般作为静荷载进行结构分析。组合值为0 6、频遇值为0 4、准永久值系数为O。 风振系数,指将lOmin平均风压系数转化为瞬时风压系数,同时考虑风荷载脉动与结构动力之间的谐振效应。风振系数不仅与建筑场地有关,且与结构自振特性有关,很难给出“准确值”c大型空间结构属柔性结构体系,自振频率小,振形密集,以至存在大量同频率振形,振形间模态相关性强。对动力效应起作用的频率多,且低阶振形并不一定为主振形,某些高阶振形动力效应反而大。因此,不能用低阶或某阶振形频率确定风振系数,需要综合评价结构整体动力特性,结合既往相似工程,选取合理值。

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

风荷载规范讲解幻灯片[1].ppt分析

风荷载的修订内容 --修订了风压和雪压的基准值 --调整了地面粗糙度类别 --通过高度变化系数的修正,考虑地形地貌的影响 --在风荷载体型系数方面强调了风洞试验的意义 --明确区分主要承重结构和围护结构的风荷载,对围护结构给出相应的阵风系数,要求考虑封闭房屋的内压影响,对局部体型系数进行了调整 --对圆形截面的柔性结构增加横风向风振的计算 --对高层建筑群体提出考虑相互干扰的效应

风雪荷载基准值的调整 --- 设计基准期的概念 --- 统一的设计基准期采用50年 --基本雪压 雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定。 --基本风压 风荷载的基准压力,一般按当地空旷平坦地面上10m 高度处10min 平均的风速观测数据,经概率统计得出50年一遇最大值确定的风速,再考虑相应的空气密度,按公式 确定的风压。 --- 附录D 全面提供了确定风雪荷载 的方法和与设计有关的数据 2/200v w ρ=

风压高度变化系数 (曝露系数) 地面粗糙度分为A、B、C和D四类 A类——近海海面和海岛、海岸、湖岸及沙漠地区 B类——田野、乡村、丛林、丘陵及房屋比较稀疏的乡镇和城市郊区 C类——有密集建筑群的城市市区 D类——有密集建筑群且房屋较高的城市市区

类 别 A B 各国规范 GB ISO ASCE GB ISO ASCE a 0.12 0.11 0.10 0.16 0.14 0.14 k p 1.38 1.40 1.40 1.0 1.0 1.0 类 别 C D 各国规范 GB ISO ASCE GB ISO ASCE a 0.22 0.22 0.22 0.30 0.31 0.33 k p 0.62 0.50 0.51 0.32 0.16 0.20 a μ2)10 (z k p z =

风振系数及其计算取值

风振系数及其计算取值公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科) 风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数。

大跨度平屋面的风振响应及风振系数(精)

第19卷第2期 J: 程 山学 Voll9No2 竺:三』旦 文章编号:1000-4750(2002)02.052-06 !翌2些!型2些皇竺窒 墅!:坠 大跨度平屋面的风振响应及风振系数 陆锋,楼文娟,孙炳楠 {浙江太学土木系.杭州310027) 摘要:本文在有限元分析的基础上建立了大跨度平屋面结构在风荷载作用下的M振响应谱分析方法.并采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数计算了屋面的风振响应及风振系数。文中还深入探讨了屋面刚度、来流风速及风向等参数对太跨度平屋面竖向风振响应及风振系数的影响。计算表明:①大跨度平尾面的竖向风振响应丰要是由第一振型所支配,高阶振型对属面板竖向风振响应的影响很小;②屋面刚度及来流风速对人跨度平屋面的轻向风振响应影响比较大,但对位移风振系数的影响不太明显:③在工程设计中,建议粟用位移风振系数来计算大跨度平屋面的等效静力风荷载。 关键词:大跨度平屋面;有限元;谱分折方法;风振响应:风振系数中图分类号:TU3II.3 文献标识码:A 1 前言 对于风流场中的屋面结构.由于在檐角处出现 本文的主要目的是结合有限元方法推导出大跨度平屋面结构在风荷载作用下的风振响应谱分析方法;然后采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数来计算这种屋面的风振响应及风振系数:最后通过讨论屋面刚度、来流风速及风向等参数对大跨度平屋面竖向风振响应及风振系数的影响,得出~些有益的结论,为进一步深入研究奠定基础。 来流附面层的分离而引起复杂的绕流现象以及作用在屋面结构上的气动力的复杂性,使得它常常成为风工程研究的主要对象。许多研究者对某些特定外形的屋面风荷载进行了研究,并做了大量的风洞试验,例如:双坡屋面…、四坡屋面121、有女儿墙的平屋面pJ、弧状屋面H1及柱形和球形屋面【5I等。由于这

