跨导运算放大器及其Spice电路模型的构建

跨导运算放大器及其Spice电路模型的构建
跨导运算放大器及其Spice电路模型的构建

2.1 CMOS模拟集成电路基本单元

2.1.1 MOS场效应管的基本结构

绝缘栅场效应管又叫作MOS场效应管,意为金属-氧化物-半导体场效应管。图2.1为MOS场效应管的结构和电路符号。图中的N型硅衬底是杂质浓度低的N型硅薄片。在它上面再制作两个相距很近的P区,分别引为漏极和源极,而由金属铝构成的栅极则是通过二氧化硅绝缘层与N型衬底及P型区隔离。这也是绝缘栅MOS场效应管名称的由来。因为栅极与其它电极隔离,所以栅极是利用感应电荷的多少来改变导电沟道去控制漏源电流的。MOS场效应管的导电沟道由半导体表面场效应形成。栅极加有负电压,而N型衬底加有正电压。由于铝栅极和N型衬底间电场的作用,使绝缘层下面的N型衬底表面的电子被排斥,而带正电的空穴被吸引到表面上来。于是在N型衬底的表面薄层形成空穴型号的P型层,称为反型层,它把漏源两极的P区连接起来,构成漏源间的导电沟道。沟道的宽窄由电场强弱控制。MOS场效应管的栅极与源极绝缘,基本不存在栅极电流,输入电阻非常高。[20,21]

图2.1MOS场效应管的结构和电路符号

Fig.2.1 Structure and circuit symbol that MOS Field-Effect Transistor 场效应管有P型和N型之分。这里的P型或N型,指的是导电沟道是P型还是N 型,即导电沟道中是空穴导电还是电子导电。因为场效应管中只有一种载流子参加导电,所以又常称为“单极型晶体管”。P型沟道和N型沟道的MOS场效应管又各分为“耗尽型”和“增强型”两种。耗尽型指栅极电压为零时,就存在导电沟道,漏源中间有一定电流。增强型MOS场效应管,则只有在栅极电压大于零的情况下,才存在导电沟道。

2.1.2 MOS场效应管的模型化

MOS管的大信号(直流)特性可以用它的电流方程来描述。以N沟道增强型MOS

管为例,特性曲线和电流方程如图2.2所示。

图2.2 特性曲线和电流方程

Fig.2.2 Characteristic property curve and electric current equation

如果栅源偏置电压GS V 大于MOS 管的阈值电压T V ,则在P 型衬底的表面由于静电感应会产生大量的电子,形成导电沟道。当漏区相对于源区加一正电压DS V 时,在器件内部的沟道中就会产生电流D I 。

MOS 管的工作状态可分为三个区,即电阻区(线性区)、饱和区和截止区。 (1)截止区: V GS V T 且V DS

])(2[2'2

DS DS T GS D V V V V L

W K I --=

(2.1) 其中,W 是沟道宽度,L 是沟道长度,V T 阈值电压,0'C K μ=称为跨导参数,μ是载流子的沟道迁移率,0C 是单位电容的栅电容。

(3)饱和区:V GS >V T 且V DS >V GS -V T 。临界饱和条件为V DS =V GS -V T ,临界饱和时的漏极电流为:

2'()2D GS T K W

I V V L

=

- (2.2) 在饱和区,V DS 增大时,I D 几乎不变,所以上式也是饱和区的漏极电流一般公式。

当考虑到沟道长度调变效应之后,饱和区的MOS 管漏极电流为:

2'()(1)2D GS T DS K W

I V V V L

λ=

-+ (2.3)

其中,λ为沟道长度调制系数,对于长度为L 的MOS 管,其大信号特性可近似认为λ是常数,并只取决于生产工艺,而与D I 无关。[22,23] MOS 场效应管的小信号模型

输入信号的幅度与电源电压相比较一般很小,它在直流偏置工作点附近变化时,可以近似认为器件工作在线性区间。大信号特性可以确定器件的直流工作点,小信号特性可以用来设计器件和电路的性能。

MOS 管的小信号模型可以直接由直流模型得出。在大多数应用中,MOS 管被偏置在饱和区工作,考虑到栅源、栅漏及漏源之间的寄生电容,MOS 管的饱和区小信号模型如图2.3所示。

