量子力学中的几率守恒定律

量子力学中的几率守恒定律
量子力学中的几率守恒定律

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学 第一章 态矢量

序章基本背景知识 1、量子力学得基本要素就是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」(简单解说:粒子在任一时刻都具有一个「状态」,粒子具有得某些可测量得性质(位置、动量、角动量、自旋,etc)称为「可观测量」,而测量粒子得这些性质得过程就就是「观测行为」,俗称“做实验”) 2、初等量子力学得任务就是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到得实验结果(观测结果)」 (2)寻找“态”随时间得「演化」规律 3、从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年) (2)爱因斯坦光量子假说(1905年) (3)光得波粒二象性(1909年) (4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:就是概率密度函数,(1926年) (9)海森堡不确定性原理;玻尔得互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年) 4、量子力学与经典力学得比较: 量子力学经典力学 研究对象在t时刻得位置 无法确定 只能确定在得出现概率 可以确定 t时刻得动量与速度 无法确定,速度无意义 只能确定具有得概率 且不可同时确定位置与动量 位置、动量与速度 同时确定 研究对象得状态得描述波函数(复函数) 或态矢量(复矢量) (实矢量函数) 状态得 演化方程 薛定谔方程(复系数方程) 牛顿第二定律(实系数方程)

量子力学诠释问题(一)

量子力学诠释问题(一) 作者:孙昌璞( 中国工程物理研究院研究生院北京北京计算科学研究中心) 1 引言:量子力学的二元结构和其发展的二元状态上世纪二十年代创立的量子力学奠定了 人类认识微观世界的科学基础,成功地解释和预言了各种相关物理效应。然而,关于波函数的意义,自爱因斯坦和玻尔旷世之争以来众说纷纭,并无共识。直到今天,量子力学发展还是处在这样一种二元状态。对此有人以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的工具主义观点处之以举重若轻。这样一个二元状态主要是由于附加在玻恩几率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量子力学所必需的,是它产生了不服从薛定谔方程幺正演化的波包塌缩,使得量子力学二元化了。今天,虽然波包塌缩概念广被争议,它导致的后选择“技术”却被广泛地应用于量子信息技术的各个方面,如线性光学量子计算和量子离物传态的某些实验演示。早年,薛定谔曾经写信严厉批评了当时的物理学家们,他在给玻恩的信中写到:“我确实需要给你彻底洗脑……你轻率地常常宣称哥本哈根解释实际上已经被普遍接受,毫无保留地这样宣称,甚至是在一群外行人面前——他们完全在你的掌握之中。这已经是道德底线了……你真的如此确信人类很快就

会屈从于你的愚蠢吗?”1979 年,Weinberg在《爱因斯坦的错误》一文中批评了玻尔对测量过程的不当处理:“量子经典诠释的玻尔版本有很大的瑕疵,其原因并非爱因斯坦所想象的。哥本哈根诠释试图描述观测(量子系统)所发生的状况,却经典地处理观察者与测量的过程。这种处理方法肯定不对:观察者与他们的仪器也得遵守同样的量子力学规则,正如宇宙的每一个量子系统都必须遵守量子力学规则。”“哥本哈根诠释可以解释量子系统的量子行为,但它并没有达成解释的任务,那就是应用波函数演化方程于观察者和他们的仪器。”最近温伯格又进一步强调了他对“标准”量子力学的种种不满。在量子信息领域,不少人不加甄别地使用哥本哈根诠释导致的“后选择”方案,其可靠性令人怀疑!其实,在量子力学幺正演化的框架内,多世界诠释不引入任何附加的假设,成功地描述了测量问题。由于隐变量理论在理论体系上超越了量子力学框架,本质上是比量子力学更基本的理论,所以本文对Bell 不等式不作系统讨论。自上世纪八十年代初,人们先后提出了各种形式迥异的量子力学新诠释,如退相干、自洽历史、粗粒化退相干历史和量子达尔文主义,但实际上都是多世界诠释的拓展和推广。2 哥本哈根诠释及其推论哥本哈根诠释的核心内容是“诠释量子世界,外部的经典世界必不可少”。波函数描述微观系统的状态,遵循态叠加原理,即:如果|?1>

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

量子力学的矩阵形式和表象变换.

