实验二十七负阻抗变换器的研究

实验二十七负阻抗变换器的研究
实验二十七负阻抗变换器的研究

实验二十七负阻抗变换器的研究

1实验目的

1.加深对负阻抗概念的认识,掌握对含有负阻抗器件电路的分析方法。

2.了解负阻抗变换器的工作原理及其运放实现。

3.掌握负阻抗变换器的各种测试方法。

2实验器材

1.QY-DT01电源控制屏

2.直流稳压电源

3.函数信号发生器

4.QY-DG05通用电路实验模块

5.QY-DG14受控源/回转器/负阻抗变换器实验模块

6.示波器

3实验原理

1.负阻抗是电路理论中一个重要基本概念,在工程实践中广泛的应用。负阻抗的产生除某些线性元件(如燧道二极管)在某个电压或电流的范围内具有负阻特性外,一般都由一个有源双口网络来形成一个等值的线性负阻抗。该网络由线性集成电路或晶体管等元件组成,这样的网络称作负阻抗变换器(NIC)。

按有源网络输入电压和电流与输出电压和电流的关系,可分为电流倒置型和电压倒置型两种(INIC及VNIC),电路模型如图1 所示。

图1负阻抗变换器电路模型

理想情况下,两种负阻抗变换器的电压、电流变换关系为:

(1) 对于INIC 型:

12U U = , 21I KI = (K 为正的常实数电流增益) (公式

1)

(2) 对于VNIC 型:

2

11U K U =- , 21I I =- (K 1为电压增益) (公式2)

由(公式1)可见,输入电压1U 经传输后等于输出电压2U ,大小和极性均未改变,但电流1I 经传输后变为2KI ,即大小和方向都变了,故名电流倒置型;由式(公式2)可见,经传输后,21I I =-,但电压的大小和正负极性都变了,故名电压倒置型。

2. 阻抗变换作用

今在NIC 的输出端接以阻抗Z L ,如图26-2所示,则其输入阻抗可由(式1)求得: 1221112121()

i L U U U Z Z K I K I K I =

===--- 或由(式2)可得 122212i L U K U Z K Z I I -=

==--

图2阻抗变换原理图

可见Z i 为Z L 的(-1/K 1)倍或(-K 2)倍,即把正阻抗Z L 变换成了负阻抗,亦即能把R ,L ,C 元件分别变换为-R/K 1,L /K 1,C/K 1(或-K 2R ,-K 2L ,-K 2C ),故名负阻抗变换器。如果在INIC 的输出端接上R 与C 串联连接的容性负载,并在输入端并联电阻R ,则该电路的输入阻抗可等值为R 与L 串联的感性负载,等值电感C R L eq 2=。

综上所述,NIC 是一种二端口器件,它把接在一个端口的阻抗变换成另一端口的负阻抗。 可见Z i 为Z 的(-1/K 1)倍或(-K

2)倍,即把正阻抗Z L 变换成了负阻抗,亦即能把R ,L ,C 元件分别变换为-R/K 1,L /K 1,C/K 1(或-K 2R ,-K 2L ,-K 2C ),故名负阻抗变换器。如果在

INIC 的输出端接上R 与C 串联连接的容性负载,并在输入端并联电阻R ,则该电路的输入阻抗可等值为R 与L 串联的感性负载,等值电感C R L eq 2=。

3. 用运算放大器实现NIC

NIC 可用受控源来实现,图1(a )和(b )分别给出了实现CNIC 和VNIC 的原理图。 本实验实际中可用运算放大器来实现NIC ,其电路如图3所示,在一定的电压、电流范围内可获得良好的线性度。

我们把选用的运算放大器作为理想运算放大器来处理,根据虚短和虚断

(运放输入“虚短”)

(运放输入“虚断”)

L L L i KZ Z Z Z I Z Z Z I I U I U Z -=-=-===2121

221211

图3由运放构成的NIC 原理图

可见,该电路属于电流倒置型(INIC )负阻抗变换器,输入阻抗Z i 等于负载阻抗Z L 乘-K 倍。负阻抗变换器具有十分广泛的应用,例如可以用来实现阻抗变换:

若Z 1=R 1=1k Ω、Z 2=R 2=300Ω时,则有:

3

102121===R R Z Z K (1) 若负载为电阻Z L =R L 时,则:L L i R KZ Z ?-

=-=310 21U U U U ===-+2431I I I I -=-==2211Z I Z I

=

(2) 若负载为电容C ,C

j Z L ω1=时, 则:L Kj C

j K KZ Z L i ωω=-=-=1 其中:ωL=1/ωC (3) 若负载为电感L ,ZL=jωL 时, 则C

j K L Kj kZ Z L i ωω1=-=-= 其中ωL=1/ωC 可见,电容通过负阻抗变换器呈现电感性质,而电感通过负阻抗变换器呈现电容性质。 4 实验内容

随着集成电路技术的发展,电工电子技术在应用方面逐渐向低电压、高速度和宽频带等方面发展,因此在实践中又研究出了许多新型的元器件,负阻抗变换器(NIC)就是其中之一。负阻器件(或负阻抗)是电路理论中的一个非常重要的基本概念,它在理论上和实践中都具有非常重要的意义,比如溶液电导仪、黑白电视机上使用的天线阻抗变换器、有源滤波器等,在通信领域也有着广泛的应用。

注意事项:

1. “CINC ”本身需接入±12V 直流工作电源,接线时不要接错,否则将损坏负阻抗变换器。

2. 本实验各项内容中,电路元件参数及信号源输出电压注意不要超过限定范围,整个实验中应使U1=(0~1)V 。

3. 防止运放输出端短路。

4. 本实验为综合性实验,注意做好实验前的预习工作,明确实验内容的原理及测试方法。

5. 本实验中,由于接线较多,应仔细检查,尤其是连接信号源和示波器时,两者的低端不可接错。

4.1 测量负电阻的伏安特性,计算电流增益K 及等值负阻。

实验电路如图4所示,图中,U 1为恒压源的可调稳压输出端,负载电阻R L 用元件盒。

变压器电压调整率与短路阻抗的关系

变压器电压调整率与短路阻抗的关系 1 说明 从变压器厂家订制变压器时,与变压器厂家的技术人员进行沟通,要求对方在变压器参数上标明电压调整率。对方回答“已经注明短路阻抗了,短路阻抗与电压调整率等效,不需要注明电压调整率。”当时没有考虑清楚,没有进行反驳。自己进行了资料查找与计算,经过查找计算,以前自己的理解不准确,厂家的技术人员的理解也不正确,下面试分析短路阻抗与电压调整率的关系: 2 名词定义 ? 电压调整率:变压器某一个绕组的空载电压和同一绕组在规定负载和功率因数时 的电压之差与该绕组满载电压的比,称为电压调整率,通常用百分数表示。 %10022 2×?= ΔN N U U U U U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压。 ? 短路阻抗:变压器短路阻抗也称阻抗电压,在变压器行业是这样定义的:当变压 器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz 。通常Uz 以额定电压的百分数表示。 %10011×= N Z Z U U U Z U :短路阻抗; Z U 1:二次侧短路,一次侧流额定电流时,一次侧的电压; N U 1:一次侧的额定电压。 3 电压调整率计算公式 ? 电压调整率的计算公式: 参考《电力变压器手册》(保定天威保变电气股份有限公司组编—谢毓城主编—机械工业出版社),电压调整率的计算公式为:

% )sin cos (2001sin cos % 100*% 100*212122 2?? ? ??????+?+?=?=?= Δ? ????KR KX KX KR N N N N U U U U U U U U U U U %20021 cos ??? ? ????+=Δ=KX KR U U U ? U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压; N U 1:一次侧的额定电压; ? 2U :是2U 折算到一次侧的电压; KR U :短路阻抗的电阻分量; KX U :短路阻抗的电抗分量; ?cos :负载功率因数; 说明:上述公式是在N I I 22?的条件下得出,如果负载电流不是额定值,则计算出的U Δ应乘以N I I 22/。 ? 计算用向量图:

变压器空载特性试验的目的及注意事项

变压器空载特性试验的目的及注意事项 变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示。 1、变压器空载试验的电源容量的选择:保证电源波形失真不超过5%,试品的空载容量应在电源容量的50以下;采用调压起加压,空载容量应小于调压器容量的50%;采用发电机组试验时,空载容量应小于发电机容量的25%。空载试验的试验电压是低压侧的额定电压,变压器空载试验主要测量空载损耗。空载损耗主要是铁损耗。铁损耗的大小可以认为与负载的大小无关,即空载时的损耗等于负载时的铁损耗,但这是指额定电压时的情况。如果电压偏离额定指,由于变压器铁芯中的磁感应强度处在磁化曲线的饱和段,空载损耗和空载电流都会急剧变化,因此,空载试验应在额定电压下进行。 注意:在测量大型变压器的空载或负载损耗时,因为功率因数很低,可达到cosφ小于和等于0.1。所以一定要求采用低功率因数的