GS

D

m V I g ??=

(2.4) 式中, m g 为跨导,表征输入电压对输出电流的控制能力。 对于在饱和区工作的模型参数,应用式2.2和2.4得: D m I L

W

K g '2=

(2.5) 其中,D I 是漏极的直流电流。

G

图2.3 小信号模型 Fig.2.3 S mall signal model

当电路在低频工作时可以不考虑这些寄生电容的影响,此时的小信号等效电路如图2.4所示。

图2.4不考虑电容影响的小信号等效电路

Fig.2.4 Small signal equivalent circuit that do’t consider capacitance affects

2.1.3 CMOS 电流镜

电流镜是模拟集成电路中普遍存在的一种标准部件,在传统的电压模式运算放大器设计中,电流镜用来产生偏置电流和作为有源负载。 基本CMOS 电流镜

IR

VSS

IO

IR

(a)基本NMOS 电流镜 (b )基本PMOS 电流镜

图2.5 基本CMOS 电流镜

Fig.2.5 Fundamental CMOS electric current mirror

基本CMOS 电流镜如图2.5所示,其中图(a)为NMOS 电流镜,图(b)为PMOS 电流镜。在图(a)中,M 1的栅源短接,V DSI >V GS - V TI ,所以M l 总工作于饱和区。只要V DS2>V DS1-V T2,M 2也工作于饱和区,漏极的交流输出电阻很高,这是图(a)作为电流镜的必要条件。在这个条件下,由式2.3,有:

)1()(2'222222

2

2DS T GS O V V V L W K I λ+-=

(2.6) )1()(2'112111

1

1DS T GS R V V V L W K I λ+-=

(2.7) 如果Ml 与M2完全匹配,有''21'K K =,V T1=V T2,,λ1=λ2 =λ,则:

212121(1)

(1)

O DS R DS I W L V I W L V λλ+=

+ (2.8) 对于基本CMOS 电流镜,由于沟道长度调制效应的影响,当MOS 管的漏源电压不等时,会引起电流镜电流跟随误差。但由于λ很小,所以误差也很小。 CMOS 级联电流镜

VSS

IO

IR

(a)NMOS 级联电流镜 (b)PMOS 级联电流镜

图2.6 CMOS 级联电流镜

Fig.2.6 CMOS level unites the voltaic mirror

图2.6为级联电流镜电路图。图中M 1与M 3级联,M 2与M 4级联。图2.6(a)为NMOS 级联电流镜,图2.6(b)为PMOS 级联电流镜。

在图2.6中,有I O =I D2,I R =I D1 ,V GS1=V GS2,由式2.3得:

)

1(')

1('1121122122DS DS R O V L W K V L W K I I λλ++=

(2.9) 因为M 1与M 3级联,I D1=I D3,又V DS1=V GS1,V DS3=V GS3,那么当M1与M3的工艺参数相同时,由饱和区漏极电流表达式可知:V GS1=V GS3 。

M2与M4级联,有I D2=I D4,由饱和区漏极电流表达式可知:V GS2=V GS4。 对于V DS1、V DS2,有V DS1=V GS1,V DS2=V GS3-V GS4+V GS1 ,又V GS1=V GS2,可得:V DS1=V DS2 。

如果M 1、M 2的工艺参数相等,那么可得:

21

12

O R I W L I W L =

(2.10) 当

1

1

22L W L W =

时,有: R O I I = (2.11)

由于级联电流镜的漏源电压基本相等,其电流跟随特性较好,跟随精度较高。 2.1.4 基本源耦差分对电路的跨导分析

源耦合差分放大器在模拟集成电路中有着广泛的应用,如集成运放的输入级均采用差分放大器的电路结构[24]。这是因为差分放大器只对差分信号进行放大,而对共模信号可进行抑制,有很强的抗干扰能力,并具有漂移小、级与级间很容易直接耦合等优点。

如图2.7所示为一个基本的MOS 源耦合差分对管电路。图中的M1、M2是完全对称的,其工作电流(IDI 、ID2)由电流源Iss 提供。输出电流ID1、ID2的大小依赖于输入电压的差值(Vi1-Vi2),但ID1和ID2之和恒等于电流源Iss ,在M1和M2的漏极分别接上电阻负载或MOS 管有源负载,即构成差分放大器,由电流输出转换成电压输出,实现电压放大。

