光催化氧化技术

光催化氧化技术
光催化氧化技术

光催化氧化技术

引言:随着工业的发展,全球性环境污染日趋严重,利用各种手段有效治理环境污染引起了世界各国的重视。半导体光催化技术因具有反应条件温和、反应设备简单、二次污染小、易于操作控制等优点而受到研究者的广泛关注。其中TiO2因价廉、无毒、化学稳定性强,其光催化氧化技术得到迅速发展,在光催化降解有机污染物等领域得到广泛地应用。本文在论述了光催化的原理,光催化技术在污染治理方面的应用及目前的主要研究动向基础上,主要以TiO2为对象对光催化材料的制备,催化剂活性的提高及光催化技术的应用方面做大致介绍。

1.光催化氧化技术的基本概念及发展概况

在自然界中有一部分紫外光(190~400nm)易被有机污染物吸收,在有活性物质存在时会发生光化学反应使有机物降解。天然水体中存在大量活性物质,如氧气、亲核剂·OH及有机还原物质,因此河水、海水发生着复杂的光化学反应。光降解即指有机物在光作用下,逐步氧化成CO2、H2O及NO3-、PO43-、Cl-等。光化学反应经常有催化剂参与反应,这就是光催化氧化。由于可利用自然光做能源解决污染治理,这一技术一开始就受到广泛关注,并获得迅速发展,近十几年应用于水处理领域。

1972年Fujiahima首先发现光电池中受辐射的TiO2可发生持续的水的氧化还原反应。1977年Bard提出利用半导体光催化反应处理工业废水中的有害物质以后在半导体微粒悬浮体系中进行光催化消除污染物的研究日益活跃起来。

A.L.Pruden等人进行了十几种常见优先有机物的去除研究,主要包括三氯乙烯、三氯甲烷、二氯乙烯、二氯甲烷、二溴甲烷、氯苯等。国内外大量的研究报告表明,光催化氧化法对水中的烃卤代物、羧酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂等均有很好的去除效果,即使通常情况下较难降解的有机污染物,一般经过持续反应可到达完全矿化。光催化过称个采用半导体材料作为光催化剂,在常温常压下进行,如果利用太阳光作为光源则可大大降低污水处理费用。更主要的是光催化技术可将污染物降解为无毒的无机小分子物质及各种相应的无机离子而实现无害化,为治理水污染提供了一条新的、有潜力的途径。

2.光催化氧化机理

光催化氧化是指有催化剂的光化学降解,一般可分为有氧化剂直接参加反应的均相光化学催化氧化,以及有固体催化剂存在,紫外光或可见光与氧或过氧化氢作用下的非均相(多相)光化学催化氧化。均相光化学催化氧化主要指UV/Fenton试剂法。辅助以紫外线或可见光辐射,可极大地提高传统Fenton氧化还原的处理效率,同时减少Fenton试剂用量。H2O2在UV光照条件下产生·OH,其机理为:

H2O2+hv→2·OH

电化Fe2+在UV光照条件下,可部分转化为Fe3+,所转化的Fe3+在PH值为5.5的介质中可以水解成羟基化的Fe(OH)2+, Fe(OH)2+在紫外光线作用下又可转化为Fe2+,同时产生·OH。其机理为:

Fe(OH)2++ hv→Fe2++2·OH

由于上述反应存在,使得H2O2的分解速率远大于Fe2+催化H2O2的分解速率。

当用光照半导体材料,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴(如半导体TiO2的禁带宽度为3.2eV)。当光子波长小于385nm时,电子就发生跃迁,产生光致电子和空穴。光致电子空穴具有很强的氧化性,可夺取半导体颗粒表面吸附的有机物或溶剂中的电子,使原本不吸收光而无法被光子直接氧化的物质,通过光催化剂被活化氧化。光致电子具有很强的还原性,使得半导体表面的电子受体被还原。但是迁移到表面的光致电子和空穴又存在符合的可能,降低了光催化反应的效率。为了提高光催化效率吧,需要适当的俘获剂,降低电子和空穴复合的可能性,这是近年来光催化研究的重点。光催化氧化还原机理可以分为几个阶段:光催化剂在光照射下产生电子空穴对;表面羟基或水吸附后形成表面活性中心;表面活性中心吸附水中的有机物;羟基自由基形成,有机物被氧化;氧化产物分离。

3.光催化剂的制备

1)粉体TiO2光催化剂的制备

可用于光催化氧化的半导体催化剂有多种,其中TiO2因具有稳定、无毒、价廉等优点,因而被广泛地用于光催化、太阳能电池、感光材料、化妆品等领域,其中纳米TiO2又因其独特的优异性能受到人们的高度关注,是当前光催化剂研究领域的研究热点。TiO2晶体存在金红石型、锐钛矿型、铁钛矿型三种结构的

晶型。铁钛矿型存在于自然界中,很难人工合成,金红石型和锐钛矿型可人工合成。锐钛矿型在低温稳定,高温则转化为金红石型。

TiO2光催化剂的制备方法有多种,气相制备法有氢氧火焰水解法、TiCl4气相氧化法、钛醇盐气相水解法等,液相制备法有TiCl4加碱中和水解法、TiOSO4水解法、溶胶-凝胶法、水热合成法等。目前实验室应用最多的是溶胶-凝胶法。

溶胶-凝胶法以钛醇盐为原料,通过水解和醇聚反应制得溶胶,进一步聚缩得到凝胶,凝胶经干燥、煅烧得到粉体TiO2,其反应如下:

水解:Ti(OR)4+nH2O→Ti(OR)4(OH)n+nROH

缩聚: 2 Ti(OR)4(OH)n→[Ti(OR)4(OH)n-1]2O+H2O

粉末状催化剂在实际应用中有以下两个缺点:一是反应后催化剂的分离回收比较困难;二是悬浮的粉末催化剂不易连续使用。

2)负载型TiO2光催化剂的制备

负载型光催化剂的载体要具有稳定性好、机械强度高和比表面积大的性能。常用的催化剂载体有普通玻璃片、石英玻璃管、空心玻璃珠以及玻璃纤维网等玻璃载体,还有如活性炭、沸石、硅胶、Al2O3、蜂窝状陶瓷柱等多孔性材料。

负载型光催化剂的活性与溶胶-凝胶溶液的性质、基材性质(金属、玻璃等)、干燥和焙烧温度有关。制备负载的TiO2光催化剂大多在空气下直接进行加热干燥。焙烧温度和气氛同样会影响TiO2的孔隙、密度、晶型以及与基材料结合的牢固性。

4.提高催化剂活性的方法

纳米TiO2光催化材料具有光化学性质稳定,催化效率高,氧化能力强,无毒无害,价廉,无二次污染等优点,在废水处理中受到了人们的关注。但是由于其吸收阈值为387nm,对太阳能的利用率低。另外,由于光生电子和空穴的的复合率高,导致量子产率低,从而大大降低了催化活性。因此对纳米TiO2进行改性来提高其催化活性成为目前研究的热点。主要研究工作是通过离子掺杂、复合半导体催化剂等方法对TiO2进行改性,降低能带间隙,增加催化剂对长波段光的吸收;通过贵金属和金属氧化物的表面沉积、添加电子捕获剂等方法,减少光生载流子的复合,提高光催化剂的催化活性。

1)过渡金属离子的掺杂

过渡金属离子掺杂能够显著降低带隙能级,实现可见光的激发。在众多掺杂元素如Fe、V、Mn、Co和Ni,Fe离子是研究最为广泛的一种掺杂离子,此外,稀土元素的掺杂对光催化性能的影响也有人进行研究,研究结果表明,不论是单一价态,还是可变价态的稀土掺杂离子或它们的氧化态或还原态扩散人二氧化钛晶格中时,会引起较大的晶格畸变和膨胀.这种晶格膨胀所导致的逃离晶格氧原子和吸附O-提供额外的空穴及电子捕获途径,使得二氧化钛悬浮体系的光催化性能有较大程度的提高。另外,有研究表明共掺杂比单一掺杂催化活性更好。

2)贵金属沉积

将贵金属或贵金属氧化物沉积在半导体材料上可以改善其光催化活性。这是由于在催化剂表面担载贵金属,贵金属的费米能级低于TiO2的费米能级,当它们接触后,电子就从TiO2的粒子表面向贵金属扩散,使贵金属带负电而TiO2带正电,从而构成一个短路的微电池,从而使光催化反应顺利进行。研究表明,贵金属如Pt、Pd、Ag能够有效捕获光生电子,利于反应进行。

3)复合光催化材料

半导体复合就是利用两种或是多种半导体材料组分性质的差异的互补性来提高催化剂的活性。这一领域研究较多的是CdS-TiO2和SnO2-TiO2体系,研究结果均表明,在可见光激发下失去电子的染料比捕获电子的染料修饰的催化剂分子催化活性高。但大多数敏化剂在近红外区吸收很弱其吸收谱与太阳光谱还不能很好匹配。而且由于有机敏化剂与污染物之间存在着吸附竞争,敏化剂本身也可以发生光降解,随着敏化剂的不断降解,需添加更多的敏化剂,限制了其广泛应用。

此外,通过表面螯合和衍生作用提高催化剂活性的研究方面也有所报道。5.光催化氧化的应用

光催化氧化技术在废水处理、空气净化、消毒杀菌等多个领域的研究和应用都受到人们的重视,其中在污染治理方面的研究和应用有:工业废水处理(染料废水、农药废水、表面活性剂等有机废水等),工业废气处理(苯、甲苯、二甲苯三氯乙烯等挥发性有机污染物)、杀菌消毒方面的研究应用以及在日常生活中也具有很好的应用前景。

光催化氧化技术在化工废水处理中应用论文

光催化氧化技术在化工废水处理中的应用 【摘要】光催化氧化技术适用范围广,处理效果好,处理成本低,反应条件易控,无二次污染,尤其适用于含难降解有机污染物的化工废水的处理。本文就主要对光催化氧化技术的原理、特点、催化剂类型及其在化工废水处理中的应用进行综述,以供参考。 【关键字】光催化,氧化技术,化工,废水处理 为治理废水污染,保护水环境,人们经过长期努力,已经建立了许多净化处理废水的技术方法,并已广泛应用于实际的废水处理工程中,这些技术方法通常可以分为物理法、化学法、物化法、生化法等。常用的技术方法各有自身的优点,同时也不同程度地存在着某些不足之处。例如,有的技术方法对难降解污染物净化不彻底、处理速度慢,而有的可能造成二次污染,有的设备投资大、处理费用高等。随着国家推进削减主要污染物排放总量工作的开展以及逐步提高污染物排放标准,现有的技术方法难以满足更高的要求,因此有必要探索更加经济有效、便于推广应用的新技术。 光催化氧化技术原理 光催化氧化技术利用光激发氧化将o2、h2o2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-h2o2、uv-o2等工艺,可以用于处理污水中chcl3、ccl4、多氯联苯等难降解物质。另外,在有紫外光的feton体系中,紫外光与铁离子之间存在着协同效应,使h2o2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。所谓光化学反应,就是只有在光的作用下才能进行的化学反