建筑结构荷载规范风振系数

建筑结构荷载规范·风荷载·顺风向风振和风振系数 编制日期:2002-3-1 点击:344 人次如果公式不能正确显示,您需要安装IE6和MathPlayer 7.4.1对于基本自振周期T1 大于0.25s 的工程结构,如房屋、屋盖及各种高耸结构,以及对于高度大于30m 且高宽比大于1.5 的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。风振计算应按随机振动理论进行,结构的自振周期应按结构动力学计算。 注:近似的基本自振周期T1 可按附录E 计算。 7.4.2对于一般悬臂型结构,例如构架、塔架、烟囱等高耸结构,以及高度大于30m,高宽比大于1.5 且可忽略扭转影响的高层建筑,均可仅考虑第一振型的影响,结构的风荷载可按公式(7.1.1-1)通过风振系数来计算,结构在z 高度处的风振系数βz可按下式计算: `β_z=1+(ξv varphi_z)/μ_z`(7.4.2) 式中`ξ`—脉动增大系数; `v`—脉动影响系数; `v varphi_z`—振型系数; `μ_z`—风压高度变化系数。 7.4.3脉动增大系数,可按表7.4.3 确定。

注:计算`ω_0T_1^2`时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62 和0.32 后代入。 7.4.4脉动影响系数,可按下列情况分别确定。 1结构迎风面宽度远小于其高度的情况(如高耸结构等): 1) 若外形、质量沿高度比较均匀,脉动系数可按表7.4.4-1 确定。 2) 当结构迎风面和侧风面的宽度沿高度按直线或接近直线变化,而质量沿高度按连续规律变化时,表7.4.4-1 中的脉动影响系数应再乘以修正系数`θ_B`和`θ_voθ_B`应为构筑物迎风面在z 高度处的宽度Bz 与底部宽度`B_o` 的比值;`θ_ν`可按表7.4.4-2 确定。

风振系数及其计算取值

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数B z。风振系数B z与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科) ;气候资源学(二级学科) 风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m高宽比大于1.5时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。(PS:对于30m以下且高宽比小于 1.5的房屋建 筑,可以不考虑脉动风压影响,此时风振系数取B( z) =1.0。对于低矮、刚度比较大的结构,脉动风压引起的结构振 动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min 的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数B z,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按 以往实践经验不考虑风振系数,即取B z= 1。 对于阵风系数B gz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》 (CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时, 考虑到瞬时风比平均风要大所乘的系数。

风振系数和阵风系数

风振系数和阵风系数 众所周知,自然风可以认为由长周期的平均风和短周期的脉动风组成。因此风作用也应由平均风荷载作用和脉动风荷载作用组成。平均风由于作用时长较大,因此可以近似看成静荷载作用。而规范中对脉动风荷载作用的考虑采取的是一种简化近似计算方法,即将脉动风荷载作用按照平均风荷载作用乘以影响系数(学过抗风的就知道这部分主要由背景分量和共振分量组成,背景分量主要是由风速瞬时变化引起,而共振分量是由于结构振动引起的)的方法计取,这也就是我们抗风中荷载等效的方法之一。 由此可以知道风振系数实质就是前述影响系数加1,也即总风荷载作用与平均风荷载作用的比值。 而对于围护结构,我们一般要特别考虑的是其局部风压作用,而围护结构的局部结构刚度一般相对较大,风荷载作用后围护结构局部振动一般很小可以忽略不计,因此在计取其脉动风荷载作用是可以不考虑结构振动引起的共振分量。正因为此,脉动风荷载作用可以按照脉动风速可以近似认为平均风速乘以瞬时风速瞬间增 大系数后按照平均风荷载作用处理方法计取。 由此可以知道阵风系数实质上就是脉动风速瞬时增大系数加1,也即忽略了结构自身振动影响的总风荷载作用与平均风荷载作用的比值。 综上所述,风振系数和阵风系数都是考虑脉动风荷载作用的增大系数,但是不同之处是阵风系数是根据结构自身特性进行的进一步简化计算结果。 有了上述分析我们就很容易理解“随建筑高度的增大,阵风系数反而是减小的; 随地面粗糙度的增大,阵风系数也是增大”这句话了。 而风振系数不具有这样特性主要是由于随建筑高度的增大,结构振动响是逐渐变大的,虽然脉动风瞬时影响引起的风振作用减小,但两者一起考虑后,随着建筑高度的增大,风振系数不一定逐渐减小。