瓦特表。 2、空载试验是测量额定电压下的空载损耗和空载电流,试验时高压侧开路,低压侧加压,试验电压是低压侧的额定电压,试验电压低,试验电流为额定电流百分之几或千分之几。 3、通过空载试验可以发现变压器以下缺陷:硅钢片间绝缘不良。铁芯极间、片间局部短路烧损,穿芯螺栓或绑扎钢带、压板、上轭铁等的绝缘部分损坏、形成短路,磁路中硅钢片松动、错位、气隙太大,铁芯多点接地,线圈有匝间、层间短路或并联支路匝数不等、安匝不平衡等,误用了高耗劣质硅钢片或设计计算有误。

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

变压器短路电流计算

这本身就不是一个简单的事! 你既然用到短路电流了,就肯定不是初中阶段的计算了吧 所以你就不用找省劲的法子了 当然你也可以找个计算软件嘛就不用自己计算了 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

变压器短路阻抗测试仪技术规范书

变压器短路阻抗测试仪技术规范书 1 基本要求 短路阻抗法是判断绕组变形的传统方法,根据GB1094.5-2003和IEC60076-5:2000规定,短路电抗的变化量是判断变压器绕组有无变形的有效判据。设备应具备抗干扰能力,即使在强电场及磁场的干扰下,也可以准确的测试阻抗值,真实反映设备运行情况。 2性能要求 2.1 本次购置的变压器短路阻抗测试仪应包括以下基本部件: 变压器短路阻抗测试仪主机、线箱(包含电源线、测试线、接地线)、合格证、说明书、校验合格证、校验报告。 2.2 测试主机应具备以下技术功能: 2.2.1仪器的测试结果符合GB1094.1-2003和 GB/T 6451系列有关标准的规定,可满足在试验电源的波形畸变条件下仪器自身可以得出校正后的变压器短路阻抗、损耗参数值,特别是对变压器的损耗值按照相关标准使用平均值电压表数值进行校正计算。 2.2.2仪器即可对单相变压器进行阻抗测试、亦可以对三相变压器进行三相法阻抗测试和对三相变压器进行单相法阻抗测试,完成对变压器相关参数的短路阻抗、阻抗电压、零序阻抗、铁芯损耗等进行全自动测试。 2.2.3仪器可以同屏幕显示出被测的三相电压、电流的真有效值、平均值、有功功率、无功功率、功率因数、工频频率、电压及电流的相量图等电气参数,便于现场分析判断相关测试数据。 2.2.4可显示每次测试的电压、电流、功率、频率等参数。 2.2.5仅使用单相220V交流电源即可完成测量,在没有交流电源情况下,可使用小功率UPS电源供电(根据测试电流考虑电源容量)。 2.2.6接线操作简单方便,可以使用单相测试电源也可使用三相测试电源。 2.2.7自动频率校正,可消除频率波动造成的误差。 2.2.8可储存100次以上测量结果,仪器内置不掉电存储器,可长期保存测量数据。 2.2.9大屏幕液晶显示,全部汉字菜单及操作提示,直观方便。 2.2.10不掉电日历,时钟功能。

4.3负阻抗变换器

4.3负阻抗变换器的应用 实验报告要求 1.(1)RL=500Ω RL=500Ω U1/V 0.5 1 1.5 2 2.5 3 -R 的平均值(Ω) UR1/V -1.04 -2.02 -3.04 -4.04 -5.06 -5.6 -499.0124542 I1/mA -1.04 -2.02 -3.04 -4.04 -5.06 -5.6 -R/Ω -480.7692308 -495.049505 -493.4210526 -495.049505 -494.0711462 -535.7142857 RL=1000Ω U1/V 0.5 1 1.5 2 2.5 3 -R 的平均值(Ω) UR1/V -0.5 -0.98 -1.48 -1.97 -2.47 -3 -1010.215975 I1/mA -0.5 -0.98 -1.48 -1.97 -2.47 -3 -R/Ω -1000 -1020.408163 -1013.513514 -1015.228426 -1012.145 749 -1000

