离心压缩机讲义

离心压缩机讲义
离心压缩机讲义

一.透平压缩机的结构、性能及工作原理

二.透平压缩机振动类型案例

三.透平压缩机的开停车步骤

四.透平压缩机的运行注意事项

离心压缩机

一.离心式压缩是如何提高压力的?

离心式压缩机气体的提高,是靠叶轮带动气体旋转,使气体受到离心力的作用产生动力获得动能,然后进入扩压器中,气体流速逐渐减慢,将动能转变成压力能,而使气体压力得到提高,它与活塞式或回转式压缩机靠改变气体的容积来提高压力是不同的。二.离心式压缩机主要优缺点

离心式压缩机主要优缺点是:单机输出量大而连续,无脉冲,运转平稳,机组外型尺寸小,重量轻,占地面积少,投资省,设备结构简单,易损件少,运转周期长,维修工作量小,调节性能好,实现自动控制比较容易,运转可靠,单系列运行,不需要备用机组,介质不与润滑油接触,有利于化学反映,可用气轮机直接拖动,能充分利用化肥厂工艺热能,经济效益好。

缺点是:由于气体的流动损失,漏气损失和轮阻损失比较大,因而效率较低,一般比往复式压缩机低5~10%,容易“喘振”。三.离心式压缩机的基本结构

离心式压缩机的每一段,是由几个压缩级组成,每一级是由一个

叶轮以及与其配合的固定元件所构成。其基本结构可分为中间级和末级两种。中间级是由叶轮、扩压器、弯道和回流器等组成。

气体通过弯道和回流器后即到下一级继续压缩。在离心式压缩机里,除每一段的一级外,都属于这种中间级。末级是由叶轮、扩压器、蜗轮等组成。气体经过压缩后排出,到冷却器进行冷却并分离后送用户。

四.离心式压缩机的主要零部件及作用

1.吸气室:吸气室是把所需压缩的气体均匀地引入叶轮去压缩。因此,压缩机每一段第一级进口都设置了吸气室。

2.叶轮:叶轮安装在转轴上,由轮盘、轮盖和叶片组成,是压缩机中最重要的部件。气体由于受旋转离心力的作用,以及在叶轮里的扩压流动,使气体通过叶轮后的压力得到了提高,气体的功能也同样在叶轮里得到了提高。因此,叶轮是将机械能传给气体,以提高气体的压力和速度的作功部件。

3.扩压器:气体从叶轮流出时,除压力升高外,还具有较高的流动速度。为了充分利用这部分动能,在叶轮的后面设置了流通面积逐渐扩大的扩压器,用以把速度能转化为压力能,以进一步提高气体的压力。

4.弯道与回流器:为了把扩压器后的气体引导到下一级叶轮去继续压缩,在扩压器后面设有引导气体的弯道,把气体均匀地引入下一级叶轮进口的回流器。

5.蜗壳:蜗壳的主要作用是把扩压器后面的气体汇集起来并

引出压缩机。此外,在蜗壳出口处,气流速度还有一定数值,故设置一个锥行排气管,也象扩压器一样,是气流起到一定的降速扩压作用。

6.密封装置:为了阻止压缩机由轴端向外漏气,在压缩机的机壳两端设置了密封,密封类型主要有,梳齿密封、机械密封、浮环密封、干气密封等。宜兴厂的两台冰机、合成气压缩机均采用干气密封。干气密封较其它类型密封相比具有经济、干净、容易操作、安全和检修量少等特点。

7.径向轴承、止推轴承及平衡盘

为了承受转子的重量和叶轮的径向力设置了径向轴承,另外,由于运行时叶轮出口的压力高于进口,在安装叶轮时,可用反方向安装的方法来平衡掉大部分的轴向推力,剩余的推力由止推轴承承受。但是绝大部分的压缩机,特别压缩比大的压缩机,其残余的轴向推力仍然非常大,为了减少作用在止推轴承上的轴向推力,常在转子上还设置了平衡盘。

8.梳齿密封:当气流通过梳齿形密封片间隙时,气体近似经历绝热膨胀过程,气流的压力和温度都下降,而速度增加,当气流从间隙进入密封片之间的空腔时,由于截面积突然扩大,气流形成很强的旋涡,从而使速度几乎完全消失,压力即等于间隙中的压力,温度恢复到密封片前的数值,而比容增加了,气流经过后面的每一密封片间隙和空腔,重复上述的变化过程,由于气体压力的不断降低,气流体积不断增加,通过最后

一个密封片时的速度为最大,压降比也最大。

通过密封间隙的漏气量,是与间隙的截面积和间隙前后的压力差成正比例的,对于使用中的密封装置,为了得到良好的密封效果,一方面尽量保证最小的间隙截面积,另一方面要保持梳齿的光角和空腔的洁净。使气体能产生强烈的旋涡,而压力不再回升。

五.离心式压缩机的能量损失

原动机通过叶轮将机械能传给气体时,存在着各种损失,这些损失使离心式压缩机无用功的增加和效率的下降,主要存在下列损失:

①流道损失,该损失为气体在吸气室、叶轮、扩压器、弯道、回

流器、蜗壳等元件中流动时产生的损失。

它包括流动摩擦损失、边界层分离损失、冲击损失、波阻损失等。

②轮阻损失:叶轮在高速旋转时,轮盘、轮盖的外侧及轮缘与气

体发生摩擦而造成的损失叫轮阻损失。

③漏气损失:由于叶轮出口的气体压力比进口压力高,所以叶轮

出口的气体有一部分要从密封间隙流回叶轮的进口。另外,气体还会通过级间密封从高压级流向低压级,还有一部分气体会经过轴端密封流出机外,这种由于内部或外部漏气而造成的损失叫漏气损失。

④机械损失:离心压缩机在轴承、联轴节及增速箱等传动结构中

所造成的算是叫机械损失。

六.喘振工况和滞止工况

从压缩机性能曲线可以看出,当流量减少时,由于气流冲击叶片严重,在叶道中引起气流边界层的分离,并产生旋转脱离现象。此时叶轮前后的压力就产生强烈的脉动,并引起周期性的力作用在叶轮上,使叶轮产生振动。

当流量进一步下降,气流分离层扩及整个通道,以致使叶道中气流通不过去,这时,级的压力突然下降,然后流道中较高压力的气体就倒流到级里来,瞬间,倒流的气体充满了叶道,弥补了气体流量的不足,从而使叶轮工作恢复正常,又把倒流的气体压回去,这样使级中流量又减少,于是压力又突然下降,级后的压力气体又倒回级中,重复出现上述现象。

在这过程中,压缩机级和其后管道、系统之间产生了一种低频高振幅的压力脉动,以致引起叶轮应力增加,整个机组发生强振动,发生严重的噪音,调节系统也大幅度波动,从而无法继续运行,严重的甚至会损坏机器,这种现象就是喘振。在压缩比大,出口流量大,压力高,气体比重大的情况下,如发生喘振,则其后果更加严重。

