三种中草药中皂苷类化合物的液质联用分析

三种中草药中皂苷类化合物的液质联用分析
三种中草药中皂苷类化合物的液质联用分析

三种中草药中皂苷类化合物的液质联用分析本课题从六个方面阐述了皂苷类药物有效成分的药理作用,评述了目前皂苷类有效成分的提取分离技术,指出了不同提取方法的优缺点,综述了皂苷类有效成分的分析研究现状,比较了不同检测方法的特点,指出了目前检测方法的不足。针对目前皂苷类药物有效成分的检测现状,依据皂苷类药物有效成分的结构特征,本课题集高效能、高分辨的高效液相色谱分离技术与高灵敏度、高选择性的质谱检测技术于一体,建立了三种中草药中皂苷类化合物的高效液相色谱-电喷雾电离-质谱联用(HPLC-ESI-MS/MS)分析方法,该法灵敏度高,选择性好,可用于皂苷类中草药的有效质量监控。

本课题详细考察了三种中草药中皂苷类化合物的色谱分离及质谱分析检测的最佳条件。通过对固定相、流动相、柱温和流速的研究,优化了色谱分离条件。

通过对离子化模式、喷雾针电压、干燥气温度、干燥气压力、毛细管电压和碰撞能量的研究,得到了最佳的质谱条件最终建立的相应皂苷类化合物分离分析方法如下:(1)柴胡皂苷的研究。目的:建立高效液相色谱-电喷雾离子-质谱联用技术同时测定柴胡中柴胡皂苷a和柴胡皂苷d的新方法。

方法:实验采用Ultimate(?)XB-C8色谱柱(150mm×2.1mm,3μm),流动相:0.1%甲酸水溶液-CH3CN,梯度洗脱;流速:0.2mL·min-1;柱温:35℃;质谱条件为:电喷雾电离源(ESI);负离子扫描;选择性反应监测(SRM)模式;喷雾针电压:-4500V;干燥气温度:350℃;干燥气压力:22psi;碰撞气(Ar)压力:1.8mT。结果:在最佳实验条件下,柴胡皂苷a和d达到了基线分离。

在负离子模式下,根据化合物准分子离子峰和碎片离子峰,鉴定了化合物的结构。其中,准分子离子峰均为[M-H]=m/z=779,定量离子峰均为

[M-H-Glc]-m/z=617,在最佳实验条件下柴胡皂苷a和d分别在0.05~5.0mg·L-1和0.05~10.0mg·L-1范围内,峰面积与浓度呈现良好的线性关系,柴胡皂苷a

和d的回归方程和相关系数分别为:A=1.31×105c-3.9×104,r=0.9994; A=1.34×105c1.9×104,r=0.9992,检出限分别为15ngⅡm-1(a)和12ngⅡmL-1(d),加标回收率分别为99.3%和99.8%。

结论:该法操作简便、选择性强、灵敏度高,可用于柴胡药材及制剂中柴胡皂苷类化合物的质量控制。(2)知母皂苷的研究。

目的:建立高效液相色谱-电喷雾离子-质谱联用技术同时检测知母中知母皂苷AⅢ和知母皂苷BⅡ两种活性成分的新方法。方法:实验采用Ultimate(?)XB-C8色谱柱(150mm×2.1mm,3μm),流动相:0.05%甲酸水溶液-CH3CN,梯度洗脱,流速:0.2mL·min-1,柱温:35℃;质谱条件:电喷雾电离源(ESI);负离子扫描;多反应监测模式(MRM);喷雾针电压:-5000V;干燥气温度:350℃;干燥气压力:25psi;碰撞气(Ar)压力:1.8mT。

结果:在最佳实验条件下,知母皂苷AⅢ和BⅡ达到了基线分离。在负离子模式下根据化合物准分子离子峰和碎片离子峰,鉴定了化合物的结构。

其中,准分子离子峰依次为[M-H]-m/z=739(AⅢ)和[M-H]-m/z=919(BⅡ),碎片离子峰依次为[M-H-Glc]-m/z=577(AⅢ)(?)[M-H-Glc]-m/z=757(BⅡ).在最佳实验条件下,知母皂苷AⅢ在0.01~10.0mg.L-1范围内,峰面积与浓度呈现良好的线性关系,回归方程和相关系数分别为:A=2.01×107c+2.0×106,r=0.9996,检出限为6ng·mL-1,加标回收率为99.2%。知母皂苷BⅡ在0.01~10.0mg·L-1范围内,峰面积与浓度呈现良好的线性关系,回归方程和相关系数分别为:A=6.03×106C+3.4×105,r=0.9993,检出限为2ng·mL-1,加标回收率为98.9%。

结论:该法操作简便,选择性强、灵敏度高,可用于知母药材及制剂中知母皂苷类化合物的质量监控。(3)黄芪皂苷的研究。

目的:建立高效液相色谱-电喷雾离子-质谱联技术同时检测黄芪中黄芪皂苷Ⅰ、黄芪皂苷Ⅱ和黄芪皂苷Ⅳ三种活性化合物的新方法。方法:实验采用Ultimate(?) XB-C8色谱柱(150mm×2.1mm,3μm),流动相:0.5%甲酸水溶液