2.负内阻的电压源的伏安特性曲线 Rs=30 0Ω RL/Ω 3 5 7 9 15 30 70 90 无穷 U2/V 5.48 5.24 5.15 5.07 5.03 4.99 4.95 4.94 4.93 UR2/V -1.85 -1.04 -0.74 -0.33 -0.23 -0.16 -0.06 -0.02 -0.01 I2/mA 1.85 1.04 0.74 0.33 0.23 0.16 0.06 0.02 0.01 Rs=1k Ω RL/Ω 3 5 7 9 15 30 70 90 无穷 U2/V 7.39 6.16 5.74 5.54 5.27 5.09 4.99 4.97 4.92 UR2/V -2.46 -1.23 -0.82 -0.61 -0.35 -0.17 -0.07 -0.06 0 I2/mA 2.46 1.23 0.82 0.61 0.35 0.17 0.07 0.06

三绕组变压器的短路容量计算

短路容量计算 (1)110kV : 最大短路容量 m a x 1825d S M VA =; 最小短路容量 m i n 855d S M VA =; 110 kV :m in 6.630s X =Ω ; m i n 21.104s L m H =; max 14.152s X =Ω ; m a x 45.047s L m H =; 10kV :min 0.0548s X =Ω ; m i n 0.1744s L m H =; m a x 0.11696s X =Ω ; m a x 0.3723s L m H =; 6kV :m in 0.01973s X =Ω; m i n 0.0628s L m H =; m a x 0.0421s X =Ω; m a x 0.1340s L m H = ; (2) 3#主变: 6kV :2 6 0.10090.145325 T X = ?Ω=Ω;T 0.4625L m H = ; (3) 1#或2#主变阻抗计算 11%(10.1 18.0 6.5)% 10.8%2 k u = +-=; 21%(10.1 6.518.0)%0.7%2k u =+-=-; 31%(18.0 6.510.1)%7.2% 2 k u = +-=; 10kV :2 110 0.1080.34331.5T X = ?Ω=Ω, 1 1.091T L m H =; 2 210 (0.007)0.02231.5T X = ?-Ω=-Ω, 20.0707T L m H =-; 2 310 0.0720.228631.5 T X = ?Ω=Ω; 30.728T L m H =; 6kV : 1360.1080.123431.5T X =?Ω=Ω , 10.3929T L m H =; 236(0.007)0.00831.5T X =?-Ω=-Ω , 20.0255T L m H =-; 336 0.0720.082331.5 T X = ?Ω=Ω ; 30.262T L m H =; (5) 10kV 母线短路容量计算

变压器的空载试验和短路试验等各类知识点

变压器的空载试验和短路试验 变压器的空载试验指的是通过变压器的空载运行来测定变压器的空载电流和空载损耗。一般说来,空载试验可以在变压器的任何一侧进行。通常将额定频率的正弦电压加在低压线圈上而高压侧开路。为了测出空载电流和空载损耗随电压变化的曲线,外施电压要能在一定范围内进行调节。 变压器空载时,铁芯中主磁通的大小是由绕组端电压决定的,当变压器施加额定电压时,铁芯中的主磁通达到了变压器额定工作时的数值,这时铁芯中的功率损耗也达到了变压器额定工作下的数值,因此变压器空载时输入功率可以认为全部是变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。 变压器的短路试验通常是将高压线圈接至电源,而将低压线圈直接短接。由于一般电力变压器的短路阻抗很小,为了避免过大的短路电流损坏变压器的线圈,短路试验应在降低电压的条件下进行。用自耦变压器调节外旋电压,使电流在0.1~1.3倍额定电流范围变化。原边电流达到额定值时,变压器的铜损相当于额定负载时的铜损,因外施电压较低,铁芯中的工作磁通比额定工作状态小得多,铁损可以忽略不计,所以短路试验的全部输入功率基本上都消耗在变压器绕组上,短路试验可测出铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%,其数值随变压器容量的增大而下降。 变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。

通用阻抗变换器在有源滤波器中的应用.