七.喘振曲线和防喘振曲线

由于离心压缩机在每一个转速下的特性曲线均有一峰值,而这一点即为喘振点。将喘振曲线上所有喘振点连接起来,即可得一曲线,可叫离心压缩机的喘振曲线。

当压缩机在某一给定速度曲线最高值的左边运转时,将发生喘振。因此,千万要防止压缩机在图示的喘振区域内运行,为了实现这一目的我们设置了防喘振系统。

在某一转速下,压缩机的实际流量与该转速的喘振流量之比叫做防喘振裕度,裕度太大,则功率消耗增加,经济性差,而太小则离喘振点太近,安全性差。根据经验,一般防喘振裕度控制在110~125%左右。在决定裕度大小时,还应把调节仪表的误差和滞后等因素考虑进去。例栖霞山化肥厂一台空气压缩机的喘振曲线是28.8%,而我们设置的保护曲线是35%,在此曲线内,机器从未发生过喘振。

喘振曲线通常呈抛物线,而考虑了防喘振裕度后,就可以在

其右边画出一条与喘振曲线相似的一条抛物线,这就是保护曲线,或叫防喘振曲线。保护曲线没有必要与喘振曲线完全相似,或由喘振曲线平移来获得。这要保证压缩机在正常运转范围内有合适的裕度即可。这样就使防喘振控制系统仪表的配置和选用变得极为简单,并且更有灵活性。

八.防喘振系统的工作方法

从离心压缩机的特性可以知道,提升转速或加大缸体流量可以避免喘振。一般采取放空或打回流的方法来增加缸体流量,以保证压缩机的运行点不致落入喘振区。

简图即四回一防喘振控制系统。压缩机的出口压力调节器PRC和流量调节器FRC,将各自测得的压力与流量值与事先给定的允许值作比较,如果流量低于给定或压力高于给定,两个调节器将分别发出控制信号,经选择调节器选择后,将产生动作使防喘振阀门自动打开,从而达到了增加流量,防止喘振的目的。

在低压缸出口设有一放空阀,低压缸出口压力若异常升高,可通过此阀将压力卸去。

九.防喘振操作应注意事项

开车时,必须根据压缩机的性能曲线,并按照先升速,后升压的原则。在防喘阀全开的情况下启动汽轮机,并升速到某一转速(一般是机组的下限转速)再关小一点防喘阀或放空阀,使压力升高到比在该转速下压缩机特性允许的压力低一些的数值。然后,再按照上述方法,升一点转速,关一点防喘振阀,提高压力,升速、升速交替进行。直至压缩机达到正常工作点为止。停车则相反,应先降压,后降速。降压、降速交替进行,直至停机。

具有分缸防喘振系统的机组,在操作防喘振阀时,必须交替进行,例如,开启高压缸防喘振阀,必须要等到低压缸出口压力上升,而流量下降。这时就必须将低压缸防喘振阀也开启一点,

防止低压缸也产生喘振。同样,开大低压缸出口防喘振阀也会引起高压缸入口流量下降。因此,低高压缸应互相照应,不可顾此失彼。

十.汽轮机本体

1.静止部分:由汽缸、隔板、喷嘴、汽封和轴承等组成。

2.转动部分:由主轴、叶片、叶轮以及联轴节、盘车等装置组成。

3.控制部分:包括调节装置、保护装置及油系统等。

其工作过程大致如下:进入汽轮机的具有一定压力和温度的蒸汽,流过喷嘴时发生膨胀,热能转变成动能,使蒸汽获得很高的速度,从而冲动转子上的叶片使得转子转动。这样蒸汽的热能转变为机械能,并由联轴节输出,带动压缩作功。

十一.汽轮机各部件的作用

1.汽缸:汽缸是汽轮机的外壳,它的作用是把蒸汽的流通部分与外界隔开。在下汽缸设有抽汽口、排汽口、汽缸内部装有各级隔板。

2.隔板:隔板的作用是使汽缸内的蒸汽不致沿轴漏出,或使外界的空气不致大量沿轴漏入汽缸内部。另外,为了减少级与级之间的漏汽,在隔板上也装有汽封。

3.轴承:汽轮的轴承分径向支持轴承和轴向推力轴承。支持轴承是支持汽轮机转子的重量,承受部分进汽时引起的作用力,并固定转子的径向位置,保证汽轮机动、静部分同心。止

推轴承的作用是承受转子的剩余轴向推力。转子在汽缸的轴向位置也靠它来固定,以保证动、静部分不置碰撞。

4.叶片:叶片装在叶轮上,而叶轮及联轴节装在主轴上。其作用是把蒸汽的动能转变成为旋转的机械能,以输出给压缩机,相邻两叶片的工作部分组成了转子上的蒸汽通道。

5.盘车机:盘车机不仅可以减少冲转时的起动力矩,更主要的是为了在汽轮机在停车后和启动前盘动转子,使转子得以均匀冷却或升温,否则转子因上下冷却不匀或者局部受热会产生弯曲。

十二.汽轮的保护装置

1.危急保安器:其作用是当汽轮机转速超过极限时泄去安全油,使机组脱扣停车,防止发生超速飞车事故。

2.低油压保护装置:其作用是在动力油或润滑油压力降到一定值时,自启动备用油泵。油压低至危险值时,使汽轮机脱扣停车,油压极低时使盘车机跳闸。

3.抽汽止回阀联动装置:当汽轮机脱扣时,迅速切断抽汽以防止蒸汽倒入汽轮机造成事故。

4.停车电磁阀:其动作因素很多。如轴向位移过高,振动过高,润滑油压低,油稳过低,排汽温度过高,以及工艺联锁等任一项指标超过规定值,电磁阀即动作,引起安全油失压,使汽轮机脱扣。

5.手档停车装置:其作用是当确认汽轮机应停车时,可手动

使其脱扣停车。

6.大气释放装置:当排汽压力急剧上升时,为保持汽轮机的低压部分,该装置及时动作,将蒸汽排入大气。

7.调节阀联动装置:汽轮机停车时能迅速关闭,并要保证必须在把调节阀手轮退回起点后才能重新起动。以防止因突然复

位致使大量蒸汽突然涌入汽轮机而引起事故。

8.自动主汽阀,必须停车时能迅速关闭该阀,以及时切断主汽。

十三.汽轮机调节系统。其作用是:

1.在稳定工况下,保证汽轮机的转速不变,以稳定负荷。

2.当工艺系统负荷变化时,要能及时准确地调节转速,以满足工艺系统负荷变化的要求。

调节系统主要由感应机构,传动放大机构,执行机构组成。

十四.汽轮机滑销系统及作用

汽轮机从冷态启动到运行正常,是一个加热过程,而停车又是一个冷却过程。在次过程中,有的零部件的温度变化

极大。为了确保汽轮机在整个启停过程中,既能自由地膨胀

和收缩,以避免产生过高的热应力,又必须保证汽缸的中心

线不移动。因而设置了滑销系统。

滑销主要有纵销、横销和立销。在汽缸的高压端与排汽端各设置一立销。以保证在垂直方向上缸体热膨胀能处在正

确位置上,并确保不致发生扭转变形。在低压缸有两个横销,

缸体可沿这两个圆柱型销子作横向滑动,同时他们与纵销的

交叉点就是整个缸体的膨胀死点。独立座落在底座上的前轴

承箱,支承着缸体两只外伸的猫爪,猫爪通过横销与前轴承

箱连接受热膨胀时,猫爪可沿着滑销作横向滑动。前轴承箱

与底座之间设有纵销,当缸体轴向膨胀时,通过猫爪下的横

销,推动前轴承箱向前滑动。

十五.汽轮机的辅助设备及作用

1.凝汽器:利用循环水冷却,使汽轮机的乏汽冷凝成水,以形成真空。

2.凝泵:一般有两台互为备用,用以从凝汽器的热片中抽出冷凝液送锅炉系统。

3.主抽汽器:共设两台互为备用。在运行时抽出从蒸汽中带入或通过汽轮机真空系统漏入并聚集在凝汽器里的不凝结气体,以维持凝汽器里的真空。

4.辅助抽汽器:在汽轮机开车前,用以较快地抽出空气,产生必要的真空,以缩短启动时间,一般功率较大。

十六.临界转速:

尽管汽轮机转子上的各个部件都制造得很精密,在装配时也做了平衡。但是转子的重心还是不可能完全和轴的中心

相重合,存在着偏差,因此在轴旋转时就产生了离心力,这

就是造成汽轮机振动的主要原因。转子旋转时,重心随着轴

中心线而转动,因此离心的方向也随着转动。当轴转动一周

就产生一次振动,这是离心力引起的强迫振动。每秒钟产生的振动次数叫做强迫振动频率。任何弹性体,包括汽轮机转子,都有一定的自由振动频率,当转子的强迫振动频率与转子的自由振动频率相同时,就产生共振,这就是转子的临界转速。

在临界转速下,汽轮机的振动特别大(在理论上将达到无穷大)如果汽轮需在临界转速以上运行的话,则必须快速而平稳地通过临界转速,不得停留。

汽轮机转子工作转速在一阶临界转速和二阶临界转速之间的称为软轴。而工作转速在临界转速之下的称为硬轴,又叫刚性轴。

临界转速不止一个,但对于一般汽轮机需要予以注意的只是一阶临界转速。

离心式压缩机安装方案

一、概述 大庆石化分公司120万吨/年加氢装置及制氢装置中有1台循环氢压缩机K-3102,这台压缩机为离心式压缩机,采用背压式气轮机驱动。压缩机的输送介质为氢气(氢含量95.6%),流量为25000Nm 3/h,机组轴功率为1936KW。建设单位是大庆石化公司;施工单位是中国石油天然气第一建设公司;监理单位是;本措施不包括单机试运方案。 二、编制依据 2.1石油化工设备安装工程质量检验评定标准》SHJ514-90 2.2〈化工机器安装工程施工及验收规范》(离心式压缩机) HGJ205-92 2.3化工机器设备安装施工及验收规范》通用规定)HGJ203-83 2.4 机械设备安装工程施工及验收通用规范》GB50231-98 三、施工方法 3.1施工前应具备下列技术资料: 3.1.1离心式压缩机组出厂合格证书。出厂合格证书必须包括下列内 容: ?重要零、部件材质合格证书; ?随机管材、管件、阀门等质量证书; ?机壳及附属设备水压试验记录; ?转子制造质量检验证书;

?转子动平衡及叶轮超速试验记录;?机器装配记录;

?机器试运转记录。 3.1.2机组安装平、立面布置图,基础图、装配图、系统图及配管图安装、

机组组装顺序图 使用、维修说明书; 3.1.3机组的装箱清单; 3.1.4基础中间交接资料; 3.1.5有关的规范、技术要求、施工方案等。 3.1.6施工前必须组织图纸会审及技术交底,并应有相应的记录。 3.2开箱验收及保管 设备到货后,由业主、监理、施工单位等共同进行开箱检验。检验项目包括:包装箱的保护情况,包装箱编号、数量是否与装箱单一致,核对机器及附属设备的品种、规格、数量,检查其外观质量,专用工具及随机技术文件是否齐全,根据装箱单核查备品、备件及专用工具。供货清单应与设计施工图的要求相吻合。检验完毕后,填写设备检验记录,办理设备移交手续 3.3施工现场应具备的条件 3.3.1基础必须具备安装条件,基础附近的地下工程及地坪应完成,运输、消防道路应畅通。 3.3.2厂房或临时设施应能防止风、沙、雨、雪的侵袭。环境温度不应低于5 C。 3.3.3厂房内机组安装用的起重设备,应经试运行合格。 3.3.4施工用水、电、气和照明应接通且具备使用条件。 335施工现场必须备有足够的消防器材

离心式压缩机操作法

精细化工事业部甲醇制芳烃离心式压缩机操作方法 (试用) 编制: 校对: 审核: 批准:

一、岗位任务: Ⅰ、再生系统空气压缩机、再生气循环机: 合成油反应器催化剂GSK 一10再生时,空气经过MW—46.7/11型空气压缩机【J40202】三级压缩后,提压至1.2Mpa。与来自界区压力1.2Mpa 的氮气按比例混合温度不高于38℃,进入SV6-M压缩机【J40203】提压至2.0 Mpa,送往合成油反应器内进行循环烧炭反应。 Ⅱ、循环气压缩机:将气液分离后的合成气,经MCL-452离心式压缩机升压后送往合成油反应器,循环带走反应热。 二、职责范围: Ⅰ、管理本压缩机组及其附属设备,阀门,管线与本机组有关的电气,仪表,信号,安全防护联锁装置等。 Ⅱ、负责压缩机的正常操作,开车、停车、事故处理。 Ⅲ、保证压缩机正常运行,将各工艺条件稳定在操作指标内。 Ⅳ、负责设备的维护保养,消除跑、冒、滴、漏,做到岗位清洁,文明生产。 Ⅴ、运行期间每小时排污一次,并注意循环油箱液位。 Ⅵ、按时进行巡回检查,发现隐患或超工艺指标情况及时处理或汇报,确保安全稳定运行。 Ⅶ、经常检查各段进、出口气体压力和温度的变化情况;及压缩机振动、位移的变化;加减负荷时应加强与相关岗位的联系。

Ⅷ、压缩机开车正常运行后,向外工序送气时,必须待出口压力略高于系统压力时,才能开启出口阀门。 巡回检查 Ⅰ、根据操作要求,每小时做一次岗位记录,做到认真、准时、无误。Ⅱ、每十五分钟检查一次系统各点压力、温度和振动、位移。 Ⅲ、每半小时检查一次压缩机的运转情况及活门、气缸、活塞环、填料函,干气密封等有无异常情况; Ⅳ、每小时检查一次系统放空阀,近路阀、各排污阀的关闭情况。Ⅴ、各段分离器排污,每两小时排放一次。 Ⅵ、每一小时检查一次各冷却器溢流情况、气缸夹套冷却水溢流情况及循环油箱油位。 Ⅶ、每班检查一次系统设备、管道等泄漏和振动情况。 三、生产原理及操作原理: Ⅰ、SV6-M压缩机; HM-46.7/11空气压缩机为四列三级对称平衡型往复活塞式压缩机。由同步电机直接驱动,每分钟吸入46.7m3空气,最终排气压力1.1Mpa。活塞式压缩机的工作原理: 依靠活塞在气缸内的往复运动来压缩气体的。压缩气体的过程可分为四个过程:吸气、压缩、排气、膨胀过程。