应。该反应中分子吸收光能被激发到高能态,然后电子激发态分子进行化学反应。光催化氧化还原以n型半导体为催化剂,如tio2、zno、fe2o3、sno2、wo3等。tio2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以tio2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基oh-,生成强氧化性的羟基自由基oh将污染物氧化。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。如半导体tio2的禁带宽度为312 ev,当光子波长小于385 nm 时,电子就发生跃迁,产生光致电子和空穴( tio2 + hν→e-+ h+)。对半导体光催化反应的机理,不同的研究者对同一现象也提出了不同的解释。氘同位素试验和电子顺磁共振( esr)研究均已证明,水溶液中光催化氧化反应主要是通过羟基自由基(·oh)反应进行的,·oh 是一种氧化性很强的活性物质。水溶液中的oh- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理如下(以tio2为例): tio2 + hν→h++ e- h++ e-→热量 h2o→oh-+h+ h++oh-→oh

光催化氧化技术在化工废水处理中的应用(新编版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 光催化氧化技术在化工废水处理 中的应用(新编版)

光催化氧化技术在化工废水处理中的应用 (新编版) 导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 伴随着环境的污染,人们越来越重视自己的生存环境,其中光催化技术的应用已经成为了在化工废水处理中非常重要的一部分,本文针对光催化技术在化工废水处理中的应用的相关问题进行了详细的分析和探索,供相关的废水处理人员参考。 1、光催化过程中的基本特征 光催化技术早在上个世纪60年代就有相应的研究,由于在光催化技术中存在节能效应较为明显,需要的设备较为简单,而且操作也较为方便,近些年来受到了我国很多广大用户的欢迎。针对光催化技术而言,其基本的特征是采用一种特殊的材料作为传递技术,采用特殊的溶剂,在该溶液中,容积会有足够的压力,通常是由水提供的压力,通过相应的反渗透膜,从而将其分离,由于该项技术违背了自然渗透的基本原理,因此我们成为反渗透的作用,目前光催化的发方法基本上都是通过反渗透的犯法进行分离,从而达到提取,纯化和浓缩等的

光催化有机合成

Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO 2 Huqun Wang a ,Junping Yan a ,Wenfu Chang b ,Zhimin Zhang a,* a School of Chemistry and Chemical Engineering,Shanxi University,Wucheng Road,Taiyuan 030006,PR China b Institute of Molecular Science,Shanxi University Taiyuan 030006,PR China a r t i c l e i n f o Article history: Received 9September 2008 Received in revised form 15December 2008Accepted 17December 2008 Available online 25December 2008Keywords:Reduction Aromatic amines N-doped TiO 2 Potassium iodide a b s t r a c t A novel ef?cient method for the catalytic reduction of aromatic nitro compounds to the corresponding amines was reported.Aromatic nitro compounds were chemoselectively reduced to the corresponding amines by using N-doped TiO 2and potassium iodide as photocatalysts in the presence of methanol.The novel method is highly ef?cient with very short reaction time (<20min),excellent yields (>90%)and wide functional group tolerance such as carbonyl,halogen,amino,hydroxyl and carboxylic acid groups.And N-doped TiO 2was prepared by a modi?ed sol-gel method using urea as nitrogen source and had higher photocatalytic activity comparing with pure TiO 2.The catalysts were characterized by XRD,XPS,TEM and UV–Vis DRS. ó2009Published by Elsevier B.V. 1.Introduction Aromatic amines are widely used key intermediates in the industrial synthesis of dyes,pharmaceuticals and agrochemicals [1].A variety of methods for the direct reduction of aromatic nitro compounds to the corresponding amines has been well docu-mented [2–4].However,development of new methodology espe-cially the environmentally benign process still attracts the great interests in the chemistry community [5–8].In comparison to the commonly used methods which involve hydrogenation,elec-tron transfer and hydride reduction,photocatalytic reduction emerges as cost-effective,highly selective,rapid and environmen-tally friendly.Li and co-workers ?rst reported a photoinduced reduction of nitro compounds to the corresponding amines using TiO 2semiconductor as a catalyst [9].Ferry and co-workers further investigated the mechanism of photocatalytic reduction of nitro aromatics at the surface of titanium dioxide slurries in the pres-ence of the sacri?cial electron donor methanol or isopropanol [10].Heterogeneous photocatalysis has been rapidly becoming an exciting and growing area of research due to its direct application for synthetic chemistry,such as Photo–Kolbe oxidation [11],reduc-tion [12],amino acid [13],Diels–Alder [14]and Friedel–Crafts alkylation [15]reactions.However,so far these reactions are still hardly applied to the industrial ?eld.Research in our laboratory has focused in the late few years on new active-TiO 2based reduc- ing systems.The reaction for synthesis of amines from nitro com-pounds was catalyzed by irradiating N-doped TiO 2(N-TiO 2)and potassium iodide in solution of methanol (Scheme 1).The proce-dure of synthesis of aromatic amines was much simpler and more ef?cient than those in any other literature.In addition,the photo-catalyst could be reused and remained suf?cient catalytic activity.2.Experimental 2.1.Catalyst preparation and characterization All reagents were analytical reagent grade and were used with-out any further puri?cation.A solution of tetrabutyltitanate (8.5mL)in absolute ethanol (30mL)was mixed with glacial acetic acid (1.5mL)as constraining reagent to prevent the precipitation of oxides and stabilize the solution and an ethanol solution of dis-tilled water and urea (EtOH:H 2O:CH 4ON 2=3:48:1)was added to above solution under vigorous stirring.The pH of solution was ad-justed about three by nitric acid.After 3h,the gel so obtained had been left ageing overnight at room temperature to ensure the com-pletion of the hydrolysis,subsequently evaporation of the solvent,drying at 100°C for 8h and ?nally calcination at 450°C for 4h.The anatase crystal phase was determined from the X-ray diffraction (XRD)patterns obtained by using an X-ray diffractometer (Model D/Max 2550V)with a Cu target Ka-ray (k =1.544178?).The mor-phology of the N-TiO 2powders was examined by using a Hitachi-600-2transmission electron microscope (TEM)and UV–Vis diffuse re?ectance spectrophotometer (Cary 300,Varian,US)was employed to determine the optical properties of N-TiO 2and pure 1566-7367/$-see front matter ó2009Published by Elsevier B.V.doi:10.1016/j.catcom.2008.12.045 *Corresponding author.Tel.:+863517010588;fax:+863517011688.E-mail address:mqz1003@https://www.360docs.net/doc/9a13172063.html, (Z.Zhang).Catalysis Communications 10(2009) 989–994 Contents lists available at ScienceDirect Catalysis Communications journal homepage:www.elsev i e r.c o m /l o c a t e /c a t c o m