Vi1

Vi2

V-

图2.7 基本源耦合差分放大器电路

Fig.2.7 Fundamental source coupling differences amplifiers circuit

MOS 管M1和M2满足理想对称条件,其体效应和沟道长度调制效应均可忽略,并且始终工作在饱和区,则根据MOS 管在饱和区的电流方程式有:

211)(T G S D V V K I -?= (2.12) 222)(T G S D V V K I -?= (2.13)

式中,L

W

K K 2'=

差模输入电压为:K

I

K I V V V D D GS GS id 2121+=

-= (2.14) 又:SS D D I I I =+21 (2.15) 则联立可得:

2

1212221

id SS

SS id SS D V I K KI V I I -

+=

(2.16) 2

22122

21

id SS

SS id SS D V I K KI V I I -

-= (2.17) 从而得到源耦合差分对的输出电流为:

2

21212id SS

id SS D D O V I K V I K I I I -

???=-= (2.18) 跨导: SS

id SS

id

SS id

O

m I V K I V K I K V I g 21)

1(22

2

?-?-?=??=

(2.19)

上式表明,CMOS 源耦差分放大器的跨导与Iss 的平方根成正比,同时也与K 的平方根成正比,可通过调节偏置电流或差分对管沟道宽长比W/L 来调节跨导的数值。

2.2 MOS-OTA 基本电路模型及工作原理

跨导运算放大器,简称OTA (Operational Transconductance Amplifier ),是一种电压输入、电流输出的电子放大器,可分为双极型和MOS 型两种,它们的功能在本质上是相同的,都是线性电压控制电流源。但是,由于集成工艺和电路设计的不同,产生它们在性能上的一些不同,相对双极型跨导运算放大器而言,CMOS 跨导运算放大器的增益值较低,增益可调范围较小,但它的输入阻抗高、功耗低,易与其他电路结合实现CMOS 集成系统。

2.2.1 OTA 的基本概念

OTA 的电路符号如图2.8所示。“-”号代表反相输入端,“+”号代表同相输入端。I O 是输出电流,I abc 是用于调节OTA 跨导的外部控制电流。

图2.8 OTA 的电路符号 Fig.2.8 The OTA circuit symbol

理想OTA 的传输特性是:

)(n p m id m O V V g V g I -== (2.20)

其中,V id 是差模电压,V p 、V n 分别是同相端与反相端电压。g m 是跨导,它是外部控制电流I abc 的函数。理想OTA 的输入和输出阻抗都是无穷大。 2.2.2 CMOS-OTA 基本电路模型及工作原理

CMOS 跨导运算放大器作为一种通用电路单元,在模拟信号处理领域得到广泛应用。CMOS 电路的输入阻抗高,级间连接容易,又特别适用于大规模集成,因而CMOS OTA 在集成电路,特别是在集成系统中的位置远比双极型OTA 重要。

CMOS OTA 的结构框图如图2.9所示[24]:

图 2.9 CMOS 跨导运放结构框图 Fig.2.9 Structure diagram of CMOS OTA

由图2.9可知,CMOS OTA 的结构由差动式跨导输入级和M1~M4四个电流镜组成。差动式输入级将输入电压信号变换为电流信号,完成跨导型增益作用;电流镜M1~M3将双端输出的电流变换为单端输出电流;电流镜M4将外加偏置电流I B 传输到输入级作尾电流,并控制放大器的增益值。在上述四个电流镜中,M1、M2为P 沟道,M3、M4为N 沟道。

输出电流I O 由下列方程式给出:

13122I m m I m I O -= (2.21)

式中,1m 、2m 、3m 分别为三个电流镜M1、M2、M3的电流传输比,如果取

m m m m ==231,则输出电流I O 为:

)(12I I m I O -= (2.22) 若差动式跨导输入级的增益用g m 表示,则跨导运算放大器的输出电流与输入电压关系式为:

)()(-+-+-=-=I I m I I m O V V G V V mg I (2.23) m m mg G = (2.24) 式中,G m 是跨导运算放大器增益。

在CMOS 跨导运算放大器的电路结构中,差动式跨导输入级是结构的核心部分,也是传输特性非线性误差的主要来源,对跨导运放的性能改善,主要是改善跨导输入级的线性范围和线性程度。如果跨导运算放大器的增益不是由电流控制,而是由电压控制,即可删去图2.9中的电流镜M4,并在相应位置加入电压控制信号。