-CH3CN,梯度洗脱;流速:0.2mL·min-1;柱温:35℃;质谱条件:电喷雾电离源(ESI);负离子扫描;多反应监测模式(MRM)和选择离子监测模式(SIM)并用;喷雾针电压:-5000V;干燥气温度:320℃;干燥气压力:25psi;碰撞气(Ar)压力:1.8mT。

结果:在最佳实验条件下,黄芪皂苷Ⅰ、黄芪皂苷Ⅱ和黄芪皂苷Ⅳ实现了基线分离。在负离子模式下根据化合物准分子离子峰和碎片离子峰,鉴定了化合物的结构。

其中,准分子离子峰依次为[M+HCOO]-m/z=913(I),[M+HCOO]-m/z=871(II)和[M+HCOO]-m/z=829(Ⅳ)。碎片离子峰依次为

[M-H]-m/z=867(Ⅰ),[M-H]-m/z=825(Ⅱ)和[M-H]-m/z=783(Ⅳ).在最佳实验条件下,黄芪皂苷Ⅰ在0.01-30.0mg·L-1范围内,峰面积与浓度呈现良好的线性关系,回归方程和相关系数分别为:A=1.04×105c+3.1×104,r=0.9969,检出限为

3ng·mL-1,加标回收率为99.2%。

黄芪皂苷Ⅱ和Ⅳ均在0.01~10.0mg·L-1范围内,峰面积与浓度呈现良好的线性关系,回归方程和相关系数分别为:A=1.71×105c-2.1×

104,r=0.9996;A=3.81×105c1.9×103, r=0.9999.检出限分别为4ng·mL-1和3ng·mL-1,加标回收率分别为100.7%和100.2%。结论:该法操作简便、选择性

强、灵敏度高,可用于黄芪药材及制剂中黄芪皂苷类化合物的质量检测。

三萜皂苷类理化性质

三萜皂苷类理化性质 三萜类成分是一类基本母核由30个碳原子所组成的萜类化合物,以游离形式或以与糖结合成苷或酯的形式存在于植物体内,具有多方面的生化活性,常将其作为重要制剂定性、定量分析的指标。如人参皂苷能催进RNA蛋白质的生物合成,调节机体代谢,增强免疫功能;柴胡皂苷有明显的中枢抑制、抗炎、降低血浆中胆固醇和甘油三酯等作用;七叶皂苷有明显的抗渗出、抗炎、抗淤血作用;甘草皂苷有促进肾上腺皮质激素样作用,并能防治肝硬化、抗动脉粥样硬化、抗溃疡;人参皂苷Rh2有抗肿瘤活性等。 一、结构特征及理化性质 (一)、结构特征 根据异戊二烯定则,三萜来成分系由6个异戊二烯单位聚合而成,一般根据三萜类成分碳环的有无和多少进行分类。目前已发行的三萜类成分,多数为四环三萜和五环三萜。三萜皂苷由三萜皂苷元与糖、糖醛酸(部分化合物还含有有机酸)所组成。糖大多数与皂苷元的C3-OH相连,少数情况C3-OH游离,二糖和其他位置的羟基相连。皂苷元分子中羟基大部分与糖结合,形成苷,少数可与有机酸结合,形成酯。 (二)、理化性质 1.物理性质 三萜皂苷分子大,不易结晶,大多数为白色或乳白色无定形粉末,仅少数为结晶体,皂苷元大多有完好的结晶。皂苷多数为具有苦味和辛辣味,且多具有吸湿性。三萜皂苷有降低水溶液表面张力的作用,其水溶液经常强烈振摇能产生持久性泡沫,不因加热而消失。三萜皂苷的熔点都很高,常在熔融前分解,分解点多在200℃-300℃之间。 2.溶解度 三萜皂苷一般可溶于水,易溶于热水、含水稀醇、热甲醇和热乙醇中,几乎不溶或难溶于丙酮、乙醚、苯等有机溶剂。皂苷在正丁醇或戊醇提取皂苷,可使之与亲水性杂质分离。三萜皂苷元能溶于石油醚、苯、乙醚、三氯甲烷等有机溶剂,而不溶于水。 3.金属盐类反应三萜皂苷的水溶液可与一些金属盐类,如铅盐、钡盐、铜盐等产生沉淀。酸性皂苷水溶液,加入中性盐类即生成沉淀;中性皂苷水溶液则需加入碱式醋酸铅或氢氧化钡等碱性盐类才能产生沉淀。 4.显色反应 三萜皂苷在无水条件下,与强酸(硫酸、磷酸、高氯酸)、中强酸(三氯乙酸)或Lewis

皂苷

第九章皂苷 学习目标 概述 皂苷为来源于植物界的一类结构较复杂的低聚糖苷类化合物,因其水溶液剧烈振摇时能产生大量持久的肥皂样泡沫,故名皂苷。其广泛分布于高等植物的双子叶植物和单子叶植物中,如五加科、豆科、远志科、桔梗科、石竹科、薯蓣科、百合科、玄参科等植物,另外也见于一些低等植物和海洋生物中,如茯苓、海参等。常见的中药有人参、甘草、穿山龙、柴