空压机培训教材__活塞式

第一章空气压缩机工作原理及使用 第一节工作原理 驱动机启动后,经三角胶带,带动压缩机曲轴旋转,通过曲柄杆机构转化为活塞在气缸内作往复运动。当活塞由盖侧向轴运动时,气缸容积增大,缸内压力低于大气压力,外界空气经滤清器,吸气阀进入气缸;到达下止点后,活塞由轴侧向盖侧运动,吸气阀关闭,气缸容积逐渐变小,缸内空气被压缩,压力升高,当压力达到一定值时,排气阀被顶开,压缩空气经管路进入储气罐内,如此压缩机周而复始地工作,不断地向储气罐内输送压缩空气,使罐内压力逐渐增大,从而获得所需的压缩空气。 第二节空压机的安装、起动、运转和停车 (一)机器的安放 空压机应安放在空气流通、光线充足、四周平坦的地方,以便操作管理和保证风冷效果。 (二)开机前的检查和准备 1、检查机器各部位是否处于正常状态,紧固件有否松动等。 2、加注润滑油:空压机冬季用13号、夏季用19号压缩机油,加油至视油窗2/3处为宜。注意:在气温较低地区,应防止润滑油凝结。 3、用手盘动空压机风扇2-3转,检查有无障碍感或异常声响。 4、打开储气罐上的输气闸阀,使其处于全开状态。 5、对电动空压机,由电工决定起动方式,接线后先作点起动,检查曲轴旋转方向是否如安全罩上的箭头所示;对柴动空压机,还要按柴油机说明书对柴油机进行检查、准备。 (三)起动 (1)起动电动机,并注意电动机的转向是否正确; (2)待电动机运转正常后勤工作,逐渐打开减荷阀,使空压机投入正 常运转。 (四)运转中注意事项 (1)注意各部声响和震动情况; (2)注意检查注油器油室的油量是否足够,机身油池内的油面是否在 油标尺规定的范围内,各部供油情况是否良好; (3)注意检查电气仪表的读数和电动机的温度;

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

螺杆式空压机培训教材

螺杆式空压机培训教材 一、空压机的组成结构 1、电气部分:电机、控制系统、操作面板; 2、压缩机部分:主机头、进气控制器、单向阀、断油阀、最小压力阀、电磁阀; 3、冷却器部分A风冷:冷却风扇、油气冷却器; 冷却器部分B水冷:油冷却器、空气冷却器、温控阀。 二、主机头转子结构及工作原理 1、主机结构:机体平行配置一对相互啮合的螺旋形转子(阴转子和阳转子), 转子两端轴承实行轴向和径向定位; 2、螺杆机主要特点:可靠性高,运行寿命长; 操作简单,维护便; 动平衡性好,可平稳高速运行,压力平稳无脉冲。 3、工作原理:阴阳转子与机体构成的容积变化产生吸气一一压缩一一排气三个连续 的工作过程。 三、压缩机运行流程:空气经过空滤进气控制器主机头油气分离器一一最小压 力阀一一气冷却器一一用户用气现场。 1、空气压缩流程:空气被压缩的同时一定量的冷却油不断注入主机,起冷却、密封、润滑的作用,与空气一起同时被压缩至油气分离器,初步分离油和气后含油的空气再进入油气分离滤芯细分后通过最小压力阀到气冷却器进行冷却排放冷凝水后 进入用气系统。 2、油循环系统流程:冷却油在压力的作用下从油分通过温控阀,要据油温高低 改变油路向使油进入冷却器或不需冷却直接经过油滤进入主机头,温控阀保证螺

杆机在运行中以最佳温度工作(75~95 °C) 四、螺杆式空压机主要构件运行原理 1、电机启动:丫一一△降压启动,转换时间15~30秒; 2、电磁阀:关机或卸载时电磁阀失电,进气控制阀关闭,系统部压力被放空; 加载时电磁阀得电,进气控制阀打开,系统压力开始上升; 3、进气控制器:属于气动阀,由阀座、阀门、气动组件、弹簧组成,由电磁阀控制工作气源; 4、最小压力阀:一般开启压力为 3.5bar,亦属于单向阀。P系<P管时关闭 P系>P管时打开 P管=0时P系>3.5bar时打开5、温控阀:油感温阀芯、滑块、弹簧、阀体组成。滑块与阀体环槽相对位置决定冷却油的路径。 6、容调阀(稳压阀):根据管网压力大小来决定进气控制器阀门的开口以达到节能的效果。 五、500小时首次保养及3000小时保养容 1、500小时更换润滑油及油过滤器(必须); 2、3000小时更换三滤及润滑油,检查安全阀、温度保护及吹扫冷却器。 螺杆式空气压缩机技术资料 1、主机装配排气间隙:0.04~0.08mm ,最大不超过0.15mm。 2、主机轴承间隙一定小于排气间隙(0.00~0.25<0.04~0.08 )。 3、阴阳转子分开时吸气,合拢时排气,主机上的定位销是为保证装配时转子与

离心式压缩机的两个特殊工况(2015.4.5培训)

离心式压缩机的两个特殊工况离心式压缩机流道的几何尺寸及结构是根据设计工况确定的。当压缩机在设计工况下运行时,气体在流道中流动顺畅,与几何尺寸配合良好,气流方向和叶片的几何安装角相一致。这时压缩机各级工作协调、整机效率高。当压缩机偏离设计工况运行时,效率、压缩比都有变化。当向大流量工况偏离时,效率、压缩比下降;当向小流量工况偏离时,效率下降在一定范围内压缩比生高。若偏离程度不严重,仍能维持稳定工作。一但工况变化较大,这时由于流道中气体流动情况恶化,将导致压缩机性能大大降低甚至不能正常工作。喘振工况和阻塞工况就是在偏离达到极限时的两个特殊工况。 一、喘振工况 当离心式压缩机工作在设计点时,气流的进气角基本上等于叶轮叶片的进口几何安装角,气流顺利进入流道,不会出现附面层脱离。当流量减小时,气流轴向速度减小,冲角增大,气流射向叶片的工作面,使非工作上出现脱离。由于气气流在非工作面上是扩压流动,出现的脱离很容易扩张。所以流量减少时,脱离发展明显。当流量减小到某临界值时,脱离严重扩张,以至冲满流道的相当大部分区域,使损失大大增加,破坏了正常流动。在叶片扩压器中的流动情况与叶轮中的类似。 流量下降,冲角增大。由于进口气流本身的不均性和加工上