由图2.9结构图看出,CMOS 跨导运算放大器包含的基本电路是差动式跨导输入级和电流镜。在跨导输入级中,有基本型源耦差分电路和各种改进型电路,在电流镜电路中,主要有基本电流镜、威尔逊电流镜和共源-共栅电流镜。

2.3 CMOS 跨导运算放大器Spice 建模及其测试

2.3.1 Spice 概述

Spice 是由美国加利福尼亚大学伯克利分校在1972年完成的通用电路分析程序。Spice 是这个程序(Simulation Program with Integrated Circuit Emphasis )的缩写。由于Spice 采用完全开放的政策以及它的强大的功能,自问世以来,在全世界的电工、电子工程界得到了广泛的应用,围绕它的改进工作一直不断的进行,版本不断更新,其中以1981年的Spice 2G 版本最为流行,并于1988年被定为美国国家工业标准。1984年,美国Microsim 公司推出的基于Spice 程序的个人计算机(PC 机)版本PSpice (Personal-Spice ),使Spice 的版本不仅可以在大型计算机上运行,而且也可以在PC 机上运行了。此后各种版本的PSpice 不断问世。

PSpice 是电子电路计算机辅助分析设计中的电子电路模拟软件。它主要用在所设计

的电路硬件实现之前,先对电路进行模拟分析,就如同对所设计的电路进行搭试,然后用各种仪器来进行调整和测试一样,这些工作完全由计算机来完成。用户根据要求来设置不同的参数,计算机就像扫频仪一样,分析电路的频率响应,能像示波器一样,测试电路的瞬态响应,还可以对电路进行交直流分析、噪声分析、Monte Carlo统计分析、最坏情况分析等,使用户的设计达到最优。用计算机仿真有如下优点:(1)为电路设计人员节省了大量的时间;(2)节省了各种仪器设备;(3)生产产品一致性好、可靠性高;(4)产品的更新率高、新产品投放市场快等[25,26]。

2.3.2 基本CMOS跨导运算放大器电路

基本CMOS OTA的电路图如图2.10所示。

图2.10 CMOS跨导运算放大器电路图

CMOS OTA circuit diagram

差分对管M1、M2和电流镜M3、M4组成跨导输入级,其输入是电压,输出是电流,跨导由外控电流Iabc控制。M9和M10组成电流镜,把M2的电流镜像地映射到输出端。M5~M8组成两个电流镜,把M1的电流镜像地映射到输出端。输出电流等于M1和M2的漏极电流之差。

2.3.3 Spice建模与测试

利用Spice软件对图2.10所示COMS OTA的跨导特性进行仿真分析,取VDD=12V,

VSS=-12V,RL=10K。

具体仿真网单文件如下:

COMS_OTA_1

VIP 1 0 20M

VIN 2 0 -20M

VDD 4 0 12

VSS 5 0 -12

Iabc 0 9

RL 10 0 10K

M1 7 2 3 3 MOD1 W=6U L=24U

M2 6 1 3 3 MOD1 W=6U L=24U

.MODEL MOD1 NMOS LEVEL=2

M3 9 9 5 5 MOD2 W=28U L=10U

M4 3 9 5 5 MOD2 W=28U L=10U

.MODEL MOD2 NMOS LEVEL=2

M5 7 7 4 4 MOD3 W=320U L=6U

M6 8 7 4 4 MOD3 W=320U L=6U

.MODEL MOD3 PMOS LEVEL=2

M7 8 8 5 5 MOD4 W=20U L=10U

M8 10 8 5 5 MOD4 W=20U L=10U

.MODEL MOD4 NMOS LEVEL=2

M9 6 6 4 4 MOD5 W=68U L=6U

M10 10 6 4 4 MOD5 W=68U L=6U

.MODEL MOD5 PMOS LEVEL=2

.OP

.DC Iabc 100U 300U 1U

.PROBE

.END

当增益控制电流Iabc的变化范围为100uA到300uA时,仿真结果如图2.11(a)所示。在此区间段内,跨导曲线线性度较差。

减小增益控制电流Iabc变化的范围,截取Iabc的变化范围为从150uA到250uA区间时,进行仿真。所得仿真结果如图2.11(b)所示。此区间段跨导曲线呈线性。

(a)

(b)