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题 摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。 关键词:光催化氧化氧化技术 1前言 随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者 的重要研究内容。 光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。 1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境 污染提供了一种新方法, 立即成为半导体光催化研究中 最为活跃的领域。近30 年来, 光催化氧化技术在有机污染物处理方面得到了广泛的研究,几乎所有在水中可能存在的有机污染物都可被光催化氧化法降解并矿化。将光催化工艺与混凝、生物处理等常规水处理工艺结合起来可达到优势互补的效果。近年来, 人们围绕光催化剂活性的提高以及降低反应成本等方面进行了大量的研究, 相关文献每年都有150 篇 以上。 2光催化氧化反应的机理 Sch iavello等认为, 光触媒表面的光催化反应基 本包括4个步骤: (1)光激发催化剂表面形成电子- 电洞对; (2)电子- 电洞对必须能有效地分离; (3)电子- 电洞对在催化剂表面与被吸附物质发生氧化还原反应; ( 4) 光催化剂表面产物的脱附与再吸附。

光催化氧化的原理

1 光催化氧化的原理 TiO2 光催化氧化处理废水、废气的原理 目前所研究的催化剂多为过渡金属半导体化合物, 如TiO2、ZnO2、CdS 和WO3等。由于TiO2具有化学稳定性好、耐光腐蚀等优点, 使其成为研究最为广泛的催化剂。 1976 年Garey 等首先应用二氧化钛光催化降解水中的氯代联苯并取得成 催化降解功。三十多年来, TiO2光催化氧化技术迅速发展, 研究者已利用TiO 2 了水和空气中几千种不同的有毒化合物, 其中包括许多难解有机化合物, 如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙类物质。因此, 可以说TiO2光催化技术是国内外的研究前沿和开发热点。TiO2是一种多晶形的化合物, 目前研究最多的是锐钛矿型TiO2。它是一种N 型半导体材料, 它的光催化活性高, 反应速率快, 对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成, 它们之间由禁带分开, 其禁带宽度为3.2eV, 根据λg(nm)=l240 /Eg(eV)可知, 其激发波长为387.5nm。当吸收了波长小于或等于387.5nm 的光子后, 价带电子被激发, 越过禁带进入导带, 形成带负电的高活性电子e- , 同时在价带上产生带正电的空穴h+。在电场的作用下, 电子与空穴发生分离, 迁移到粒子表现的不同位置。热力学理论表明, 电子具有还原性, 空穴具有氧化性。吸附在TiO2表面的氧俘获电子形成O2- , 分布在表面的h+可以将吸附在TiO2表面OH- 和H2O 分子氧化成·OH 自由基, 而·OH 自由基的氧化能力是水体中存在的氧化剂中最强的, 能氧化大多数的有机污染物及部分无机污染物, 并将其最终降解为CO2、H2O 等无害物质。由于·OH 自由基对反应物几乎无选择性, 因而在光催化氧化中起着决定性的作用。 3 存在问题 利用光催化氧化来降解废水、废气存在一个普通的问题, 即光的利用率低, 量子效率低(<4%)、反应速率慢的缺点, 致使光催化还无法在实际工程中发挥应有的作用。目前对半导体材料的改性应从以下方面着手: 提高光催化剂的光谱响应范围, 如金属离子掺杂法, 表面光敏化来提高催化剂的活性和扩大激发波长范围; 抑制光子和空穴的复合, 如贵金属沉