胡、桔梗、薯蓣、甜叶菊、麦冬、知母等。皂苷的活性表现出多种多样,如甘草中的甘草酸有祛痰、止咳和抑制病毒复制作用,其苷元为甘草次酸,具有促肾上皮质激素样作用;远志里所含远志皂苷具有镇咳、祛痰和镇静作用;柴胡中得柴胡皂苷有镇静、止痛、解热和抗炎作用;娑罗子的主要活性成分为七叶皂苷,有α-和β-两种异构体,其中β-七叶皂苷是主要的活性异构体,七叶皂苷可以抑制磷脂酶A,减少炎症介质前体的释放,减轻组织的炎症反应,同时还有抑制胃酸分泌;常春藤有皂苷A和B,没有抗菌活性,酶解后,分别转变为单糖链的α-常春藤皂苷和β-常春藤皂苷,二者特别是α-常春藤皂苷具有强烈的抗菌活性;由爵床科植物(Justicia Simplex)中分离出的三萜皂苷,称justicisaponinⅠ有精子顶体膜的稳定作用,干扰精子中酸性水解酶和蛋白质的释放,从而阻止卵细胞受精,表现出抗生育活性;柳叶牛膝的总皂苷对雌性小鼠有中期引产和抗生育作用;从植物蜘蛛抱蛋的根茎分离得到的皂苷有强烈的杀螺作用;大豆中的大豆皂苷可抑制血清中脂类氧化及过氧化脂质生成并有减肥作用;绞股蓝皂苷对大鼠血小板聚集及实验性血栓有明显抑制作用;由云南白药组分平重楼分离得到的甾体皂苷Ⅰ和Ⅳ,实验证明其对肿瘤细胞有显著的抑制作用。一些甾体皂苷元,如薯蓣皂苷元、海可皂苷元等是制药工业合成甾体激素的原料。 第一节结构类型 皂苷由糖或糖醛酸和皂苷元(非糖部分)组成。组成皂苷的糖常见有D-葡萄糖、D-半乳糖、L-阿拉伯糖、L-鼠李糖、D-木糖、D-葡萄糖醛酸以及D-半乳糖醛酸等。糖或糖醛酸以低聚糖的形式与苷元缩合而成皂苷。 皂苷有不同的分类方法,如按照皂苷分子中是否含有酸性基团(如羧基),可将皂苷分成中性皂苷和酸性皂苷;按照皂苷分子中糖链数目的不同,可分为单糖链皂苷、双糖链皂苷和三糖链皂苷;按照皂苷在生物体的形成状态分为原生皂苷和次生皂苷。目前,最常用的是按照皂苷元的化学结构不同,将皂苷分为甾体皂苷和三萜皂苷。 一、甾体皂苷 甾体皂苷元为含27个碳原子的甾体衍生物,具有螺甾烷的基本骨架,其结构通式为:

三萜类化合物

三萜类化合物 多数三萜类(triterpenes)化合物是一类基本母核由30个碳原子组成的萜类化合物,其结构根据异戊二烯定则可视为六个异戊二烯单位聚合而成,也是一类重要的中药化学成分。 三萜皂苷的苷元又称皂苷元(sapogenins),常见的皂苷元为四环三萜和五环三萜类化合物。 组成三萜皂苷的糖常见的有D-葡萄糖、D-半乳糖、D-木糖、L-阿拉伯糖、L-鼠李糖、D-葡萄糖醛酸和D-半乳糖醛酸,这些糖多以低聚糖的形式与苷元成苷,且多数为吡喃型糖苷,但也有呋喃型糖苷。 三萜皂苷多为醇苷,但也有酯苷,后者又称酯皂苷(ester saponins),有的皂苷分子中既有醇苷键,又有酯苷键。另外根据皂苷分子中糖链的多少,可分为单糖链皂苷(monodesmosidic saponins)、双糖链皂苷(bisdesmosidic saponins)、叁糖链皂苷(tridesmosidic saponins),有的糖链甚至以环状结构存在。当原生苷由于水解或酶解,部分糖被降解时,所生成的苷叫次皂苷或原皂苷元(prosapogenins)。 生理活性:三萜类化合物具有广泛的生理活性。通过对三萜类化合物的生物活性及毒性研究结果显示,其具有溶血、抗癌、抗炎、抗菌、抗病毒、降低胆固醇、杀软体动物、抗生育等活性。如乌苏酸为夏枯草等植物的抗癌活性成分,雪胆甲素是山苦瓜的抗癌活性成分。 据三萜类化合物在植物体(生物体)内的存在形式、结构和性质,可分为三萜皂苷及其苷元和其他三萜类(包括树脂、苦味素、三萜生物碱及三萜醇等)两大类。但一般则根据三萜类化合物碳环的有无和多少进行分类。目前已发现的三萜类化合物,多数为四环三萜和五环三萜,少数为链状、单环、双环和三环三萜。近几十年来还发现了许多由于氧化、环裂解、甲基转位、重排及降解等而产生的结构复杂的高度氧化的新骨架类型的三萜类化合物。