图2.11 跨导曲线

Transconductance curve

取输入电压幅值分别为6V、4V、2V、1V,进行多组跨导曲线的仿真。

仿真结果如图2.12所示。经观察,当电压幅值为6V时,跨导的线性度最高。当电压幅值取值为4V、2V、1V时,所对应的跨导特性曲线线性度逐渐变差。

图2.12 多组跨导曲线

Multiunit transconductance curve

观察输入电压与输出电流之间的关系,取外部控制电流Iabc分别为10uA、20uA、50uA时,所得直流传输特性曲线如下图2.13所示,截取输入电压为-1V~1V范围进行观察,对于不同的外部控制电流,跨导均呈线性。并且控制电流Iabc越大,跨导越大。

图2.13 直流传输特性曲线

Direct-current transfers characteristic property curve

取RL=10K,Iabc=200U,VIP= SIN(0 {AMP} 5K 0 0 180 ),VIN=SIN(0 {AMP} 5K ),输入电压幅值动态变化,设置变化范围为1.5V到4.5V,步长为1.5V,进行输出电压瞬态分析。

仿真结果如图2.14所示。经观察,输入电压幅值为1.5V、3V、4.5V时,输出电压波形均无明显失真。

图2.14 输入电压幅值动态变化时的输出电压瞬态分析

Output voltage transient analysis when entering voltage amplitude changes 取输入电压为固定值,VIP=SIN(0 2 5K 0 0 180),VIN=SIN(0 2 5K),Iabc=200uA,负载RL动态变化,设置变化范围为40K到100K,步长为20K,进行输出电压瞬态分析。

仿真结果如图2.15所示。经观察,输出电阻达到100K,输出电压波形无明显失真。

图2.15输出电阻动态变化时的输出电压瞬态分析

Output voltage transient analysis when output resistance changes

幅频特性和相频特性

取VIP=-VIN=20M,VDD=12V,VSS=-12V,RL=10K,增益控制电流Iabc=200uA。进行幅频特性、相频特性分析。

幅频特性仿真结果如图2.16所示。观察仿真结果,能够发现,该CMOS-OTA电路的上限截止频率能够达到约50MHz。

图2.16幅频特性

Amplitude-frequency characteristic

相频特性仿真结果如图2.17所示。

图2.17相频特性

Phase -frequency characteristic

2.4 大线性范围的宽带CMOS-OTA电路模型及其仿真

2.4.1MOS管组合线性单元

K.Bult提出了一种二管组合线性单元,如图2.18(a)所示。

+VC _

+

_

(a) 二管单元 (b)三管单元

图2.18 组合线性单元 Composite linear cell(CLC)

图中M1与M2有相同的K 及T V 值,栅源电压V A 和V B 之和保持为常数V C 。 B A C V V V += (2.25) 根据MOS 管在饱和区的电流方程式,可以写出:

21)(T A V V K I -= (2.26) 22)(T B V V K I -= (2.27)

其中,L

W

K K 2'=

由式2.26~2.27,可以解出两管电流之差为

))(2(12A B T C V V V V K I I --=- (2.28) 式2.28表明,在V C 是常数条件下,二管电流之差与)(A B V V -成线性关系,由于 A C C B A B V V V V V V 22-=-=- (2.29) 因此,在V C 保持常数条件下,二管电流之差同样与V B 或V A 成线性关系。 利用图2.18(a)的二管单元,可以构成三管线性V-I 变换单元,如图2.18(b)所示。图中M1、M2组成上述二管单元,新增加的M3与M2参数相等,M3电流由VN 调节,M3与M2串联,其栅源电压相等,即V B =V N 。由式2.28和2.29可以写出:

)2)(2(12C N T C V V V V K I I --=- (2.30) 式2.30表明,M1与M2二管电流之差与V N 成线性关系。因此,图2.18 (b)是一种

线性V-I 变换单元,为使CMOS 管开启并工作在饱和区,V N 与V C 的数值应分别满足:

2

T

C N T V V V V +<

< (2.31) T C V V 2> (2.32)

在图2.18(b)中,虽然实现了线性V-I 变换, 但尚不能作为跨导型运算放大器, 因为其输入信号不能浮地, 信号的直流电平直接影响电路的偏置。跨导型运放结构应能满足下列基本要求:对单浮地输入信号作正常放大;对双共地输入信号作差动放大, 且有共模抑制能力;双端输入、单端输出;独立偏置且不受信号大小影响。