光催化氧化反应器的工业化应用

《光催化氧化反应器》在工业污水的应用: l洗涤剂生产行业废水处理及废水处理后的回用工程;污水及工业废水深度处理(对现有污水处理后氨氮、COD不达标的系统,利用光催化氧化后实现达标排放和回收利用) l主要适用行业:洗衣粉、洗涤剂及表面活性剂等有机精细化工生产行业; l洗涤行业等用洗涤剂清洗洗涤行业的废水回用; l食品、制药等有机污染废水的治理工程; l有机废水处理及无膜中水回用工程; 《光催化氧化反应器》处理有机废水与传统工艺相比的优势: 1、设备占地面积小、反应停留时间短; 2、处理成本低,可根据后续处理的要求调整转化率或处理量; 3、可任意与其他工艺组合;作生化的前处理,改善难降解有机物的可生化性;或作有机废水处理后水质不达标的深度处理,以满足达标排放或回用。 4、运行维护成本低,不需要投加其他任何化学药物及更换催化剂; 一、光催化氧化反应器(在工业废水处理中的应用) 目前用于广州立白集团番禺公司480立方/天高浓度洗涤剂(LAS)废水处理工程.对洗涤剂(LAS)处理的平均去除转化率:90%.

本公司独有专利技术(专利号:ZL200720119600.5),有效实现了光催化氧化技术的工业化应用。主要用于各种难降解的有机污染废水废液的深度处理,特别是对高含量的有机废水富含表面活性剂(LAS)、COD以及其他有机污染物的处理,具有很好的去处效果。去除率在90%以上,分解后的产物为水和二氧化碳,不会产生二次污染问题;整套装臵集氧化分解及除臭功能为一体。 广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,是我公司《光催化氧化分解表面活性剂》专利技术第一次用于工业化应用的成功范例;也是国内真正实现光催化氧化工艺在污水处理方面成功进行工业化应用的首例。对洗衣粉行业的废水具有划时代的意义!洗衣粉制造行业都知道,洗衣粉废水处理的最大问题是:废水表面活性剂浓度高时,会严重影响生化效果,并造成生物菌种死亡,在生化瀑气池泡沫满天飞,不得不将生化池用致密的网罩于池上,以防止对环境的影响。 立白集团广州立白(番禺)有限公司日处理480M3/日洗衣粉废水工程,于2009年4月正式投入运行,原预算该项目投入运行后吨水综合处理成本将增加1.8元/吨。在半年的实际运行中,其运行成本的变化完全出乎预料,其污水处理总体综合成本不但没有增加1.8元/吨,反而比原来没有改造前降低了0.2元/吨。这是一个意外而可喜的结果。最后从立白公司废水处理站操作及管理人员处得到答案。原处理系统设计能力为20吨/小时,由于增加光催化氧化设备后,大大

光催化氧化技术在水处理中的应用

光催化氧化技术及其在水处理中的应用 摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。 关键词:光催化氧化Ti02光催化剂水处理 1 引言 光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。 2 光催化氧化原理 光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例): TiO2 + hν→h+ + eh++ e- →热量 H2O →OH- + H+ h+ + OH-→OH h+ + H2O + O2- →·OH + H+ + O2- h+ + H2O →·OH + H+ e- + O2 →O2- O2- + H+ →HO2· 2 HO2·→O2 + H2O2 H2O2 + O2- →OH + OH- + O2 H2O2 + hν→2 OH Mn+(金属离子) + ne+ →M 3 光催化氧化反应的主要影响因素 3.1催化剂性质及用量 可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐

光催化氧化除臭设备简介及说明书

光催化氧化除臭设备 光催化氧化是在外界可见光的作用下发生催化作用,光催化氧化反应是以半导体及空气为催化剂,以光为能量,将有机物降解为CO2和H2O。本公司采用的半导体是目前反应效率最高的纳米TiO2光催化剂,经蜂窝陶瓷载附特殊处理后使用,达到理想效果。在光催化氧化反应中,通过紫外光照射在纳米TiO2光催化剂上产生电子空穴对,与表面吸附的水份(H2O)和氧气(O2)反应生成氧化性很活波的羟基自由基(OH-)和超氧离子自由基(O2-、0-)。能够把各种废臭气体如醛类、苯类、氨类、氮氧化物、硫化物及其它VOC类有机物、无机物在光催化氧化的作用下还原成二氧化碳(CO2)、水(H2O)以及其它无毒无害物质,同时具有除臭、消毒、杀菌的功效,由于在光催化氧化反应过程中无任何添加剂,所以不会产生二次污染。 该设备核心中的纳米光催化触媒材料(GC-100)是一种吸收光能后,能在其表面产生催化反应的物质,当特定纳米波长的紫外光照射光催化触媒材料(GC-100)时,其表面发生光催化氧化还原反应。光催化触媒材料(GC-100)吸收光子后在其表面产生电子(E—)和空穴(H+),将吸收的光能转化成化学能,即具有光催化作用。当光催化触媒材料(GC-100)与空气中的水接触时,表面就吸附H2O、O2、OH—,H2O、 OH—被空穴(H+)所氧化,O2被电子(E—)还原,反应式如下: H2O+ H+ OH. + H+ O2+ E— O2—OH—基团的氧化能力较强,使有机物氧化,最终分解为水和CO2。下面为典型污染物的被该装备氧化机理。脂肪族氧化机理:

该装备中激发的特定波长紫外光激发光催化触媒材料(GC-100)所生成的OH. 具有强氧化作用,将脂肪族氧化为醇,进一步氧化为醛、酸,最后脱羧生成二氧化碳,整个过程可描述如下: R–CH2 CH3R–CH2 CH2 OH RCH2 CHORCH2 COOHR–CH3 +CO2RCH2 OHRCHOR–COOH每降解一个碳原子,生成一个CO2,重复循环,直到脂肪族完全转化为CO2为止。芳香族氧化机理: 该装备中激发的特定波长紫外光激发催化触媒材料(GC-100)所生成的OH. 和H+使苯环羟基化,生成羟基环已二烯自由基,进而开环生成已二烯二醛,再按脂肪族氧化途径降解,生成CO2和水。无机气体氧化机理:H2S+O2 2S+SH2O 4NH3+3O2 2N2+6H2O 综上所述,利用光催化触媒材料(GC-100)的光化作用,可以使接触光催化剂的水份、臭气、细菌、污物等有机成份都被分解,从而具有除臭、抗菌、防污、防雾的功能。 设备可以作为光解氧化除臭设备、低温等离子体废气净化设备的末端配套设备,也可以作为低浓度废气的直接处理设备,在应用于废气净化领域时,每1000m3 /h废气配置紫外线灯1支;在空气净化领域,每4000m3/h废气配置紫外线灯1支.

光催化氧化反应器设计综述

光催化氧化反应器设计综述 摘要:文章通过废水中有机物的降解问题引出光催化氧化降解有机物技术,再从技术问题引入更深层次的问题即如何提高降解效率,进而引出本文主题—光催化氧化反应器设计。文章详细叙述了反应器的结构形式及几种不同类型反应器的优点和缺陷,以及研究现状。 关键词:光催化氧化;反应器 随着经济的发展,大量工业废水、生活污水有机污染物的超标排放,造成了水体环境严重富营养化问题,目前很多地方的治理只注重对有毒重金属的处理,而忽略了有机污染物潜在的危害性,废水中大量的有机污染物。富含洗涤剂(LAS)、COD、BOD、含氮、磷等的有机物的污水本身具有一定的毒性,对动植物和人体有慢性毒害作用,还会引起水中传氧速率降低,使水体自净受阻,从而使水体变色发臭。所以对废水中的有机物进行处理是非常必要的。光催化氧化分解有机污染物是当今公认的最前沿最有效的处理技术,光催化氧化反应器成功的解决了光催化氧化技术的工业化运用难题,所采用光催化氧化技术,废水有机污染物分解后的产物为水、二氧化碳及无害的无机盐,从根本上解决了有机污染问题。 目前, 用金属氧化物半导体作催化剂进行光催化氧化降解有机污染物的研究, 已引起了国内外众多学者的关注[1]。为了提高光催化氧化反应效率,光催化氧化反应器是必不可少的。应用光催化氧化反应器可进行化学氧化、光氧化、光化学氧化、光催化氧化和光化学催化氧化等多种类型氧化反应, 并可进行多种组合试验, 为环境科研、环境工程提供试验设备, 亦可为高等院校师生提供教学试验设备。光催化氧化反应器的设计远比传统的化学反应器复杂,除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。目前已有多种形式的光催化氧化反应器应用于光降解的研究及实际废水的处理,并取得了一些成果,但同时也暴露出许多问题,为此有许多人从不同的角度对如何提高光催化氧化反应器的效能及实用性开展了大量的工作[2]。 1 光催化氧化反应器的结构形式 催化剂以两种形式存在于反应器中:一是光催化剂颗粒分散于整个反应器系统中,二是光催化剂颗粒固定在载体上(如反应器壁或尼龙丝网等) ,据此可将相应的反应器形式称为悬浮式和固定式。 悬浮式是TiO2粉末直接与废水混合组成悬浮体系。优点是结构简单,能充分利用催化剂活性[3]。缺点是存在固液分离问题,无法连续使用;易流失;悬浮粒子阻挡光辐射深度,TiO2 =0.5mg/m3左右,反应速度达到极限[4]。固定式是TiO2粉末喷涂在多孔玻璃、玻璃纤维或玻璃板上。优点是TiO2不易流失,可连续使用;缺点是催化剂固定后降低了活性[5]。固定式又分非填充式和填充式两种。非填充式固定床型:以烧结或沉积法直接将光催化剂沉积在反应器内壁,部分光催化表面积与液相接触。填充式固定床型:烧结在载体上,然后填充到反应器里,与非填充式固定床型相比,增大了光催化剂与液相接触面积,克服了悬浮型固液分离问题。 Geisen 等[6 ]针对典型化合物二氯乙酸(DCA) 的降解分别进行了悬浮式TiO2和固定式TiO2液膜反应器( Flow-Film Reactor ,FFR) 研究,结果表明:与固定式催化剂反应系统相比,悬浮式系统能够获得更高的DCA降解率,达到了固定式系统的3倍,这是因为催化剂的固定限制了传质和降低了光催化活性。因此,如果能够通过固/ 液分离技术实现TiO2颗粒与处理水的分离及回收利用,那么悬浮式反应器将比固定式反应器有着明显的优势。为此,Xi等[7 ]采用带有斜板和不带有斜板的沉淀池及微滤膜继续进行了悬浮催化剂的分离研究:当进水的催化剂浓度> 5 g/ L、pH 在零电荷点附近时,通过沉淀作用可以对Degussa P 25 TiO2实现