通用阻抗变换器在有源滤波器中的应用 引言在音频系统中,为了避免因采用半导体或其它有源器件带来的非线性和频率特性畸变,保证实现平坦而宽阔的高频响应,通常选用分立元件构成的滤波器来满足DSD(直接数据流)对频率带宽的苛刻要求。而在分立元件有源滤波器的设计与实现过程中,通常要寻找大量数值不同、但精度要求十分严格的元件又非常困难。而采用通用阻抗变换器(GIC)由于电路中只有固定电阻和电容,利用若干个可变数值电阻即可完成电路设计,所以实现起来异常方 引言 在音频系统中,为了避免因采用半导体或其它有源器件带来的非线性和频率特性畸变,保证实现平坦而宽阔的高频响应,通常选用分立元件构成的滤波器来满足DSD(直接数据流)对频率带宽的苛刻要求。而在分立元件有源滤波器的设计与实现过程中,通常要寻找大量数值不同、但精度要求十分严格的元件又非常困难。而采用通用阻抗变换器(GIC)由于电路中只有固定电阻和电容,利用若干个可变数值电阻即可完成电路设计,所以实现起来异常方便。下面就将其具体设计及应用方法加以详细分析。该方法中的l/S变换实现法可用于设计低通滤波器,而S变换实现法则可用于设计高通滤波器。 1 通用阻抗变换器 通用阻抗变换器(GIC)的典型电路如图1所示,其驱动点阻抗ZIN可以表示为: 如果把Z4变换为阻抗为1/SC(其中S=jω)的虚拟元件,其它元件为电阻,则驱动点的阻抗为: 这样,该阻抗即与频率成正比,它相当于一个电感,可计算其电感值为: 如果引入两个电容取代Z1和Z3,而Z2、Z4、Z5仍为电阻,则驱动点的阻抗表达式可变为: 可见,该阻抗正比于1/S2,可称为D元件。它的驱动点阻抗为:

负阻抗变换器的仿真分析

五.负阻抗变换器的仿真分析 一.实验目的: (1)利用运算放大器实现的负阻抗变换器的仿真分析 (2)使用multisim 仿真电路。 二.实验原理 利用回转器还可以制造负阻抗变换器,它也是一个二端口元件,NIC 的端口特性可以用T 参数来描述为 。 还有电压反响型 ,同理 称为电流方向型 ,这种电流经传输后改变方向经传输后变为 为常数,式中电流其中NIC NIC NIC I k -I k 0012 12211? ???? ?? ? ? ? ?????-? ?????-=??? ?????I U k I U 在NIC 的输出端口2—2’ 接上负载Z L ,则有U 2= -I 2Z L 。对于CNIC ,从输入端口看入的阻抗为 L in Z K I K U I U Z 1 2 121 111- === 对于VNIC ,从输入端口看入的阻抗为 L in Z K I U K I U K I U Z 22 22 2 221 11-==--== 若倒过来,把负载Z L 接在输入端口,则有U 1=-I 1Z L ,从输出端口看入,对于CNIC ,有 L in Z K I U K I K U I U Z 11 111 1 12 221-=== = NIC 还可用受控源来实现,如图

、 如下图所示二端口网络中k>0 (1)求其T 参数矩阵,指出其特性。 (2)在2端接入负载RL 后,在1端的输入电阻为何值 根据KVL 和KCL 有 电阻。 端的输入电阻是一个负 为负值,说明从 可见端的输入电阻为后,端接入在) (。 电流方向型 为负阻抗变换器,且为 参数矩阵可见该二端口 由上面导出的 得:1R )(1R 1R 22NIC T 100110 011u i 2 21 1i 2211212 11122 21L L kR R k i k u i u k T i u k i u i k i u ki R u u i u u -=-=== ??? ? ?? ??-=∴?? ? ???-????????-=?????????? ??==?? ???+-== 三.仿真实验

变压器短路电流计算

1) 问题分析的理论基础: 当变压器在额定电压下发生短路时,其短路电流会大大超过其稳定值。稳定的短路电流按下式计算: =K I I Z K %100N 式中: Z K % ----- 短路阻抗百分值; I N -------变压器额定电流。 变压器在短路时是不饱和的,甚至在一次侧所加的电压为额定电压时也不饱和。这种情况可由变压器的T 型等值电路图来说明。变压器是否饱和,则可接等值电路图励磁回路的电压值来估算。在额定负载下,励磁回路的电压与一次电压差别不大,这是因为一次回路的阻抗压降很小。在短路时,励磁回路的电压约等于一次电压的一半,所以变压器不饱和。根据这个关系可以忽略励磁回路,而采用下图所示的简化电路图。 图:计算变压器突发短路电流的连接图和等值电路图 当电压为正弦波时,得出 u L =dt di u +u u r i =U 1m sin (ωt+α) 因为变压器不饱和,可以认为短路电感是个常量。上面的方程式包括右边部分时的特解给出稳态短路电流。 I=)sin()sin()(22 k my k k k m tt I tt L r U ?αω?αωω-+=-++ k ?---一次电压和短路电流之间的相位角:k k K r x arctg =? 上面的方程式不包括右边部分时的能解给出的短路电流的自由分量:u u L t r a n Ae i /.-= 短路电流的完全表达式为 sin m y ua ny u I i i i =+=ω(N n L r Ae t /)-++α