的问题而造成各叶片间几何结构的微小差异等原因,总会在某一个或几个叶片上最先发生气流脱离现象,形成一个或几个脱离区,我们称之为“脱离团”。该叶片附近的流动情况恶化,出现了明显的流量减小区,这个受阻滞的气流使它附近的气流方向有所改变,引起流向转向后面叶片的气流冲角增大,转向前面叶片上的冲角减小。于是后面叶片叶背上出现脱离,同时解除了前面叶片上的脱离。如此,在相对坐标系上看,引起了脱离团沿转速的反方向传递。由试验得知,叶轮中脱离团的传递速度小于转速,所以从绝对坐标系来观察,脱离团是以某一转速沿转向传递。这种现象即称之为“旋转脱离”。这种压缩机在非设计工况下,由于工况变化导致叶片通道中产生严重的气流脱离,并形成旋转脱离现象,而使级性能明显恶化的情况,被称为“旋转失速”。旋转失速可以沿气流流动方向向后扩展。 由于工况改变,流量明显减少,而出现严重的旋转脱离,流动情况大大恶化。这是叶轮虽在旋转、对气体做功,但却不能提高气体压力,压缩机出口压力明显下降。如国压缩机后管网容量较大,其背压的反应不敏感,于是出现管网中的压力大于压缩机出口处压力的情况,就出现倒流现象。气流由压缩机出口向进口倒灌,一直到管网中的压力下降至低于压缩机出口压力为止。倒流停止,气流又在叶片作用下正向流动,压缩机又开始向管网供气,经过压缩机的流量又增大压缩机恢复正常工作。但管网中压力不断回升,又恢复到原有水平时,压缩机正常排气又受到阻碍,

往复式压缩机基本知识

培训教案 培训课题: 往复式压缩机基本结构、工作原理、常见故障及注意事项培训日期: 2017年8月培训课时:2课时 课程重点: 讲述往复式压缩机基本结构、工作原理、常见故障及注意事项。 培训目标及要求: 通过培训使全体员工对往复机的结构、工作原理有一定的了解,掌握其常见故障,明确注意事项,真正做到“四懂三会” 授课内容: 一、往复式压缩机的型号、结构及工作原理 1、往复式压缩机型号 2、往复式活塞压缩机的工作过程 往复式活塞压缩机属于于容积型压缩机。靠气缸内作往复运动的活塞改变工作容积压缩气体。气缸内的活塞,通过活塞杆、十字头、连杆与曲轴联接,当曲轴旋转时,活塞在汽缸中作往复运动,活塞与气缸组成的空间容积交替的发生扩大与缩小。当容积扩大时残留在余隙内的气体将膨胀,然后再吸进气体;当容积缩小时则压缩排出气体,以单作用往复式活塞压机(见图)为例,将其工作过程叙述如下:

(1)吸气过程当活塞在气缸内向左运动时,活塞右侧的气缸容积增大,压力下降。当压力降到小于进气管中压力时,则进气管中的气体顶开吸气阀进入气缸,随着活塞向左运动,气体继续进入缸内,直至活塞运动到左死点为止,这个过程称吸气过程。 (2)压缩过程当活塞调转方向向右运动时,活塞右侧的气缸容积开始缩小,开始压缩气体。(由于吸气阀有逆止作用,故气体不能倒回进气管中;同时出口管中的气体压力高于气缸内的气体压力,缸内的气体也无法从排气阀排到出口管中;而出口管中气体又因排气阀有逆止作用,也不能流回缸内。)此时气缸内气体分子保持恒定,只因活塞继续向右运动,继续缩小了气体容积,使气体的压力升高,这个过程叫做压缩过程。 (3)排气过程随着活塞右移压缩气体、气体的压力逐渐升高,当缸内气体压力大于出口管中压力时,缸内气体便顶开排气阀而进人排气管中,直至活塞到右死点后缸内压力与排气管压力平衡为止。这叫做排气过程。 (4)膨胀过程排气过程终了,因为有余隙存在,有部分被压缩的气体残留在余隙之内,当活塞从右死点开始调向向左运动时,余隙内残存的气体压力大于进气管中气体压力,吸气阀不能打开,直到活塞离开死点一段距离,残留在余隙中的高压气体膨胀,压力下降到小于进气管中的气体压力时,吸气阀才打开,开始进气。所以吸气过程不是在死点开始,而是滞后一段时间。这个吸气过程开始之前,余隙残存气体占有气缸容积的过程称膨胀过程。 4、往复式压缩机的结构 往复式活塞压缩机由机座、中间接筒、曲轴、连杆、十字头、活塞杆、活塞、填料箱、气阀、飞轮、冷却和调节控制系统及附属管线等组成。如图

离心压缩机培训基础知识(罗文山)

离心压缩机 离心式压缩机是属于速度式透平压缩机的一种。在早期,离心压缩机是用来压缩空气的,并且只适用于低、中压力和气量很大的场合。但随着石油化工工业的迅速发展,离心压缩机被用来压缩和输送各种石油化工生产过程中的气体,其应用范围有了很大提高。尤其近十几年来,在离心压缩机设计、制造方面,不断采用新技术、新结构和新工艺,如采用高压浮环或干气密封结构,较好地解决了高压下的轴端密封,采用多油楔径向轴承及可倾瓦止推轴承.减少了油膜振荡,圆筒形机壳的使用解决了高压气缸的强度和密封性;电蚀加工使小流量下窄流道叶轮的加工得到解决。所有这些,都使离心压缩机的使用范围日益扩大,在石油化工生产中得到广泛的应用。 一、离心压缩机的主要构件 图2-1是BI120-6.35/0.95型离心压缩机剖面图。该机的设计参数是:进口流量为125m3/min,排气压力为6.23*105Pa;工作转速达13900rpm,压缩机需用功率为660kw,用于输送空气或其他无腐蚀性工业气体。由图上可看出.该机由一个带有六个叶轮的转子及与其相配合的固定元件所组成,其主要构件有: (1)叶轮是离心压缩机中唯一的作功部件。由于叶轮对气体作功,增加了气体的能量,因此气体流出叶轮时的压力和速度都有明显增加。 (2)扩压器是离心压缩机中的转能装置。气体从叶轮流出时

速度很大,为了将速度能有效的转变为压力能,便在叶轮出口后设置流通截面逐渐扩大的扩压器。 (3)弯道是设置于扩压器后的气流通道。其作用是将扩压后的气体由离心方向改变为向心方向,以便引入下一级叶轮去继续进行压缩。 (4)回流器它的作用是为了使气流以一定方向均匀地进入下一级叶轮入口。在回流器中一般都装有导向叶片。 (5)吸气室其作用是将进气管(或中间冷却器出口)中的气体均匀地导入叶轮。 (6)蜗壳其主要作用是将从扩压器(或直接从叶轮)出来的气体收集起来,并引出压缩机。在蜗壳收集气体的过程中,由于蜗壳外径及通流截面的逐渐扩大,因此它也起着降速扩压的作用。 除了上述组件外,为减少气体向外泄漏在机壳两端还装有轴封(如干气密封);为减少内部泄漏,在隔板内孔和叶轮轮盖进口外圆面上还分别装有密封装置(一般为梳齿密封,也叫迷宫密封);为了平衡轴向力,在机器的一端装有平衡盘等。 在离心压缩机中,习惯将叶轮与轴的组件称为转子,吸气室和蜗壳等称为固定元件。