采用图2.18(b)三管线性单元,设计一种新型的跨导运放,基本结构如图2.19(a)所示。

VC

VC1

+-

VC2

(a)基本结构 (b )改进结构

图2.19 基于组合单元的跨导运放结构

OTA structure based on CLC

该结构的主要特征是:M1、M2、M3与M4、M5、M6分别组成三管线性V-I 变换单元,形成左右对称结构。M1、M2与M4、M5的输出电流先作交叉叠加,后取差值输出。M3、M6组成基本源耦差分对,并用恒定尾电流偏置,提高共模抑制能力。

分析图2.19(a)电路的电流-电压传输特性,该电路中的MOS 管均具有相同的K 、V T 值,可以写出下列方程:

42I I Ia += (2.33) 15I I Ib += (2.34)

取Ia 与Ib 之差作输出电流Io ,即:

)45()12(I I I I Ib Ia Io ---=-= (2.35) VID 是差模输入电压,对M3、M6形成大小相等,极性相反的栅源信号电压,即:

ID GS GS V V V 2

1

63=-= (2.36)

联立上述公式,可得:

ID T SS C V V V V K Ib Ia Io )2(2--=-= (2.37) 结果表明,输出电流与差模输入电压成线性关系,增益m g 可以由C V 加以调节。 在图2.19(b)中,增加P 沟道MOS 管M7、M8及可控电压VC2。M1与M7、M4与M8分别构成CMOS 对管,其等效栅源电压由VC1和VC2之差决定,由于VC2仅与M7、M8的栅极相连,不提供电流,稳定性好,提高了m g 的压控调节精度。

CMOS 高线性度压控跨导运算放大器电路如图2.20所示[27]。

在电路中,M1、M2、M3与M4、M5、M6分别组成三极管V-I 变换单元,形成左右对称结构。M1、M2与M4、M5的输出电流先作交叉叠加,后取差值输出。M3、M6组成基本源耦差分对,并用恒定尾电流偏置,提高共模抑制能力。M1与M7、M4与M8分别构成CMOS 对管,其等效栅-源电压由VC1与VC2之差决定。VC2仅与M7、M8相连,不提供电流,稳定性好,提高了g m 的压控调节精度。M9~M18组成三个电流镜,M19~M20组成基本电流镜,传送偏置尾电流,M21~M24组成电压偏置电路,所有晶体管的衬底与源极连接,利用VC2作增益控制电压。

图2.20 高线性度压控跨导运算放大器电路

High linearity degree pressure charges the OTA circuit

2.4.4 电路仿真

利用Spice软件对图2.20所示的改进型COMS OTA的跨导特性进行仿真,具体仿真网单文件如下:

COMS_OTA

VDD 4 0 12

VSS 5 0 -12

VC1 11 0 3.17

VC2 3 0 -2

VIP 1 0 2

VIN 2 0 -2

RL 12 0 2K

M6 14 2 6 6 MOD1 W=6U L=24U

M3 13 1 6 6 MOD1 W=6U L=24U

.MODEL MOD1 NMOS LEVEL=2

M1 8 13 21 21 MOD2 W=23U L=6U

M4 7 14 18 18 MOD2 W=23U L=6U

.MODEL MOD2 NMOS LEVEL=2

M2 7 11 13 13 MOD3 W=21U L=21U

M5 8 11 14 14 MOD3 W=21U L=21U

.MODEL MOD3 NMOS LEVEL=2

M7 5 3 21 21 MOD4 W=46U L=6U

M8 5 3 18 18 MOD4 W=46U L=6U

.MODEL MOD4 PMOS LEVEL=2

M9 8 10 4 4 MOD5 W=320U L=6U

M10 10 10 4 4 MOD5 W=320U L=6U

M11 12 8 10 10 MOD5 W=320U L=6U

M12 7 9 4 4 MOD5 W=320U L=6U

M13 9 9 4 4 MOD5 W=320U L=6U

M14 15 7 9 9 MOD5 W=320U L=6U

.MODEL MOD5 PMOS LEVEL=2

M15 12 15 20 20 MOD6 W=20U L=10U M16 20 19 5 5 MOD6 W=20U L=10U

M17 15 15 19 19 MOD6 W=20U L=10U M18 19 19 5 5 MOD6 W=20U L=10U

.MODEL MOD6 NMOS LEVEL=2

M19 6 16 5 5 MOD7 W=28U L=10U

M20 16 16 5 5 MOD7 W=28U L=10U

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

几种运算放大器比较器及经典电路的简单分析

运算放年夜器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在阐发它的工作原理时倘没有抓住核心,往往令人头年夜。为此自己特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放年夜器电路的时候,无非是先给电路来个定性,比方这是一个同向放年夜器,然后去推导它的输出与输入的关系,然后得出V o=(1+Rf)Vi,那是一个反向放年夜器,然后得出Vo=Rf*V i……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾面试过至少100个以上的年夜专以上学历的电子专业应聘者,结果能将我给出的运算放年夜器电路阐发得一点不错的没 有超出10个人!其它专业结业的更是可想而知了。 今天,芯片级维修教各位战无不堪的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得入迷入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放年夜倍数很年夜,一般通用型运算放年夜器的开环电压放年夜倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压缺乏1 mV,两输入端近似等电位,相当于“短路”。开环电压放年夜倍数越年夜,两输入真个电位越接近相等。

“虚短”是指在阐发运算放年夜器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不克不及将两输入端真正短路。 由于运放的差模输入电阻很年夜,一般通用型运算放年夜器的输入电阻都在1MΩ以上。因此流入运放输入真个电流往往缺乏1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越年夜,两输入端越接近开路。“虚断”是指在阐发运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不克不及将两输入端真正断路。 在阐发运放电路工作原理时,首先请各位暂时忘失落什么同向放年夜、反向放年夜,什么加法器、减法器,什么差动输入……暂时忘失落那些输入输出关系的公式……这些东东 只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放年夜器(其实在维修中和年夜大都设计过程中,把实际放年夜器当作理想放年夜器来阐发也不会有问题)。 好了,让我们抓过两把“板斧”“虚短”和“虚断”,开始“庖丁解牛”了。 令狐采学

运算放大器基本电路大全

运算放大器基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电

心电放大器的设计与仿真

电子线路CAD短学期 设计报告 学院:电子信息学院 学号: 15041523 班级: 15040211 姓名:卢虎林 日期: 2017年3月11日

一、实验目的 通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,理解电路的自上而下的设计方法。 二、实验原理 设计一个心电图信号放大器。已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1、确定总体设计目标 由已知条件(1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件(2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下: 差模电压增益:1000(5V/5mV); 差模输入阻抗: >10MΩ; 共模抑制比:80dB; 通频带:0.05Hz~250Hz。 2、方案设计 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计采用了LF4111型运放(其中Avo=4 10 ,Rid≈4 10 Ω,Avc=2),由

于单极同相放大器的共模抑制比无法达到设计要求(可通过Pspice 仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器和一阶低通滤波器构成的带通滤波器。 3、详细设计 根据上述设计方案,确定了心电放大电路的原理图,如图5-1所示。A1、A2、A3及相应的电阻构成前置放大器,其差模增益被分配为40,其中A1、A2构成的差放被分配为16,其计算公式为:Avd1=(Vo1-Vo2)/Vi=(R1+R2+R3)/R1,Avd2=Vo3/(Vo1-Vo2)=- R6/R4=1.6。 为了避免输入端开路时放大器出现饱和状态,在两个输入端到地之间分别串接两个电阻R11、R22,其取值很大,以满足差模输入阻抗的要求。第二级由 A4及相应的电阻、电容构成。在通带内,其被分配的差模增益应为(1000/40=25),即 Avd3=vo/vo3=1+R10/R9=25 取R9=1KΩ,R10=24KΩ。C1、R8 构成高通滤波器,要求 f =0.05Hz。取R8=1MΩ,则可算出C1=4.58μF,取标称值电容 C1=4.7μF,算得fL=1/(2л C1 R8)=0.034Hz。C2,R10构成低通滤波器,要求f =200Hz。取R10=24KΩ,可算出C2=0.03316μF,取标称值电容C2=0.033μF,最后算出f =1/(2л C2 R10)=251.95Hz。可见满足带宽要求。