光催化氧化设备的保养及使用规范

光催化氧化设备的保养及使用规范 UV光氧催化设备保养使用规范安全、操作、维护保养注意事项 1、用户应定期检查、保养设备。 2、每隔2个月或视用户现状而定,定期清理粉(灰)尘一次,打开设备电源箱对高压模块表面清洁粉尘,然后安装复原。 3、没个2个月或视用户现状而定,定期更换二氧化钛催化板一次。 4、在进行维护保养时,严禁带电操作;设备检修前必须断电检修,并在电控柜前挂示牌“维修中请勿送电”。 5、设备的日常维护应由接受过培训并能胜任的维保人员进行日常维护保养。 6、设备的检修应由设备厂商专业的技术人员或授权的专业技术人员进行检修。 8、应专人进行产品的维护保养,维护保养按本公司按本工地说明书进行; 9、光氧净化器里面的UV紫外线灯管开启时,不要直视,若要观察灯管使用情况请购买相关防护眼镜; 10、要确保传输的过程顺利。进入光解废气净化器的管段应该光滑,并且要有一段直管,确保废气进入设备的时候能够形成稳定的恒流,使用的传输管道好是用金属软管连接,以确保产生小的震动效果。 11、应该在风机的前段装设风量控制装置,采用风机变频器或者空气控制阀来调节风量,因为想让光氧废气净化器的处理优势发挥到

大,进入设备的风量应该是稳定的,而且风量要平稳过渡,如果风量时大时小,不仅废气处理效果不佳,而且对除臭设备也会造成一定的影响。 12、要确保留出设备的检修以及维护空间。设备应该在顶部装设防雨措施,设备长时间的运转肯定会有损坏,如果不留出检修的空间,到时候就得把设备全部拆开,而这个工作量还是比较大的。 13、净化器通过法兰与排风风管连接,所有连接应密封、防止漏风。 14、净化器可室内、外安装,净化器室外安装请在机器上方安装防雨装置以增加机器的使用寿命。 15、净化器电源应接地,净化器水平安装于风管及排风风机之间。另外接220V单相三线电源至净化器。 16、要做好放电接地。因为UV光氧净化器也属于高压设备,所以应该在运行维护或者设备检修时都做好防点击事故措施。 17、净化器前端应该有水喷淋降解有机废气中的大型颗粒,以保证净化器内部洁净度和使用年限,延长维护时间。

第二章光催化氧化技术

第二章光催化氧化技术 第1节光催化概述 光催化(Phntocatalv}i} }是在光的照射下产生类似光合作用的光催化反应,产生出氧化能力极强的自山氢氧基和活性氧,具有很}},的光氧化还原功能,可氧化分解各种有机化合物 和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水和.二氧化碳,因而具有极强的杀菌、除臭、防霉、防r} ;自 洁、字泞除甲醛和净化空气功能。 光催化的特性为利用空气中的氧分子及水分子将所接触的有机物转换为二氧化碳和水,自身不起变化,却可以促进化学反应的物质,理论.r-有效期较长、维护费用低。同时,二氧化钦本身无毒无害。已广泛用于食品、民药、化妆品等各种领域。 光催化在光的照射下产生氧化能力极强的 氢氧自由基和活性氧,具有很强的光氧化还原 功能。可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋臼质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水(HZO)和二氧化碳 }co}),因而具有极强的杀菌、除臭、防霉、防污自洁及净化空气的功能。 (川光催化基本原理光催化的原理是光催化剂纳米材料被太阳光、灯光(紫外线) 照射后,表面电子(e)被激励,同时生成带电的正孔(h+},正孔(h+)和空气中的氧 (o:)、水(HZo)发生反应,产生具有极强氧化作用的活性氧。有机物污染物、臭气、细 菌等被氧化分解,而电子(e)还原成空气中的氧。 光催化反应可分为下列几个步骤: ①反应物、氧气及水分子吸附于二氧化钦表而;②经光照射后。二氧化钦产生电子及空穴;③电子和空穴分别扩散到二氧化钦粒子表面;④电子、空穴和氧及水分子形成氢氧自由基;⑤氢氧自由基和反应物进行氧化反应; 光催化是利用特定波长光源的能量产生催化作用,使周围氧及水分子激发成极具活性的OH一及02一自由离子基,这些氧化力极强的自由基儿乎可分解所有对人体或环境有害的有机物质及部分无机物质 第2节光催化氧化技术在污水处理中的应用 }.光催化叙化技术的应用 光催化技术的研究始于20世纪70年代的后半期,用作催化的化学物有T1}} ,硫化锅、硫化亚铅、妮或钦系层状复合氧化物、二氧化铁等。用光照射催化剂时山于光生成空穴。氧化力强。大都采用不溶解的、稳定的半导体粉末二氧化钦,与水分解成氧和氢。从含乙醇的水溶液中生成氢,因水和氮合成氨,还原二氧化碳。含氨和.二氧化碳的水溶液合成氨基酸,氰基化离子或酪酸离子,变为纳米Tif}.}能处理多种有毒化合物。包括工业有毒溶剂、化学杀虫剂、木材光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使H}}被还原成Hg而沉积在TiO}表面;此法同样适川于铅。`Ti0:光催化可能降 解的尤机污染物还有氰化物,5}1}、I} }S , LV}和No:等有害气休也能被吸附在}'i。}表面,在光的作用下转化成无毒无害物质,井可回收贵金属。水污染有机物的分解研究儿乎都涉及到'}'i(}}光催化。 光催化是与常规热能催化相对应的催化技术,.光催化主要是有机盒属络合物和半导体。现在商用的光催化剂儿乎都是二氧化钦(Ti}} }可以说是半导体光催化。半甘体光催化的 一般机能是脱臭、抗菌、灭菌、防污、去除有害物等:.