当t=0时,短路电流i u =0, 因为可以认为变压器在短路的瞬间是无负载的。所以 A=-)sin(u m v a I ?- 因而,u u L t r u m v k m v u e a I t I i /)sin()sin(----+=??αω 这样一来,过渡的短路电流包括两部分:稳态分量和非周期分量,后者是按时间常数T=L u /r u 衰减的。电感L u 是与变压器漏磁通相对应的,漏磁通一般比主磁通小得多。所以,短路的时间常数比变压器合闸到线路上的过渡过程的时间常数要小得多,非周期分量的衰减实际上是在几个交流半周期内完成的。 非周期分量电流与外施电压的初相角有关。如果0=-u ?α,即2π ?α==u ,在短路瞬间外施电压通过最大值,此时没有非周期分量,短路电流一开始就等于稳态值。如果,2π ?α=-u 即,2π ?α+=u 在短路瞬间外施电压通过零点,此时非周期分量最大,且当时 间t=1时,其值等于稳态短路电流的幅值。假若在后一情况下,忽略非周期分量的衰减,在稳态分量达到最大值时突发短路电流的幅值将为稳态短路电流幅值的两倍。实际上,非周期分量衰减得非常快,短路电流的幅值小于二倍的稳态短路电流值。 将2π ?α=-u 代入上面的公式,得出 u u n n L t r m y L r m y e I e I I //max )1(---+-=π N k m I Z k I % 1002max = 式中:Z K ---变压器的短路阻抗;n n L r m e k /1π-+=---考虑短路电流非周期分量的系数。 对于大容量的变压器,这个系数等于1.7~1.8;对于小容量的变压器,这个系数等于 1.3~1.4. 按上式计算的短路电流是属于最严重的短路情况,即短路发生在外施电压通过零值的瞬间.一般说来这种情况非常少有,因为在外施电压通过最大值或接近最大值时,在短路的导体之间才产生电弧,表明短路开始.所以,实际上突发短路电流的幅值,一般均小于按上式计算出来的值. 以上是三相短路时的等值电路图。实际上单相和两相短路时,其等值电路图也是相似的,下面说明两相短路时的稳态电流值的计算方法: 设变压器的正序、负序和零序阻抗分别为Z1、Z2和Z0,设短路故障发生在B 、C 两相,则U B =U C =-1/2U A , 其等值电路如下: 则I A =0,I B =I C ,I 0=1/3(I A +I B +I C )=0,故计算 电流时不涉及到零序阻抗。所以两相短路电流为:

变压器并列运行及负荷分配的计算

变压器并列运行及负荷 分配的计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、变压器并列运行的条件是什么 1.变比相等。变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。差值最多不超过±%。 2.联结组序号必须相同。接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。 3.两台变压器容量比不超过3:1。容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。 4.短路电压相同。 关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。 如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。至于为什么,请看文末的变压器并列运行负荷分配计算。 二、什么叫变压器的短路电压 这里要先说一下变压器的阻抗电压 变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。此数值在变压器设计时遵从国家标准。

阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。 再说变压器的短路电压 变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。 所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。 三、变压器短路阻抗大好,还是小了好(我习惯叫短路阻抗,最直观) 变压器的短路阻抗大小各有利弊。如果选择大的,当变压器的负载端发生短路时,短路电流会小些,变压器所承受的短路力会小,所受破坏也相对小些。但平时线路压降会增大,线路损耗增加、发热量加大,有时靠分接开关甚至调不过来,使设备无法获得合适电压,从而影响设备的正常运转。 另一方面,短路阻抗大的,产品的几何尺寸相对增加,即材料要增加,制造成本加大。如果太小,短路电流大,变压器所承受的短路力会大,为防止对设备的破坏,设备选型等都要增加短路容量,经济不划算。 所以,在选取变压器短路阻抗这个数值时要综合考虑,综合考虑,综合考虑。重要的事要说3遍,因为我不懂。 四、变压器并列运行负荷分配计算