日立螺杆压缩机培训资料

2005年螺杆压缩机培训资料 1螺杆压缩机的概况 1.1 特长、规格 螺杆压缩机与其他形式的压缩机比较,一般具有如下特长,并广泛应用于空调、冷冻、厂房设备、空气热源冷暖等方面。 ①螺杆压缩机滑动部位少,没有短时间必须交换的动作阀等零件,所以可靠性高,没有长时 间大修的必要。 ②结构简单,主要零件数约是往复式的1/10(本公司比)。 ③采用双重密封结构,低噪音。 ④冷媒压缩因是通过连续吸气进行压缩,所以为低振动。 ⑤效率高,尤其是在低温用途、空气热源冷暖用方面,能发挥超群的性能。 ⑥容量控制有阶段和连续两种方式,能广泛适应不同的需要不是。 ⑦如果在压缩机吸入侧喷射液体冷媒,排出气体的温度不会上升到120℃以上。 ⑧使用排出温度达到120℃且不会炭化或劣化的特殊合成润滑油。 ⑨压缩机启动负荷小,马达启动可采用启动电流小的星-三角式(λ—Δ)。 螺杆压缩机的规格如表1所示。

表1 压缩机的规格 2 备注1:电机相间电阻是指当温度为20℃时的值。

1.2 工作原理 螺杆压缩机是通过由5个凸齿组成的阳转子(以下简称为M转子)与由6个凹齿组成的阴转子(以下简称为F转子)的啮合形成齿形空间吸入冷媒,通过减小齿形空间来压缩冷媒至所定压力。 〔吸入行程〕 从在轴向到半径方向上开口的吸入口吸入冷 媒。随着转子的回转,在转子下侧,啮合分 开,齿沟长度增大,冷媒被吸入齿形空间。 〔压缩行程〕 从齿沟的吸入侧开始进行齿形的啮合,密封 线渐渐向排出侧行进,齿形空间减少,进行 压缩。 〔压缩行程〕 通过随着冷媒一起吸入的润滑油,在转子间 隙内形成油膜密封,同时对转子进行润滑。 阳转子和阴转子渐渐靠近排出口进行压缩, 压力升高。

陕西鼓风机厂轴流压缩机培训教材

目录 一、轴流压缩机的发展概况 二、轴流压缩机的基本工作原理 三、机组的自动调节及保安系统 四、轴流压缩机选型 五、轴流压缩机与管网联合工作 六、轴流压缩机配套辅机设备 七、其他

一、轴流压缩机的发展概况 在十九世纪,轴流式鼓风机已应用于矿山通风和冶金工业的鼓风。但限于当时的理论研究和工业水平还比较落后,这种风机的全压只有10~30mmH2O,效率仅达15~25%。 1853年都纳尔(Tournaire)向法国科学院提出了多级轴流式压缩机的概念。1884年英国.帕森斯(Parsons)将多级反动式透平反向旋转,得出了第一台实验用轴流式压缩机,但效率很低。二十世纪初期,帕森斯制造了第一台轴流式压缩机,19级,流量85m3/min,压力·G,转速4000r/min,效率约60%。由于效率低,故轴流式压缩机未能成功地推广应用。 从二十世纪三十年代开始,由于航空事业发展的需要,对航空燃气轮机进行了大量的理论和试验研究,特别是对轴流式压缩机的气体动力学的理论研究和平面叶栅吹风的实验研究,使轴流压缩机的理论和设计方法不断完善,效率提高到80~85%。从四十年代开始,轴流式压缩机已广泛应用于航空燃气轮机中,迄今仍占有很重要的地位。现代轴流式压缩机的效率可高达89~91%,甚至更高。 瑞士苏尔寿(SULZER)公司是世界上轴流压缩机设计制造技术的先进代表。1932年苏尔寿公司制造了世界上第一台增压锅炉使用的工业轴流压缩机,1945年苏尔寿公司制造了第一台轴流式高炉鼓风机,其流量为1200~1800m3/min,压力为78775~142179Pa(G),转速为5200r/min,功率为3900kW,由电动机驱动。此后轴流式高炉鼓风机逐渐被采用,多为固定静叶式,由汽轮机驱动,通过改变汽轮机的转速来调节高炉使用工况。这种

KCC219系列离心式空气压缩机

KCC215-9系列离心式空气压缩机 技术说明 浙江开山离心机械有限公司

目录 1、相关技术数据 2、产品特点 3、性能保证 4、性能测试情况介绍 5、技术服务和设计联络 6、甲方的备货范围 7、供货范围清单以及供应商 甲方(需方): 乙方(供方):浙江开山离心机械有限公司 2014 年 5 月18 日

KCC215-9 离心式空压机相关技术数据 项目/品牌开山 型号KCC215-9(215m3/min,0.9MPaA) 额定流量(m3/min)215(入口状态) 额定压力(BarG)8 空压机出口空气质量100%无油 节流范围(%)70~105%(对应进口导叶开度40~90°) 压缩段数 3 轴功率(KW)1035 冷却水消耗量(T/hr)130(含后冷却器用水) 冷却水温升(degC)8℃ 剖分形式水平剖分式平行轴斜齿整体齿轮增速齿轮箱 小齿轮材质17CrNiMo6 大齿轮材质17CrNiMo6 叶轮形式半开式、后倾式 叶轮材质17-4PH 高速轴轴向轴承形式推力盘 高速轴径向轴承形式水平剖分式可倾瓦轴承 高速轴油封形式迷宫 高速轴气封形式迷宫 低速轴(大齿轮轴)轴承形式水平剖分式轴套式滑动轴承 低速轴(大齿轮轴)油封形式迷宫式油封 蜗壳材质HT300 联轴器不锈钢膜片式并带防护罩 入口阀动力方式电动执行器调节进口导叶结构~220V ,4-20mA 放空阀动力方式电气动执行器,4-20mA 空气流道防腐处理材质按客户要求 扩压器材质铝合金 冷却器管束材质T2 冷却器翅片材质AL 疏水阀形式带有“V”形缺口的冷却器泄水阀 电机额定功率(KW)1120(华达) 额定电压(KV)10 电机转速(RPM)2975 电机效率:100%/75%/50%负荷0.95/0.95/0.94 电机功率因素:100%/75%/50%负荷0.88/0.85/0.77 绝缘等级 F 温升等级 B 防护等级IP23 启动方式液态软启动 启动电流(A) 3.5倍满载电流 电机轴承滚动轴承 电机轴承润滑脂润滑