三萜类化合物药理作用研究进展

三萜类化合物药理作用研究进展 【摘要】三萜类化合物是自然界中一类重要的化合物,具有广泛的生理活性,本文对其近十几年来的药理研究做了简单的综述。就溶血、抗癌、解热、抗炎、镇痛、抗菌抗病毒等方面做了综述。 【关键词】三萜化合物;药理研究;进展 三萜类化合物在自然界种类繁多,分布广泛,资源丰富,多以游离状态或成苷或成酯的形式存在于中草药中,几乎都不溶或难溶于水。上世纪90年代以来特别是进入21世纪之后,三帖类化合物生物活性的多样性和重要性备受人们的重视,成为中药化学研究的一个热点领域。多年来,关于三帖类化合物的结构和活性研究积累了丰富的经验,现对该类化合物自1994年以来的活性研究情况进行综述,为该类化合物做进一步研究、开发和利用提供参考。 三萜类化合物具有广泛的生理活性。通过对三帖类化合物的生物活性及毒性研究,结果显示其具有溶血、抗癌、抗炎、抗菌、抗病毒、降低胆固醇、杀软体动物等活性。 1溶血作用 研究证明,甘草中的三萜可使输血用的血制品中的病毒失活,甘草次酸可100%地抑制疱疹性口腔炎病毒。傅乃武等人对甘草中三萜类化合物的抗氧化作用进行研究,得出其对抗H2O2的溶血作用明显,而对超氧阴离子自由基(O2-)和HPD光溶血无明显对抗作用[1]。 2抗肿瘤作用 Toth等从赤芝菌丝体中提取了6个具细胞毒活性的三萜类化合物,能明显抑制小鼠肝肉瘤(HTC)细胞的增殖(Toth et al.,1983)。李薇[2]研究表明0.80 g/kg 和1.20 g/kg的白桦三萜类物质(TBP)对小鼠黑色素瘤B16、肉瘤S180、Lewis 肺癌和艾氏腹水癌等瘤株的抑瘤率均达30%以上。有研究[2]表明三萜类物质体内抗肿瘤机制之一是增强机体的非特异性免疫功能。 3抗炎、解热、镇痛作用 Rajic A[3]等从菊花中分离得到27种具有抗炎作用的三萜类化合物。体外实验表明对丝氨酸蛋白酶胰蛋白酶或糜蛋白酶均具有潜在抑制作用,作者认为三萜类化合物C-3羟基脂肪酸化是抑制蛋白酶的必需基团。实验及临床提示雷公藤三帖化合物对免疫效应期有直接作用,可降低毛细血管通透性、抑制炎症浸润渗出、抑制或对抗各类炎症介质以及有抗凝抗血栓等减少组织损伤作用。五色梅根三萜类物质对醋酸致痛具有明显的镇痛作用,对二甲苯所致炎性水肿也有显著的抑制作用[4]。

第八节皂苷类

第八节皂苷类 一、皂苷的结构特点和分类 皂苷是一类结构复杂的苷类化合物,其苷元为具有螺甾烷及其有相似生源的甾族化合物或三萜类化合物。 大多数皂苷水溶液用力振荡可产生持久性的泡沫,故称为皂苷。 皂苷的结构可分为苷元和糖两个部分。如果苷元为三萜类化合物则称为三萜皂苷,苷元为螺甾烷类化合物,则称为甾体皂苷。 [讲义编号NODE70267800231300000101:针对本讲义提问] (一)三萜皂苷 1.定义:苷元为三萜类化合物,其基本骨架由6个异戊二烯(30个碳)单位组成。 分类:四环三萜(羊毛甾烷型、达玛烷型) 五环三萜(齐墩果烷型、乌苏烷型、羽扇豆烷型) 特点:多含羧基,显酸性。 [讲义编号NODE70267800231300000102:针对本讲义提问] [讲义编号NODE70267800231300000103:针对本讲义提问]

乌苏烷型E环为六元环,D/E为顺式,E环上两个甲基的位置有异,即位于C-19和C-20上乌苏酸 羽扇豆烷型E环为五元碳环,且在E环C-19位有异丙基以α构型取代 羽扇豆醇、白桦醇和白桦酸 [讲义编号NODE70267800231300000104:针对本讲义提问] 多项选择题 常见的三萜皂苷的类型有 A.羊毛甾烷型 B.螺旋甾烷型 C.乌苏烷型 D.齐墩果烷型 E.羽扇豆烷型 [讲义编号NODE70267800231300000105:针对本讲义提问] 配伍选择题 A.四环三萜 B.五环三萜 C.四环四萜 D.五环四萜 E.六环三萜 1.人参二醇是 2.人参三醇是 3.齐墩果酸是 4.羽扇豆烷是 [讲义编号NODE70267800231300000106:针对本讲义提问]