§4.5 量子力学的矩阵形式和表象变换 态和力学量算符的不同表示形式称为表象。 态有时称为态矢量。力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。 1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比 取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e ,见图 其标积可写成下面的形式 )2,1,(),(==j i e e ij j i δ 我们将其称之为基矢的正交归一关系。 平面上的任一矢量A 可以写为 2211e A e A A += 其中),(11A e A =,),(22A e A =称为投影分量。 而),(21A A A = 称为A 在坐标系21X OX 中的表示。 现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e ,且同样有 )2,1,()','(==j i e e ij j i δ 而平面上的任一矢量A 此时可以写为 ''''2211e A e A A += 其中投影分量是),'('11A e A =,),'('22A e A =。 而)','(21A A A = 称为A 在坐标系'X 'OX 21中的表示。 现在的问题是:这两个表示有何关系? 显然,22112211''''e A e A e A e A A +=+=。

用'1e 、'2e 分别与上式中的后一等式点积(即作标积),有 ),'(),'('2121111e e A e e A A += ),'(),'('2221212e e A e e A A += 表成矩阵的形式为 ??? ? ?????? ??=???? ??212212211121),'(),'(),'(),'(''A A e e e e e e e e A A 由于'1e 、1e 及'2e 、2e 的夹角为θ,显然有 ??? ? ?????? ??-=??? ? ?????? ??=???? ??21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ 或记为 ??? ? ??=???? ??2121)(''A A R A A θ 其中 ??? ? ? ?-=θθ θθθcos sin sin cos )(R 是把A 在两坐标中的表示???? ??''21A A 和??? ? ??21A A 联系起来的变换矩阵。 变换矩阵的矩阵元正是两坐标系基矢间的标积,它表示基矢之间的关系。故R 给定,任何矢量在两坐标系间的关系也确定。 很容易证明,R 具有下述性质: I R R R R ==~ ~ 由于1)(det )~ det(2==R R R , 其中 321321)1()det(p p p t R R R R -∑=, 故称这种矩阵为正交矩阵。 但1det =R (对应于真转动(proper rotation ))且R R =* (实矩阵)

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学的隐变量解释

量子力学的隐变量解释1935 年 5 月, 在 Physical Review 上 Einstein 和他的两位同事 B. Podolsky和 N. Rosen 共同发表了一篇名为「Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?」 (量子力学对物理世界的描述是完备的吗?) 三个人异口同声地回答:「不!」.在这篇著名的文章中,作者首先阐述了他们对物理理论的看法:一个严谨的物理理论应该要区别「客观实体」(object reality) 以及这个理论运作的观点.客观实体应独立于理论而存在.在判断一个理论是否成功时,我们会问自己两个问题:(1) 这个理论是否正确? (2) 理论的描述是否完备?只有当这两个问题的答案是肯定时,这样的理论才是令人满意的.理论的正确性当由实验来决定.而关于量子力学的描述是否完备则是这篇文章探讨的主题.在进一步讨论理论的完备性之前,我们必须先定义什么是完备性.作者们提出了一项判别完备性的条件:每一个物理实体的要素必须在理论中有一对应物(every element of the physical reality must have a counterpart in the physical theory)因此我们决定了什么是「物理实体的要素」,那么第二个问题就容易回答了.那么,究竟什么是「物理实体的要素」呢? 作者们以为: 「如果,在不以任何方式干扰系统的情况下,我们能准确地预测(即机率为一)某一物理量的值,那么必定存在一个物理实体的要素与这个物理量对应.」他们认为,只要不把这个准则视为一必要条件,而看成是一充分的条件,那么这个判别准则同样适用于古典物理以及量子力学中对实在的概念.举例来说,在一维系统中,一个以波函数φ(x) = exp(ip0x/2πh) (其中 p0是一常数,i 表纯虚数,h 为Planck常数)描述的粒子.其动量的算符为 h d ,p = ------ ---- ,2(Pi)i dx,因此: pFI(x) = p0FI(x),所以动量有一确定的值 p0. 因此在这种情形下动量是一物理实体.反之,对位 置算符 q 而言,qFI = xFI ≠ aFI ,因此粒子的位置并没有一确定的值.它是不可预测的,仅能以实验测定之.然而任何一实验的测定都将干扰到粒子而改变其状态,被测后的粒子将再也不具动量 p0了.对于此情况,我们说当一粒子的动量确定时,它的位置并非一物理 实体.一般来说在量子力学中,对两个不可对易的可观察量(observable)而言,知道其中一个物理量的准确知识将排除对另外一个的准确知识.任何企图决定后者的实验都将改变系统的状态而破坏了对前者的知识.至此,作者们发现我们面临了如下的两难局面: (1)或者,在量子力学中波函数对物理实在的描述是不完备的. (2)或者,两个对应于不可对易算符的物理量不能同时是实在的(即具有确定的值).因为,若两个不可对易的物理量同时具有确定的值,根据作者们对完备性的条件,在波函数的描述中应包含这些值.但事实上并非如此,