变压器的空载试验和短路试验主要注意问题

变压器的空载试验和短路试验主要注意哪些问题? 一、变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。 变压器的短路试验就是将变压器的一组线圈短路,在另一线圈加上额定频率的交流电压使变压器线圈内的电流为额定值,此时所测得的损耗为短路损耗,所加的电压为短路电压,短路电压是以被加电压线圈的额定电压百分数表示的: 此时求得的阻抗为短路阻抗,同样以被加压线圈的额定阻抗百分数表示: 变压器的短路电压百分数和短路阻抗百分数是相等的,并且其有功分量和无功分量也对应相等。 进行负载试验的目的是:计算和确定变压器有无可能与其它变压器并联运行;计算和试验变压器短路时的热稳定和动稳定;计算变压器的效率;计算变压器二次侧电压由于负载改变而产生的变化。 二、变压器空载和负载试验的接线和试验方法 对于单相变压器,可采用图1所示的接线进行空载试验。对于三相变压器,可采用图2和图3所示的两瓦特表法进行空载试验。图2为直接测量法,适用于额定电压和电流较小,用电压表和电流表即可直接进行测量的变压器。当变压器额定电压和电流较大时,必须借助电压互感器和电流互感器进行间接测量,此时采用图3接线方式。

阻抗变换器的设计与仿真

摘要 射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。本文介绍了一种中心频率为400MHz、频宽为40MHz的50~75欧姆T型阻抗变换器的设计与仿真过程。文中概述了射频阻抗变换器的种类、用途及发展。在分析了阻抗匹配理论基本知识的基础上,论述了射频阻抗变换器的设计过程,然后通过ADS软件进行设计和仿真,并对仿真结果进行了分析总结。 关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS 目录 摘要 (1) ABSTRACT................................................ 错误!未定义书签。第一章引言 (2) 1.1 概述 (2) 1.2 射频阻抗变换电路的类型 (2) 1.3 射频阻抗变换器的用途 (2) 1.4射频阻抗变换器设计的发展 (3) 第二章基本原理 (3) 2.1 阻抗匹配 (3) 2.2 史密斯圆图 (4) 2.2.1 等反射圆 (4) 2.2.2 等电阻圆图和等电抗圆图 (5) 2.2.3 Smith圆图(阻抗圆图) (7) 2.3 电压驻波比 (8) 第三章 T型阻抗变换器的设计 (9) 3.1 T型阻抗变换器(R S

实验五负阻抗变换器的研究-USTC

实验五 负阻抗变换器的研究 一、实验目的 1. 了解负阻抗变换器的原理及其运放实现。 2. 通过负阻器加深对负电阻(阻抗)特性的认识,掌握对含有负阻的电路的分析测量方法。 二、实验原理 负阻抗变换器(NIC)是一种二端口器件,如图5—1所示。 图5—1 通常,把端口1—1’ 处的U 1和I 1称为输入电压和输入电流,而把端口2—2’ 处的U 2和-I 2 称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如图5—1中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(CNIC)和电压反向型(VNIC)两种,对于CNIC ,有 U 1 =U 2 I 1=( 1K -)(2I -) 式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反(即和I 2的参考方向相同)。对于VNIC ,有 U 1= 2K - U 2 I 1 = 2I - 式中K 2是正的实常数,称为电压增益。由上式可见,输出电流-I 2与输入电流I 1相同,但输出电压U 2不仅大小与输入电压U 1不同(为U 1的1/K 2倍)而且方向也相反。若在NIC 的输出端口2—2’ 接上负载Z L ,则有U 2= -I 2Z L 。对于CNIC ,从输入端口1—1’ 看入的阻抗为 L in Z K I K U I U Z 1 2121111 -=== 对于VNIC ,从输入端口1—1`看入的阻抗为 L in Z K I U K I U K I U Z 22 22222111-==--== 若倒过来,把负载Z L 接在输入端口1—1’ ,则有U 1=-I 1Z L ,从输出端口2—2’ 看入,对于 CNIC ,有

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

030 变压器零序阻抗的实测与计算

变压器零序阻抗的实测与计算   袁凌   (武汉大学电气工程学院,湖北武汉430072)   摘要:文章阐述了变压器零序电抗的实测方法并给出了折算成标幺值的公式,同时分析了常用的变压器零序电抗与正序阻抗之间的关系,为简化计算提供了方便。 关键词:变压器;零序阻抗;实测;简化   1变压器零序阻抗及等值电路图 电力系统中为了对接地性质的系统短路故障采用相应的有效的保护措施,需要确定系统中各电气设备的零序参数,变压器的零序阻抗便是其中之一。 变压器零序阻抗是指零序电流流过变压器三相对称电路时遇到的阻抗。 变压器的零序等值电路可以用三端T型电路来表示,见图 1。X G0、X Z0相当于零序漏电抗,X m0为零序激磁电抗。     2 实测与计算目的 三相变压器的零序阻抗特性与绕组的连接方式有关。在有三角形接线绕组时,在三角形接线绕组形成的平衡安匝作用的情况下,电压与电流间的关系是线性的,也就是说,零序阻抗是个定值。但对于没有三角形接线绕组的变压器,例如全星形三相三芯式自耦变压器来说,其零序阻抗由于油箱外壳磁化作用的影响,是一个变化的数值。图2所示为全星形三相三芯式自耦变压器做零序开路试验的特性曲 线,Z1,0(%)、Z2,0(%)、Z3,0(%)代表从高、中、低三侧加压时,Z0(%)