压片机培训教材

旋转式高速压片机应用技术培训 (单出料机型) 北京翰林航宇科技发展有限公司 旋转式高速压片机应用技术培训 第一节压片机简介 (3) 第二节压片机结构、组成及原理 (6) 第三节机器的完好状态 (8) 第四节操作顺序及注意事项 (10) 第五节片剂的分类 (13) 第六节常用制粒方法 (15) 第七节片剂的质量要求 (20) 第八节常用术语 (21) 第九节压片时可能发生的现象、原因及解决方法 (22) 第一节压片机简介 压片机分为单冲压片机和旋转压片机。 (1)单冲压片机:有一副冲模组成,冲头作上下运动将颗粒状的物料压制成片状的机器。产量在60---100片/分钟,最大作用力15KN,多用于新产品的试制。重型单冲压片机,也可压制异形片、环形片。 (2)旋转压片机:旋转压片机是基于单冲压片机的基本原理,又针对瞬时施压无法排出空气的缺点,变瞬时压力为持续且逐渐

改变的压力,从而保证了片剂质量,对扩大生产有极大的优 越性。旋转压片机按流程分、双流程两种。 单流程仅有一套上下压轮,旋转一周每个模孔只压出一个药片; 双流程有两套压轮、饲粉器、刮粉器、片重调节器和压力调节器等,均装于对称位置,冲盘转动一周,每副冲具压制两个 药片。 (2)高速压片机:特点是转速块、产量高、片剂质量好,压片时采用两次压片成型,能将颗粒状物料连续进行压片,可压制 圆形片、异形片。具有全封闭、压力大、噪声低、生产效率 高、润滑系统完善、操作自动化等特点。 翰林公司出产的高速压片机以对称的两个冲孔间距为系列划分: 单出料265系列:GZP—16 GZP—23 GZP—30 ZPT—23 ZPT—30 单出料370系列: GZP—26 GZP—32 GZP—40 ZPT—26 ZPT—32 ZPT—40 单出料420系列: GZPY—30 GZPY—37 GZPY—45 双层片560系列: GZPD—41 GZPD—51 GZPD—61 GZPD—79 双出料620系列: PG—45 PG—55 PG—65 双出料680 /720系列: GZPS—49 GZPS—61 GZPS—73 GZPS—79 双出料1060系列: GZPT—122 GZPT—113 GZPT—95 GZPT—76 高速压片机工作流程(见下图) 充填物料----- 确定计量----- 预压成形----- 主压定型----- 出片

离心压缩机讲义

一.透平压缩机的结构、性能及工作原理 二.透平压缩机振动类型案例 三.透平压缩机的开停车步骤 四.透平压缩机的运行注意事项 离心压缩机 一.离心式压缩是如何提高压力的? 离心式压缩机气体的提高,是靠叶轮带动气体旋转,使气体受到离心力的作用产生动力获得动能,然后进入扩压器中,气体流速逐渐减慢,将动能转变成压力能,而使气体压力得到提高,它与活塞式或回转式压缩机靠改变气体的容积来提高压力是不同的。二.离心式压缩机主要优缺点 离心式压缩机主要优缺点是:单机输出量大而连续,无脉冲,运转平稳,机组外型尺寸小,重量轻,占地面积少,投资省,设备结构简单,易损件少,运转周期长,维修工作量小,调节性能好,实现自动控制比较容易,运转可靠,单系列运行,不需要备用机组,介质不与润滑油接触,有利于化学反映,可用气轮机直接拖动,能充分利用化肥厂工艺热能,经济效益好。 缺点是:由于气体的流动损失,漏气损失和轮阻损失比较大,因而效率较低,一般比往复式压缩机低5~10%,容易“喘振”。三.离心式压缩机的基本结构 离心式压缩机的每一段,是由几个压缩级组成,每一级是由一个

叶轮以及与其配合的固定元件所构成。其基本结构可分为中间级和末级两种。中间级是由叶轮、扩压器、弯道和回流器等组成。 气体通过弯道和回流器后即到下一级继续压缩。在离心式压缩机里,除每一段的一级外,都属于这种中间级。末级是由叶轮、扩压器、蜗轮等组成。气体经过压缩后排出,到冷却器进行冷却并分离后送用户。 四.离心式压缩机的主要零部件及作用 1.吸气室:吸气室是把所需压缩的气体均匀地引入叶轮去压缩。因此,压缩机每一段第一级进口都设置了吸气室。 2.叶轮:叶轮安装在转轴上,由轮盘、轮盖和叶片组成,是压缩机中最重要的部件。气体由于受旋转离心力的作用,以及在叶轮里的扩压流动,使气体通过叶轮后的压力得到了提高,气体的功能也同样在叶轮里得到了提高。因此,叶轮是将机械能传给气体,以提高气体的压力和速度的作功部件。 3.扩压器:气体从叶轮流出时,除压力升高外,还具有较高的流动速度。为了充分利用这部分动能,在叶轮的后面设置了流通面积逐渐扩大的扩压器,用以把速度能转化为压力能,以进一步提高气体的压力。 4.弯道与回流器:为了把扩压器后的气体引导到下一级叶轮去继续压缩,在扩压器后面设有引导气体的弯道,把气体均匀地引入下一级叶轮进口的回流器。 5.蜗壳:蜗壳的主要作用是把扩压器后面的气体汇集起来并

天然气压缩机培训教材(DOC 47页)

天然气压缩机培训教材(DOC 47页)

第二章、增压站 第一节、压缩机基础知识 第二节、概述 第三节、设备及工艺参数 第四节、工艺原理及流程 第五节、压缩机组面板说明 第六节、发动机的控制系统 第七节、操作规程 第八节、维护保养 第九节、常见问题分析 第十节、二氧化碳自动灭火系统操作规程

第二章增压站 第一节增压站基础知识 一.增压目的 1.提高输气管道的起点输送压力。 2.弥补管内流体流动中的阻力损失。 3.满足天然气用户对供气压力的特殊要求。二.天然气增压的特点 1.增压站的社会依托条件差 气田大都位于偏远的山区沙漠或其他不利于工程建设的地区,交通不便;供水,供电设施缺乏,社会协作和社会依托条件差。因此增加基础建设投资。 2.工作介质不清洁 从气井产出的天然气通常含有水、二氧化碳、硫化氢和固体颗粒杂质,清洁程度差。尽管增压前有气液分离和固体颗粒过滤,仍要求压缩机对气质有很强的适应能力。 3.变工况工作 在天然气生产过程中,天然气的压力、流量波动幅度大。要求天然气压缩机适应变工况操作的要求,需要选择允许进口压力变化范围宽,流

量负荷变化大的机型。 4.气井分散、单井产量小 增压站选址应符合气井分散的特点,选择气井集中或气田的中间位置。 三.增压站的工艺设计 增压站工艺流程设计应根据气田采气集输系统工艺要求,满足增压站最基本的工艺过程,即分离、加压和冷却。为了压缩机的启动、停车、正常操作等生产上的要求以及事故停车的可能性,工艺流程还必须考虑天然气的循环、调压、计量、安全保护、放空等。此外,还应包括为了保证机组正常运转必不可少的辅助系统(燃料气系统、自控系统、冷却系统、润滑系统、启动系统等)。 增压站由分离、增压、燃料及启动、放空五个基本单元组成。 四.压缩机组的选择 1.根据增压的工况和安装地区的自然和环境条件选择 (1)离心式压缩机组的优缺点 离心式压缩机属于速度型压缩机,压缩机组的流量是压比、转速的函数,压缩机组的流量、出