皂苷的概述

皂苷 皂苷概述 皂苷是苷元为三萜或螺旋甾醇类化合物的一类糖苷。苷元为三萜类化合物则称为三萜皂苷,如为螺旋甾烷类化合物则称为甾烷皂苷。皂苷类化合物主要分布于陆地高等植物中,其中甾体皂苷主要存在于薯蓣科、百合科和玄参科等;三萜类皂苷主要存在于五加科、豆科、远志科及葫芦科等。有许多植物的皂苷含量很高,如甘草根含有2%-12%的皂苷,皂树皮含有10%的皂苷,七叶树种子含有高达13%的七叶皂苷,薯蓣的球状根茎含有丰富的甾体皂苷,是人工合成激素的重要原料。此外,海星、海参等海洋生物也存在皂苷类化合物。皂苷根据苷元连接糖链数目的不同,可分为单糖链皂苷,双糖链皂苷及三糖链皂苷。在一些皂苷的糖链上,还通过酯键连有其他基团。 在皂苷的化学结构中,由于苷元具有不同程度的亲脂性,糖链具有较强的亲水性,使皂苷成为一种表面活性剂,用力振荡其水液可产生持久性的泡沫。一些富含皂苷的植物提取物被用于制造乳化剂、洗洁剂及发泡剂等。此外,一些皂苷对细胞膜具有破坏作用,表现出毒鱼、灭螺、溶血、杀精及细胞毒等活性。皂苷的表面活性作用受其连接糖链数日的影响,一般单糖链皂昔的溶血,灭螺作用更强,双糖链皂

苷的作用稍弱。皂苷的溶血作用也与昔元有关,如以人参三醇为昔元的皂昔其有明显溶血作用,而以人参二醇为苷元的人参皂苷则具有抗溶血作用。 可用一些颜色反应对皂苷进行初步鉴定,最常用的颜色反应为Liebermann-Burchard反应,其方法如下:在试管中将少量样品溶十乙酸酐,再沿试管壁加入浓硫酸,如两层液体交界面呈紫红色则为阳性反应。 1 皂苷的存在形式和分布 皂苷由皂苷元和糖、糖醛酸或其他有机酸所组成。组成皂苷的糖常见的有:葡萄糖、半乳糖、鼠李糖、阿拉伯糖、木糖和其他戊糖类。根据苷元又可分为两大类:三萜类皂苷和类固醇类皂苷。三萜又可分为四环三萜和五环三萜,其中以五环三萜为常见。四环三萜型皂苷中以达玛烷型皂苷研究较多,且较深入;五环三萜型皂苷中作药用的以齐墩果烷型皂苷研究最多。类固醇皂苷中又分为螺固醇型皂苷和呋喃固醇型皂苷,以螺固醇型皂苷生理活性为显著。 类固醇类皂苷主要存在于单子叶植物百合科的丝兰属和知母属,以及菝葜科、薯蓣科、龙食兰科等;双子叶植物中也有发现,如豆科、玄参科、茄科等。三萜皂苷在豆科、五加科、伞形花科、报春花科、葫芦科等植物中比较普遍。很多重要的中药如人参、三七、绞股蓝、柴胡、黄芪、远志、

天然药物化学第10章三萜类化合物

第十章三萜类化合物 【习题】 (一)选择题 [1-68] A型题 [1-18] 1.不符合甾体皂苷元结构特点的是 A. 含A、B、C、D、E和F六个环 B. E环和F环以螺缩酮形式连接 C. E环是呋喃环,F环是吡喃环 D. C10、C13、C17位侧链均为β-构型 E. 分子中常含羧基,又称酸性皂苷 2.不符合异螺旋甾烷结构特点的是 A. C10β-CH3 B. C13β-CH3 C. C14α-CH3 D. C20α-CH3 E. C25β-CH3 3.不符合皂苷通性的是 A. 大多为白色结晶 B. 味苦而辛辣 C. 对粘膜有刺激性 D. 振摇后能产生泡沫 E. 大多数有溶血作用 4.含甾体皂苷水溶液,分别加入酸管(加盐酸)碱管(加氢氧化钠)后振摇,结果是 A. 两管泡沫高度相同 B. 酸管泡沫高于碱管几倍 C. 碱管泡沫高于酸管几倍 D. 两管均无泡沫 E. 酸管有泡沫,碱管无泡沫 5.不适用于粗总皂苷分离的方法是 A. 分段沉淀法 B. 胆甾醇沉淀法 C. 铅盐沉淀法 D. 正丁醇萃取法 E. 色谱法 6.有关薯蓣皂苷叙述错误的是 A. 单糖链苷,三糖苷 B. 中性皂苷 C. 可溶于甲醇、乙醇、醋酸 D. 是工业合成甾体激素的重要原料 E. 与三氯醋酸试剂显红紫色,此反应不能用于纸色谱显色 7.有关人参皂苷叙述错误的是 A. 全植物含皂苷量花蕾>须根>主根 B. A型、B型苷元是达玛烷型衍生物