随着外施零序电压U0(%)的变化而呈现的非线性变化关系。因此其零序阻抗的稳定饱和值要实测确定。     零序阻抗还取决于绕组和铁芯之间的结构布置,因此在不同绕组上测量时就会有差异。零序阻抗也与铁芯结构型式有关。三相三柱式铁芯结构的变压器,零序磁通必须通过铁芯与油箱之间的空气隙和油箱形成回路,其零序阻抗较小。而三相五柱式铁芯结构的变压器,零序磁通则可通过旁轭形成回路,因此其零序阻抗较大。 即使2台相同规格,但绕组排列方式不同的变压器,例如Y0/y0/Δ型接线与Y0/Δ/y0接线的变压器零序阻抗也有差别。因此,在实际计算中,变压器零 序阻抗最好取实测值。 3不同类型变压器零序阻抗实测、计算与等值电路图 根据变压器接线组别、中性点引出线的不同,零序阻抗的测试方法有所不同,下面对电网中应用广泛的几种变压器的零序阻抗的测量、计算方法逐一论述。 3.1Y0/y0/Δ和Y0/Δ型接线变压器 Y0/Δ接线双绕组变压器与Y0/y0/Δ接线三绕组变压器,只有一个中性点引出线,其Y、Δ绕组中零序电流无法流通,零序阻抗的测量只需在带有中性点的Y0绕组上进行,将单相电压U0施加于Y0绕组中接在一起的

阻抗变换器设计

射频电路设计实训报告 设计题目阻抗变换器设计 系别 年级专业 设计组号 学生姓名/学号 指导教师

摘要:射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。阻抗变换器就是起到将压电传感器的高阻抗变换为信号放大处理部分需要的低阻抗。本设计是关于阻抗匹配和阻抗转换器的一些阻抗匹配电路以及阻抗匹配的方法,用以实现匹配以及50Ω到75Ω以及75Ω到50Ω的阻抗转换器。从而得到所需要的输出阻抗以达到变换的目的。本次实验以2个无源阻抗匹配器为例,分别采用简单的电容电感的方式设计所需要的阻抗转换器,制作出实物并进行测试。 Abstract: One of the main RF design is a part of the circuit and the other part of the match between the two parts to achieve maximum power transfer, which requires adding the RF circuit impedance converter to achieve impedance matching purposes. Impedance transformer is played to a high impedance piezoelectric sensor signal amplification process is transformed into some of the needs of low impedance. This design is about impedance matching and impedance converter circuit and impedance matching impedance matching some of the methods used to achieve matching and 50Ω to 75Ω and 75Ω to 50Ω impedance converter. In order to get the required output impedance of achieving the purpose of transformation. The experiment with two passive impedance matching device, for example, capacitance and inductance, respectively, a simple way to design the required impedance converter to produce a physical and tested. 关键词: 射频设计 阻抗变换器 阻抗匹配 无源 一、基本阻抗匹配理论 当负载阻抗与传输线特性阻抗不相等或连接两段特性阻抗不同的传输线时,由于阻抗不匹配会产生反射现象,从而导致传输系统的功率容量和传输效率下降,负载不能获得最大功率。为了消除这种不良反射现象,可在其间接入阻抗变换器,以获得良好的匹配。 由图2-1(a )可知,当R L =R S 时可得最大输出功率,称此状况为匹配状态。 图(a ) 输入输出功率关系图 图(b ) 广义阻抗匹配 此时:2 2 2 () S out L L S L V P I R R R R =?=?+ L S R k R =? 22 (1) S S in S L S V V P R R R k == ++ ? 1o u t i n k P P k =?+ 推而广之,如图2-1(b )所示,当输入阻抗Z S 与负载阻抗Z L 互为共轭,即Z S =Z L * 时,形成广义阻抗匹配。因此,阻抗匹配电路亦可称为阻抗变换器。

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

相关文档
最新文档