《离心压缩机》讲义

钳工集中培训讲义 离心压缩机 2007 年8 月

本章主要讲述离心式压缩机的工作原理、分类、型号,总体结构,各种流量损失,功率和效率,离心压缩机性能曲线的特点及性能调节,离心压缩机中的工况及喘振,主要零部件的作用及结构、原理,特别是轴承和密封部分。离心压缩机开停车注意事 项,以及离心压缩机维护。另结合考试穿插讲一部分有关的知识。

第一部分 压缩机概述 泵和压缩机是输送流体的机器。 流体是气体和液体的统称。两者的共同点是:没有固定形状, 随 盛装容器而定。 不同点是:液 体是不可压缩流体, 气体是可压缩流体。 泵是输送液体的机器。压缩机是输送气体的机器。 压缩机是给气体增加能量的机器。 用来输送气体或提高气体的压 压缩机的作用: 1 压缩气体作为动力。如:风动工具、仪表自动化控制。 2 用于制冷或把气体分离。如:制冷机(冰机) 、石油裂解气的 分离 3 用于合成及聚合。如:氮与氢合成氨、高压聚乙烯。 4 用于气体输送。如:天然气远程输送。 压缩机的分类: 按工作原理分为容积型和速度型两大类。 1 容积型 靠工作室容积周期性的变化实现对气体的压缩和输送。 它又分为 两类: 活塞式 隔膜式 螺杆式 液环式 往复式 柱塞式 回转式 滑片式 转子式

2速度型 靠叶片高速旋转,使气体得到很大的速度能, 压 力能的机器。 按气体排出的流动方向分为: 离心式气体沿叶片径向排出 混流式气体沿轴向45?非出 速度型轴流式气体沿叶片轴向排出 再把速度能转换成 图1 —1活塞式图1 — 2 罗茨式

图1—7 轴流式机械 图1 — 8 横流式 图1— 4 螺杆式 图1 — 6 斜流式机 誹出口吟 磴 入口一: "从 SMB 杆 乏幼鼎卄 ft 扩 眾用 裁漩讥护压詡 轴立盗坯 叶轮 1C lfiTs 2 g ZR^S WfWiqe w 罕 u 图1—3 滑片式 图1— 5 离心式

LW-48/1.5-7型压缩机培训讲义Word版

LW-48/7-B型压缩机用户培训讲义 一、压缩机分类 压缩机是一种压缩气体,提高气体压力或输送气体的机械,其种类很多,分类方法各异,结构及工作特点各有不同。 1.按标准分类:

2.根据介质分类: 压缩机可分为空气或各种气体,如氮、氢、氧、天然气、石油气、二氧化碳、乙烯、丙烯以及稀有气体的压缩机。 3.按压缩机公称排气压力分类: 4.按容积流量分类: 二、活塞式压缩机的分类 1.按气缸排列形式及位置分为: ①立式--气缸轴线与地面垂直;

②卧式--气缸轴线与地面平行; ③角度式--气缸轴线彼此成一定角度。 2.按气体在气缸内被压缩的次数分为: ①单级--气体经一级压缩达到终压; ②二级--气体经二级压缩达到终压; ③多级--气体经三级以上压缩达到终压。 3.按活塞的工作面在气缸內的作用情况分为: ①单作用式(单动)--活塞只在一侧完成工作过程; ②双作用式(复动)--活塞两侧都完成工作过程; ③级差式--大小活塞组合在一起,完成不同级次的工作过程。 4.按冷却方式分为: ①风冷 ②液冷 5.特征--特殊性能的容积式压缩机,如需表示多项特征时按以下代号标注: W-一无润滑、WJ--无基础、D--低噪声罩式,等等。 三、容积式压缩机的型号说明: 按照JB2589-86标准规定:容积式压缩机型号由大写汉语拼音字母和阿拉伯数字组成 : 字母表示

.型号说明: ①往复活塞压缩机V--V型、H--H型、L--L型、Z--立式、P--卧式、D--对称平衡型、DZ--对置型等。 ②举例: a. LW-48/7-B型氮气压缩机 往复活塞式L型无油润滑压缩机,公称排气量48m3/min,最终排气压力0.7MPa,第二次改型。 b.6M40-225/314型氮氢气压缩机 往复活塞式M型6级压缩,活塞力40吨,公称排气量225m3W /min,最终排气压力31.4MPa。 c. WWD-0.8/10型空气压缩机 往复活塞式W型无油润滑,低噪声罩式,公称排气量0.8m3/min,最终排气压力1MPa。 四、往复活塞式压缩机基本原理 压缩机在运转时,活塞不断运动,气缸与活塞之间的容积发生增大和缩小的周期变化。依靠气阀的作用,容积每发生一次变化,

离心压缩机讲义

透平压缩机的结构、性能及工作原理 透平压缩机振动类型案例 透平压缩机的开停车步骤 透平压缩机的运行注意事项 离心压缩机 离心式压缩是如何提高压力的? 离心式压缩机气体的提高,是靠叶轮带动气体旋转,使气体受到离心力的作用产生动力获得动能,然后进入扩压器中,气体流速逐渐减慢,将动能转变成压力能,而使气体压力得到提高,它与活塞式或回转式压缩机靠改变气体的容积来提高压力是不同的。 离心式压缩机主要优缺点 离心式压缩机主要优缺点是:单机输出量大而连续,无脉冲,运转平稳,机组外型尺寸小,重量轻,占地面积少,投资省,设备结构简单,易损件少,运转周期长,维修工作量小,调节性能好,实现自动控制比较容易,运转可靠,单系列运行,不需要备用机组,介质不与润滑油接触,有利于化学反映,可用气轮机直接拖动,能充分利用化肥厂工艺热能,经济效益好。 缺点是:由于气体的流动损失,漏气损失和轮阻损失比较大,因而效率较低,一般比往复式压缩机低5~10%,容易“喘振”。 离心式压缩机的基本结构 离心式压缩机的每一段,是由几个压缩级组成,每一级是由一个叶轮以及与其配合的固定元件所构成。其基本结构可分为中间级和末级两种。中间级是由叶轮、扩压器、弯道和回流器等组成。气体通过弯道和回流器后即到下一级继续压缩。在离心式压缩机里,除每一段的一级外,都属于这种中间级。末级是由叶轮、扩压器、蜗轮等组成。气体经过压缩后排出,到冷却器进行冷却并分离后送用户。 离心式压缩机的主要零部件及作用 吸气室:吸气室是把所需压缩的气体均匀地引入叶轮去压缩。因此,压缩机每一段第一级进口都设置了吸气室。 叶轮:叶轮安装在转轴上,由轮盘、轮盖和叶片组成,是压缩机中最重要的部件。气体由于受旋转离心力的作用,以及在叶轮里的扩压流动,使气体通过叶轮后的压力得到了提高,气体的功能也同样在叶轮里得到了提高。因此,叶轮是将机械能传给气体,以提高气体的压力和速度的

相关文档
最新文档