C. C型是齐墩果酸的双糖链苷 D. A型、B型有溶血作用,C型有抗溶血作用 E. A型在酸水解过程中易转变为人参二醇 8.有关皂苷的氯仿-浓硫酸反应叙述正确的是 A. 应加热至80℃,数分钟后出现正确现象 B. 氯仿层呈红色或篮色,硫酸层呈绿色荧光 C. 振摇后,界面出现紫色环 D. 氯仿层呈绿色荧光,硫酸层呈红色或篮色 E. 此反应可用于纸色谱显色 9.Liebermann-Burchard反应所使用的试剂是 A. 氯仿-浓硫酸 B. 冰醋酸-乙酰氯 C. 五氯化锑 D. 三氯醋酸 E. 醋酐-浓硫酸 10.属于达玛烷衍生物的是 A. 猪苓酸A B. 菝葜皂苷 C. 熊果酸 D. 人参二醇 E. 甘草酸 11.下列成分的水溶液振摇后能产生大量持久性泡沫,并不因加热而消失的是 A. 蛋白质 B. 黄酮苷 C. 蒽醌苷 D. 皂苷 E. 生物碱 12.分段沉淀法分离皂苷是利用总皂苷中各皂苷 A. 在甲醇中溶解度不同 B. 极性不同 C. 酸性强弱不同 D. 易溶于乙醇的性质 E. 难溶于石油醚的性质 13.不符合β-香树脂烷结构特点的是 A. 属于三萜 B. C23、C24连接在C4位上 C. C29、C30连接在C20上 D. A、B、C、D、E环都是六元环 E. C29、C30分别连接在C19、C20上 14. 同时具有C2、C3羟基和Δ5、6双键的甾体皂苷元在下列哪个波长附近出现最大吸收峰。 A. 235nm B. 270nm C. 310nm D. 349nm E. 415nm 15. 甾体皂苷与浓硫酸反应后,其螺缩酮结构在哪个波长附近出现最大吸收峰 A.235nm B. 270nm C. 310nm D. 349nm E. 415nm 16.从水液中萃取皂苷最好用 A. 丙酮 B. 乙醚 C. 醋酸乙酯 D. 正丁醇 E. 甲醇 17.制剂时皂苷不适宜的剂型是 A. 片剂 B. 糖浆剂 C. 合剂

不同品种灵芝中三萜类化合物的比较研究_邢增涛

不同品种灵芝中三萜类化合物的比较研究 邢增涛1 郁琼花2 张劲松1 潘迎捷1 (1 上海市农科院食用菌研究所,上海201106; 2 通标标准技术服务有限公司,上海200233) 摘要 本研究利用HPLC对同一灵芝菌种不同生长阶段及不同品种灵芝子实体中三萜类化合物的含量和图谱进行了分析。结果表明在液体发酵7天左右的灵芝菌丝体中灵芝三萜类化合物的含量极低,而不同生长阶段的灵芝子实体中的三萜类化合物的变化较小,孢子粉中三萜类化合物的含量较子实体中低。不同品种的灵芝子实体中三萜类化合物的种类和含量存在差异,黑芝中几乎不含三萜类化合物。 关键词 灵芝 HP LC 三萜类化合物 菌丝体 子实体 灵芝三萜类化合物是灵芝中的主要活性物质之一,也是现代灵芝化学和灵芝药理研究的重点。目前,国内外的研究者已经从灵芝中分离纯化出100多个三萜类化合物。另外,在真菌和高等植物的许多次生代谢产物中,三萜类化合物、黄酮类化合物及多酚类化合物等均被用作形态上比较接近的真菌或高等植物鉴别和分类的特征性化合物。国外学者对灵芝做过类似的研究。本文利用HPLC对同一菌种发酵菌丝体、不同生长阶段的灵芝子实体、孢子粉,以及在我国商业化栽培的几种灵芝子实体中的三萜类化合物的种类和含量进行分析。为更合理地开发利用灵芝子实体和发酵菌丝体,以及分类和鉴定等提供科学的依据。 1 材料、仪器与试剂 灵芝发酵菌丝体、芝蕾期子实体、成熟期子实体、老化期子实体、孢子粉,菌种均为Ganoder ma lucidum0819,由上海农科院食用菌研究所药用真菌研究室选育。不同品种的灵芝子实体由上海市农科院食用菌研究所育种室王南博士提供。 HPLC:Waters2690;检测器,Waters2487;色谱柱,Nova-Pak-C18,3 9mm 150mm(Waters)。 95%乙醇(分析纯),甲醇(光谱纯),冰醋酸(分析纯),乙腈(光谱纯),实验用水为重蒸馏水。 2 方法 2 1 供试样品的处理 分别准确称取经粉碎的灵芝样品各1克,加入适量95%的乙醇,超声提取1h,过滤,收集滤液。重复提取3次。合并滤液,于40 左右,减压除去乙醇。用适量甲醇将样品溶出,定容至25ml,供测定。 2 2 HPLC分析条件 流动相:乙腈-2%乙酸(1 4)为A液;乙腈-2%乙酸(1 2)为B液。色谱柱的处理:预先用100%的A洗脱液冲洗色谱柱,设定检测温度为37 ,流速为0 5ml/min。梯度洗脱程序:0 5min,100%A;5 10m in,80%A;10 20min,70%A;20 30min,5%A;30 40min,40%A; 40 50min,20%A;50 100min100%B 1 。进样量为20 l。 3 结果 结果见图1,其中1为液体发酵7天的灵芝菌丝体,2为芝蕾期子实体、3为成熟期子实体、4为老化期子实体、5为孢子粉。图2为不同品种灵芝在同一培养基进行培养,并同一时期采收的老化期子实体中三萜类化合物的H PLC图谱,其中A为松杉灵芝、B为紫芝、C为灵芝0770、D为南韩灵芝、E为日本灵芝、F为灵芝0819、G为黑芝、H为江西黑芝。 4 讨论 从图1中可以看出,液体发酵7天左右的灵芝菌丝体中三萜类化合物的含量和种类几乎无法辨认。据Sheau-Farn Yeh 2 、Rongsuey Chyr 3 等人的研究报道, 液体发酵灵芝时三萜类化合物的含量至 图1 不同生长阶段灵芝产品中三萜 类化合物的HP LC图谱 575 中药材第27卷第8期2004年8月