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

高输入阻抗放大电路的设计仿真与实现

课程设计任务书 学生姓名:专业班级:电信1101班 指导教师:工作单位:信息工程学院 题目: 高输入阻抗放大电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对高输入阻抗放大电路的设计、装配与调试,鼓励自制稳压电源。(2)设计要求 ①电压增益>=100,输入信号频率<100HZ,共模抑制比≥60dB; ② 选择电路方案,完成对确定方案电路的设计; ③ 利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电 路工作原理并仿真实现系统功能; ④ 安装调试并按规范要求格式完成课程设计报告书; ⑤ 选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、前半周,完成仿真设计调试;并制作实物。 2、后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1.电路方案选择 (4) 2.高输入阻抗放大电路设计 (5) 2.1差分放大电路 (5) 2.1.1零点漂移 (5) 2.1.2差模信号与共模信号 (5) 2.1.3.共模抑制比 (6) 2.1.4差分放大电路的分析 (6) 2.2镜像恒流源 (7) 2.2.1镜像电流源电路特点 (8) 2.2.2镜像电流源电路分析 (8) 2.3同向比例放大电路 (8) 2.4电压串联负反馈 (9) 2.5电路原理设计图 (10) 3.直流稳压电源的设计 (10) 3.1理论分析 (10) 3.2原理图 (11) 3.3直流稳压电源仿真结果 (11) 4高输入阻抗放大电路仿真 (12) 5实物安装和调试 (17) 5.1布局焊接 (17) 5.2调试方法 (17) 5.3测试结果分析 (17) 5.4实物展示 (18) 6. PCB制作 (19) 7.个人总结 (23) 参考文献 (24)

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计 1集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2 电路原理分析 2.1 电路如图1所示 R1 10kΩV1 500mV U1A TL082CD 3 2 4 8 1 R2 9.1kΩ RF 100kΩ V2 12 V V3 12 V XMM1 1 此电路为反向比例运算电路,这是电压并联负反馈电路。输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。 图2 仿真结果图 输入输出关系理论输仿真输出值电路功能

其中 1 //2R RF R = 2.2电路如图3所示 R1 10kΩ Ui2 200mV U1A TL082CD 3 2 4 8 1 R24.7kΩ RF 100kΩ V212 V V312 V XMM1 Ui1 100mV R310kΩ 3 此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1 2 31( 0R Ui R Ui RF U +-= 输入输出关系 理论输出值 仿真输出值 电路功能 )1 2 31( 0R Ui R Ui RF U +-= -3V 2.999V 反相求和放大电路 其中RF R R R //3//12= 2.3电路如图5所示 出值 11 0V R RF V -= -5V -5V 反相比例运算电路

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器应用电路的设计与制作(1)

运算放大器应用电路的设计与制作 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

运算放大器构成的18种功能电路(带multisim仿真)

(1)反相比例放大器: 将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R R U 2 10-= 仿真电路为: 取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为: (2)电压跟随器:

当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。可消除两级电路间的相互影响。 其仿真波形为: 取输入为4V,频率为1kHz的方波,得到输出结果为:

(3)同相比例放大器: 将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。反馈电压1211U R R R U f += 由运放的虚短和虚断,有输出电压为:11 20)1(U R R U + = 其仿真电路为: 取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:

当方向比例放大器增益为1时可得到反相器电路,其仿真电路为: 取:tV U sin 21=,输出结果为:tV U U sin 210-=-= 仿真输出波形为:

将输入信号引至同相端,得到同相相加器 由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为: 取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

基于Mulitisim的集成运算放大器应用电路仿真教材

电子课程实验报告题目:基于Mulitisim的集成运算放大器应用电路仿真

设计目的 1、集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负 反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2、本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输 入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PC板图形式。 二、电路的理论知识 1.反相放大器 图1中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。输入电压V1通过输入电阻R1产生了一个输入电路i1。电压差△V加载在+、—输入端之间,放大器的正输入端接地。 图1 利用回路公式计算传输特性:

输入回路: V R i V ?+=111 (2) 反馈回路: V R i V f f out ?+-= (3) 求和节点 in f i i i +-=1 (4) 增益公式: V A V out ??-= (5) 由以上4个式子可以得到输出: Z R V Z i V in out /)/(/11-= (6) 式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。 反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。则传输曲线变为: 111)()/(V G V R R V f out -=-= (7) 式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。闭环增益可以通过选择两个电阻R f 和R 1来设定。 2.同相比例运放电路 同向比例运放电路组成如图2所示 ,将输入电阻R 1接地,并且将输入信号加载道+输入端。 图2 电压在通过由反馈电阻R f 和输入电阻R 1组成的分压电路的时候产生压降,中间位置的电压V -为: out f V R R R V ))/((11+=- (8) 根据理想运放的性质1,运放的输入电压△V 为零,因此V in =V -。重新排列公式

相关文档
最新文档