输电塔的风振系数计算与程序设计

万方数据

万方数据

特种结构2010年第3期 课题组编制的风振系数计算程序的可行性和正确性。 3.1时程法计算风振系数及程序验证 时程分析法可以较为准确地反映结构的风振情况。根据模拟风荷载下结构的时程响应结果对szT2的风振系数进行了计算,主要处理过程及相应的计算结果如下。 基于Matlab,采用线性滤波法中的自回归(Auto.Regressive,A11)模型对风荷载进行模拟,风速谱采用Davenpoa谱,自相关函数采用Shiotami 布置立面(单位:m)行风振响应分析。故本文的时程计算中取20%的湍流度和0.02的结构阻尼比。 图3为模拟所得的塔顶高度处的风速时程曲线及风速谱。可以看出,模拟所得的风速谱与Davenpoa谱吻合良好,平均风速与理论值一致。脉动风速为零均值平稳高斯过程,在10m高度处其均方差为5.457,对应的湍流度为20.4%,基本符合目标值20%。因此,可以认为模拟所得的脉动风速谱能够模拟真实风场。 将模拟的风速时程转化为输电塔模型上的结点力,通过在时间域内直接求解运动微分方程求得结构的响应[7|,图4给出了SZl2塔上导线横担高度处塔身位移及加速度时程曲线。 在已经进行风振时程响应分析的基础上,风振系数直接根据其定义进行计算,其中峰值保证因子取2.2。SZl2塔时程计算求得的最终的风振系数值情况见图4。沿塔身高度,风振系数加权一6——值日=∑Bhi/Shi=1.433,由于该结果为风荷载的动力时程分析计算所得,其值代表风振动力的实际情况,故不对其加权值进行调整。此外,图5中也给出了自编风振系数计算程序和荷载规范的计算结果(加权值调整到1.6)。 命 \ 目 √ 删 匿 时间(s) 频率(Hz) 图3塔顶高度处的模拟风速时程曲线及风速谱 图48Z'I'2塔上导线横担高度处塔身位移 及加速度时程曲线 图5风振系数计算值沿高度变化曲线可以看出:风振系数曲线在上、中、下三个导线横担处出现明显的突变。这是由输电塔结构特殊的结构外形特点造成的,其在横担处的质量和挡风面积的突变使其高度所在处的风振系数明显大于普通沿高度截面均匀变化的高耸结构相应高度的 SPF_EIALSTRL『Cn珉l=sNo.320103 2 2 2 2 2 L l 1 l l 籁帕鞲匠 万方数据

风荷载计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μz

高度(m) 地面粗糙类别 A B C D 5 1.17 1.00 0.74 0.62 10 1.38 1.00 0.74 0.62 15 1.52 1.14 0.74 0.62 计算公式 20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.24 30 1.80 1.42 1.00 0.62 B类地区= (z/10)0.32 40 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.44 50 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.6 60 2.12 1.77 1.35 0.93 70 2.20 1.86 1.45 1.02 80 2.27 1.95 1.54 1.11 90 2.34 2.02 1.62 1.19 100 2.40 2.09 1.70 1.27 150 2.64 2.38 2.03 1.61 200 2.83 2.61 2.30 1.92 250 2.99 2.80 2.54 2.19 300 3.12 2.97 2.75 2.45 350 3.12 3.12 2.94 2.68 400 3.12 3.12 3.12 2.91 ≥450 3.12 3.12 3.12 3.12 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型