天然药物化学第7章三萜及其苷类20101026完美修正版

第七章三萜及其苷类【单选题】 1. OH HO O H H O H glc glc按结构特点应属于( C ) A.异螺甾烷型皂苷B.呋甾烷型皂苷C.四环 三萜皂苷 D.螺甾烷型皂苷E.五环三萜皂苷 2.(第7及8章共用题)皂苷具溶血作用的原因为(B ) A.具表面活性B.与细胞壁上胆甾醇生成沉淀C.具甾体母核 D.多为寡糖苷,亲水性强E.有酸性基团存在 3.极性较大的三萜皂苷分离多采用(C ) A.氧化铝吸附柱色谱B.硅胶吸附柱色谱C.硅胶分配柱色谱 D.聚酰胺柱色谱E.离子交换色谱 4.不符合皂苷通性的是(B ) A.分子较大,多为无定形粉末B.有显著而强烈的甜味C.对粘膜有刺激 D.振摇后能产生泡沫E.大多数有溶血作用 5.三萜皂苷结构所具有的共性是(E ) A.5个环组成B.一般不含有羧基C.均在C3位成苷键 D.有8个甲基E.苷元由30个碳原子组成 6.属于齐墩果烷衍生物的是(C) A.人参二醇B.薯蓣皂苷元C.甘草次酸 D.雪胆甲素E.熊果酸 7.(第7及8章共用题)溶剂沉淀法分离皂苷是利用总皂苷中各皂苷(C)A.酸性强弱不同B.在乙醇中溶解度不同C.极性不同 D.难溶于石油醚的性质E.分子量大小的差异 8.可以作为皂苷纸色谱显色剂的是(D )

A.醋酐-浓硫酸试剂B.香草醛-浓硫酸试剂C.三氯化铁-冰醋酸试剂 D.三氯醋酸试剂E.α-萘酚-浓硫酸试剂 9. 按结构特点应属于(B) A.螺甾烷型皂苷元B.五环三萜类C.乙型强 心苷元 D.呋甾烷型皂苷元E.四环三萜类 10.(第7及8章共用题)可用于分离中性皂苷与酸性皂苷的方法是(A )A.中性醋酸铅沉淀B.碱性醋酸铅沉淀C.分段沉淀法 D.胆甾醇沉淀法E.酸提取碱沉淀法 11.三萜类化合物结构的共同特点是都有(A ) A.30个碳原子B.8个甲基C.6个甲基 D.E环为五元环E.都在C3位成苷键 12.(第7及8章共用题)Liebermann-Burchard反应所使用的试剂是(D )A.氯仿-浓硫酸B.三氯醋酸C.香草醛-浓硫酸D.醋酐-浓硫酸E.盐酸-对二甲氨基苯甲醛 13.(第7及8章共用题)从水溶液中萃取皂苷类最好用(C )A.氯仿B.丙酮C.正丁醇D.乙醚E.乙醇14.区别三萜皂苷与甾体皂苷的反应(D ) A.3,5-二硝基苯甲酸B.三氯化铁-冰醋酸C.α-萘酚-浓硫酸反应 D.20%三氯醋酸反应E.盐酸-镁粉反应 15.有关人参皂苷叙述错误的是(D ) A.C型是齐墩果酸的双糖链苷B.人参总皂苷可按皂苷提取通法提取C.A型、B型苷元是达玛烷型衍生物D.A型、B型有溶血作用,C 型有抗溶血作用 E.人参皂苷的原始苷元应是20(S)-原人参二醇和20(S)-原人参三醇16.下列皂苷中具有甜味的是( B ) A.人参皂苷B.甘草皂苷C.薯蓣皂苷D.柴胡皂苷E.远志皂苷