废气处理方法

废气处理方法 废气处理一般分为无机废气与有机废气的处理,无机废气一般是采用喷淋法与水洗法,有机废气常用的方法是冷凝法、吸附法、吸收法、催化燃烧等。 无机废气 无机废气主要包括:硫氧化物、氮氧化物、碳氧化物、卤素及其化合物等。二氧化硫废气治理方法: 1、氨法脱硫(氨-酸法、氨-亚硫酸法、氨-硫铵法) 2、钠碱法脱硫(亚硫酸钠、亚硫酸钠循环法、钠盐-酸分解法) 3、石灰/石灰石法脱硫(石灰/石灰石直接喷射法、荷电干式喷射法、流化态燃烧法、石灰-石膏法、石灰亚硫酸钙法、喷雾干燥法) 4、双碱法脱硫(钠碱双碱法、碱性硫酸铝-石膏法、CAL法) 5、金属氧化物吸收法脱硫(氧化镁法、氧化锌法、氧化锰法) 6、活性炭吸附法脱硫 氮氧化物废气治理方法: 1、催化还原法(选择性催化还原法、非选择性催化还原法) 2、液体吸收法(稀硝酸吸收法、氨-碱溶液两级吸收法、碱-亚硫酸桉吸收法、硫代硫酸钠、硝酸氧化-碱液吸收法、尿素还原法、尿素溶液吸收法) 3、固体吸附法(分子筛吸附法、活性炭吸附法) 4、化学抑制法 5、SO 2和NO X 废气“双脱”技术(干式双脱技术、CuO双脱法、NO X SO双脱 技术、吸收剂直喷双脱技术、非均相催化双脱技术、湿式双脱技术) 硫化氢治理方法: 1、干法脱硫(克劳斯法、活性炭吸附法、氧化铁法、氧化锌法) 2、湿法脱硫(液体吸收法、弱碱溶液的化学吸收法、碱性盐溶液的化学吸收法、有机溶液的物理吸收法、环丁砜溶液的物理化学吸收法) 3、吸收氧化法(氧化铁悬浮液的吸收法、有机催化剂的吸收氧化法) 含氟废气治理方法: 1、稀释法、 2、吸收法(湿法)、

3、吸附法(干法) 氯气的治理方法 1、酸碱中和法 2、硫酸亚铁或氯化亚铁吸收法 3、四氯化碳吸收法 4、水吸收法 5、吸附法 氯化氢废气治理方法: 1、水吸收法 2、碱液吸收法 3、联合吸收法 4、冷凝法 含铅废气治理方法: 1、物理除尘法 2、化学吸收法(稀醋酸溶液吸收法、氢氧化钠溶液吸收法)、 3、掩盖法 含汞废气治理方法: 1、冷凝法 2、液体吸收法(高锰酸钾溶液吸收法、次氯酸钠溶液吸收法、热浓硫酸吸收法、硫酸-软锰矿溶液吸收法、过硫酸铵-文氏管吸收法、碘络合吸收法) 3、固体吸附法(充氯活性炭吸附法、多硫化钠-焦炭吸附法、吸收剂表面浸渍金属的吸附法、HgS催化吸附法) 4、联合净化法(冷凝-吸附法、冲击洗涤-焦炭层吸附法、液体吸收-充氯活性炭吸附法) 5、气相反应法(碘升华法、硫化净化法) 恶臭治理方法: 1、吸收法 2、吸附法 3、燃烧法(直接燃烧法、催化燃烧脱臭法)

光催化氧化技术在化工废水处理中的应用(2021)

光催化氧化技术在化工废水处理中的应用(2021) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0092

光催化氧化技术在化工废水处理中的应用 (2021) 伴随着环境的污染,人们越来越重视自己的生存环境,其中光催化技术的应用已经成为了在化工废水处理中非常重要的一部分,本文针对光催化技术在化工废水处理中的应用的相关问题进行了详细的分析和探索,供相关的废水处理人员参考。 1、光催化过程中的基本特征 光催化技术早在上个世纪60年代就有相应的研究,由于在光催化技术中存在节能效应较为明显,需要的设备较为简单,而且操作也较为方便,近些年来受到了我国很多广大用户的欢迎。针对光催化技术而言,其基本的特征是采用一种特殊的材料作为传递技术,采用特殊的溶剂,在该溶液中,容积会有足够的压力,通常是由水提供的压力,通过相应的反渗透膜,从而将其分离,由于该项技术

违背了自然渗透的基本原理,因此我们成为反渗透的作用,目前光催化的发方法基本上都是通过反渗透的犯法进行分离,从而达到提取,纯化和浓缩等的作用,针对反渗透装置而言,在不同的工厂,由于需要的参数存在一定的差异,因此在方案的确定上存在一定的差异。 2、光催化技术在化工废水中的具体应用 光催化反应时在氧化还原反应的基础形成的,在整个化学反应过程中,纳米材料的TO在整个反应的体系中起到了非常重要的作用。在此过程中发生非常复杂化学反应: 图1纳米TiO:光催化降解污染物的反应示意图 利用TiO光电化学悬浮电池的光生电流响应可对此进行研究。添加少许H0,反应不及时,使得反应不能发生,没有光生阳极电流,仅有光生阴极电流填加过量的HO,将发生如下反应: H,Oz+OH·—+Hs0+H0, HO+0H’一H2O+O 2.1光催化能够在污水净化中的应用

相关文档
最新文档