风振系数及其计算取值

风振系数及其计算取值科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科)风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。(PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数。

大跨网架屋盖结构的风振系数计算

58 工程设计CAD与智能建筑 2002年 第12期 总第 73期 工程设计CAD 与软件应用 CAD & Software Application

59 Computer Aided Design And Intelligent Building 2002 12 No. 73 表1 反对称的两块网壳,主要采用四角锥体系形式,周围有一条钢环梁,每块网壳分别用8根巨型立柱支撑,每根立柱用8条钢索拉住网壳。根据风洞试验模型的测点布置取东测屋盖,采用ANSYS软件进行有限元建模计算。结构参数和模型如下:(1)上弦、下弦和腹杆的杆件直径φ8~22cm,壁厚5~12mm,采用3-D Spar单元,共8611个单元;(2)钢环梁高宽各为1.5m,壁厚25mm,采用3-D ElasticBeam单元,共划分218个单元;(3)拉索为7束7φ5至30束7φ5,预拉力为300kN至4000kN不等,采用Tension-only Spar单元,共64个单元。整个结构一共划分单元8893个,节点2522个。如图2所示。3.2 施加荷载 由于体育中心的屋盖和看台均为敞开结构,其上下表面同时受到风压,在计算中,取上下表面的风压差作为风载作用于屋盖的上表面。取0.002s为时步进行计算,形成1000个时程步,根据1:50的试验时间比,每一时步相当于实际时间的0.1s。 屋盖的上下表面同步测量时的各对测压点上的净压力系数可导出如下:  (4) 其中Piu为作用在测点i处的上表面压力,Pid为作用在测点i处的下表面压力,P0和P∞分别是试验时参考高度处的总压和静压。由于风洞试验的参考点在1.62m高度处,即参考点相当于实际高度为324m。风场B类,基本风压0.7kpa。故得到各点的Cpi(t)时程曲线后,则对应实际建筑各点的风压时程曲线为: (5) 在完成有限元建模之后,把各个测点上的风荷载时程数据采用空 间插值加密,在有限元分析中的足够精度。 响应时程值Uzi,方差σ: 由式(2)可得 μ3.3 计算结果 本文计算了90°,120°,150°,180°,240°,270°,300°,330°等8块,参见图2,从北向南至块8。具体计算结1。 1。 1.93Hz,因此计算所 建议在设计中对各个

风荷载计算算例.doc

3.6. 风荷载计算 根据《建筑结构荷载规范》( GB50009-2012)规范,风荷载的计算公式为: w kz u s u z 0 ( 8.1.1-1) u s——体型系数 u z——风压高度变化系数 z——风振系数 0——基本风压 w k——风荷载标准值 体型系数 u s根据建筑平面形状由《建筑结构荷载规范》表7.3.1 确定。本项目建筑平面为规则的矩形,查表8.3.1 项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。 风压高度变化系数 u z根据建筑物计算点离地面高度和地面粗糙度类别,按 照规范表 8.2.1 确定。本工程结构顶端高度为 3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范 8.2.1 条地面粗糙度为 B 类。 由表 8.2.1 高度 90 米和 100 米处的 B 类地面粗糙度的风压高度变化系数分别为1.93 和 2.00。 则 90.6 米高度处的风压高度变化系数通过线性插值为: u z 90.6 90 (2.00 1.93) 1.93 1.9342 100 90