量子力学 第一章 态矢量

序章基本背景知识 1.量子力学的基本要素是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」 (简单解说:粒子在任一时刻都具有一个「状态」,粒子具有的某些可测量的性质(位置、动量、角动量、自旋,etc )称为「可观测量」,而测量粒子的这些性质的过程就是「观测行为」,俗称“做实验”) 2.初等量子力学的任务是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到的实验结果(观测结果)」 (2)寻找“态”随时间的「演化」规律 3.从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年)(2)爱因斯坦光量子假说(1905年) (3)光的波粒二象性(1909年)(4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量k p =(1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:2 ψ是概率密度函数, 12 =ψ? ∞ ∞ -dx (1926年) (9)海森堡不确定性原理;玻尔的互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年)

4.量子力学与经典力学的比较: *量子力学的测量:在量子领域,在实验中通常事先准备好大量具有相同状态ψ的粒子(这称为「系综」(esemble)),同时测量它们的「物理量」Q,然后考察统计平均值Q。这是由于测量行为会直接改变粒子的状态(所谓的“坍缩”),导致重复实验的结果平均值失去意义(一旦某粒子坍缩到了状态A,之后的一切实验结果也都只会是A) 关于力学量测量结果的详细讨论,见第三章 *不确定性原理:位置和动量无法同时确定,严格来说是指其之一的测量标准差可以任意地大以至于无法确定真实结果,这是不确定性原理的结果,详见第二章第7节

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学的表象与表示

第五章 量子力学的表象与表示 §5.1 幺正变换和反幺正变换 1, 幺正算符定义 对任意两个波函数)(r ?、)(r ψ,定义内积 r d r r )()(),(ψ?ψ?*?= (5.1) 按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r ψ时,找 到粒子处在状态()r ?的概率幅。 依据内积概念,可以定义幺正算符如下: “对任意两个波函数?、ψ,如果算符 U 恒使下式成立 ),()?,?(ψ?ψ?=U U (5.2) 而且有逆算符1?-U 存在,使得I U U U U ==--11????1,称这个算符U ?为幺正算符。” 任一算符A ?的厄米算符+A ?定义为:+A ?在任意?、ψ中的矩阵元恒由下式右方决定 ??(,)(,)A A ?ψ?ψ+= (5.3) 由此,幺正算符U ?有另一个等价的定义: “算符U ?为幺正算符的充要条件是 I U U U U ==++???? (5.4a) 或者说 1??-+=U U 。” (5.4b) 证明:若),()?,?(ψ?ψ?=U U 成立,则按+U ?定义, ),??()?,?(),(ψ?ψ?ψ?U U U U +== 由于?、ψ任意,所以 I U U =+?? 又因为U ?有唯一的逆算符1?-U 存在,对上式右乘以1?U -,即得 1??U U +-= 这就从第一种定义导出了第二种定义。类似,也能从第二种定义导出第一种定义。从而,幺正算符的这两种定义是等价的。 2, 幺正算符的性质 幺正算符有如下几条性质: i, 幺正算符的逆算符是幺正算符 证明:设 1-+=U U , 则()()(),1 11--+++-===U U U U 所以1-U 也是幺正 1 这里强调了 U -1 既是对 U 右乘的逆又是对 U 左乘的逆。和有限维空间情况不同,无限维空间情况下,任一算符 U 有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U -1 。

相关文档
最新文档