对于高度大于 30m 且高宽比大于 1.5 的房屋,以及基本自振周期 T1 大于 0.25s 的各种高耸结构, 应考虑风压脉动对结构产生顺风向风振的影响。 本工程 30 层钢结构建筑。 基本周期估算为 T 1= 0.10~0.15 n=3.0~4.5s ,应考虑脉动风对 结构顺风向风振的影响,并由下式计算: Z 1 2gI 10 B z 1 R 2 (8.4.3) 式中: g ——峰值因子,可取 2.5 I 10 ——10m 高度名义湍流强度,对应 ABC 和 D 类地面粗糙,可分别取 0.12、0.14、 0.23 和 0.39; R ——脉动风荷载的共振分量因子 B z ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: R x 12 6 (1 x 2 )4/3 1 1 (8.4.4-1) x 1 30 f 1 , x 1 5 k w 0 ( 8.4.4-2) 式中: f 1 ——结构第 1 阶自振频率( Hz ) k ——地面粗糙度修正系数,对应 、 、 C 和 D 类地面粗糙,可分别取 、 w A B 1.28 1.0、0.54 和 0.26; 1 ——结构阻尼比, 对钢结构可取 0.01,对有填充墙的钢结构房屋可取 0.02,对 钢筋混凝土及砌体结构可取 0.05,对其他结构可根据工程经验确定。 经过 etabs 软件分析,结构自振周期 f 1 4.67s

3-第二章 风振系数计算

9 第2章 风振系数计算 2.1 引言 在随机脉动风压的作用下,高耸结构会产生随机振动,除了顺风向的风振响应外,结构还会产生横风向的风振响应。但在通常情况下,对于非圆截面,顺风向风振响应占据主要地位,对于一般的塔架结构,可以忽略横风向共振的作用[13]。因此,本章主要研究输电塔结构在随机风荷载作用下的顺风向风振系数的计算。 作用于结构物上的脉动风荷载对结构产生的动力响应与结构物本身的动力特性有关。当结构物刚性很强时,由脉动风所引起的结构物风振惯性力并不明显,可以略去,但需要考虑由脉动风所引起的瞬时阵风荷载;当结构物刚性较弱即为柔性结构时,除静力风荷载()z ω外,还应计及风振惯性力的大小,即风振动力荷载。如果风振动力荷载用(,)d z t ω表示,则柔性结构物的总风荷载(,)W z t 表达如下[4]: (,)()(,)d W z t z z t ωω=+ (2-1) 工程计算中,常采用集中风荷载的表达式,则式(2-1)改写为 ()()()c d P z P z P z =+ (2-2a ) 或 i c i d P P P =+ (2-2b ) 式中,()P z ,i P —— 顺风向z 高度处第i 点的总风荷载(kN ); ()c P z ,ci P —— 顺风向z 高度处i 点总静力风荷载(kN ) ; ()d P z ,di P ——顺风向z 高度处i 点风振动力荷载(kN ) ,其中()()d d z P z z A ω=,或()()d i d i i P z z A ω=。在这里,()z i A A 为z 高度(第i 点)处相关的迎风面竖向投影面积(m 2)。 本章下面将讨论风振动力荷载的计算原理和表达式,以及可在实际输电塔设计中应用的风振系数的计算方法。

风荷载计算

风荷载 ????当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 ????建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 ????垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: ???????? 1.基本风压值Wo ????按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式?确定。但不得小于m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 ????《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz ????《荷载规范》把地面粗糙度分为A、B、C、D四类。 ????A类:指近海海面、海岸、湖岸、海岛及沙漠地区;

????B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;????C类:指有密集建筑群的城市市区; ????D类:指有密集建筑群且房屋较高的城市市区; 计算公式 A类地区=(z/10) B类地区= (z/10) C类地区=(z/10) D类地区=(z/10)

400 ≥450 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs ????风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。 ????计算主体结构的风荷载效应时风荷载体型系数可按书中P57表-2确定各个表面的风载体型系数或由风洞试验确定。几种常用结构形式的风载体型系数如下图 ????注:“+”代表压力;“-”代表拉力。 4.风振系数βz ????风振系数βz反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度、基本风压。《荷载规范》规定对于基本自振周期大于的工程结构,如房屋、屋盖及各种高耸结构,以及对于高度大于30m且高宽比大于的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。其中风振系数βz可按下式计算: ?????????????????????????????????(-2) 式中:ψz——基本振型z高度处的振型系数,当高度和质量沿高度分布均匀时,可以近似用z/H代替振型系数;

相关文档
最新文档