三萜类化合物的提取

1 三萜类化合物的提取分离 1.1 传统的三萜类成分提取分离方法 一般根据其溶解性采用不同的有机溶剂进行提取分离,如:将药材用乙醇浸提3次,提取液浓缩得到的浸膏溶于适量水中,然后用氯仿萃取3次,合并氯仿层,减压浓缩到原体积的1/3,用饱和NaHCO3溶液碱化,取氯仿层部分浓缩,得到棕色浸膏将所得浸膏用硅胶柱层析分离等。该方法需要消耗大量的有机溶剂易造成医药污染,且提取的选择不高,使制得药物剂型单一,多为汤剂或者丸、散等剂型,服用量大且携带不便,不利于中药的现代化。 1.2 超临界流体萃取法(SFE) 由于SFE在萃取过程中几乎不用有机溶剂,萃取物中无有机溶剂残留,对环境无污染,且提取效率高,节约能耗等特点,在中药化学成分的萃取分离领域得到了蓬勃发展。崔星明等[3]采用SFE得到的芦笋提取物,用甲醇溶解,采用液相色谱-质谱联用仪检测得到了56个组分。发现有保留时间和熊果酸基本一致的峰,其质谱分子离子峰和特征碎片峰都与熊果酸的一致。雒廷亮等[4]采用SFE对山茱萸中熊果酸提取方法的研究,结果表明,在熊果酸提取率基本相同的前提下,SFE不仅可以实现清洁生产,而且易于实现工业化。 1.3 半仿生提取 该法模拟口服给药,为经消化道给药的中药制剂设计了一种新的提取工艺,即将药材先用一定pH值的酸水提取,继以一定pH 值的碱水提取,提取液分别滤过、浓缩、制成制剂,据报道此种方法经济实用,可保证疗效[5]。龚慕辛等[6]通过比较水、不同浓度的乙醇、半仿生法及碱水提取对齐墩果酸提出量的影响,结果显示,半仿生提取齐墩果酸,提出量远高于一般水提。以pH=12的碱液提取女贞子可以使齐墩果酸提出量大于75%乙醇的提出量,并且齐墩果酸不是以游离的形式存在,吸收利用率将提高,提取成本也大大降低。 1.4 超声循环技术 黄书铭等[7]研究灵芝三萜类化合物的提取工艺时,在常规提取方法的基础上,增加超声循环的处理步骤,通过实验对比,超声循环提取所需各种溶剂用量减少,提取时间缩短,目的产物提取率提高了40%。 1.5 化学衍生法 化学衍生法chemical derivatizationmethod是色谱分析中用未处理样品的一种方法。衍生化的目的是使那些本不能直接进样分析的物质经过衍生化反应后转变为可以很方便地进行色谱分析的物质。仲兆金等[8]用重氮烷和卤代烃的化学衍生法使结构相近、难以分离的三萜酸酯化,不改变三萜骨架结构,利用其酯化物容易分离的特点,分离后再部分水解,分得茯苓三萜,确定其结构。 2 中药三萜类化合物的测定 中药总三萜类成分的的测定一般采用分光光度法。该方法结果稳定、重现性好准确度高,可作为中药质量评估的一种检测手段。如茯苓中总三萜类成分的含量测定[9],灵芝样品中三萜类化合物的含量测定[10],马桑叶中总三萜酸的含量测定[11]等。 3 中药三萜类单体成分的分析测定 目前用于中药三萜类单体成分的分析测定方法有光谱学、生物学及色谱学方法等,尤以色谱法应用最广泛。色谱法包括薄层色谱法、气相色谱法、高效液相法,以及它们与质谱联用技术等。其中薄层色谱法经济、简单、分离能力强,相当一部分三萜类化合物可以通过这种方法进行定量,但其重现性、选择性较差,直到高效薄层色谱法的出现才得以改善[12]。气相色谱法在三萜类化合物的分析中占有一定比例[13 14]。由于该方法要求化合物具有一定的挥发性,许多挥发性较弱的三萜类化合物需要进行衍生化处理,因而在一定程度上限制了方法的应用。目前,高效液相色谱法(HPLC)是三萜类化合物分析的最常见方法。另外,

第八章 三萜类化合物

第八章三萜类化合物 三萜皂苷结构中多具有羧基,所以又常被称为()皂苷。 不符合齐墩果烷结构特点的是 A. 属于三萜 B. C23、C24连接在C4位上 C. C29、C30连接在C20上 D. A、B、C、D、E环都是六元环 E. C29、C30分别连接在C19、C20上 E 皂苷多具有下列哪些性质 A. 吸湿性 B. 发泡性 C. 无明显熔点 D. 溶血性 E. 味苦而辛辣及刺激性 ABCDE 不符合皂苷通性的是 A. 大多为白色结晶 B. 味苦而辛辣 C. 对粘膜有刺激性 D. 振摇后能产生泡沫 E. 大多数有溶血作用 A 下列成分的水溶液振摇后能产生大量持久性泡沫,并不因加热而消失的是 A. 蛋白质 B. 黄酮苷 C. 蒽醌苷 D. 皂苷 E. 生物碱 D 某中药水提液,在试管中强烈振摇后,产生大量持久性泡沫,则该提取液中可能含有:A.皂苷 B.蛋白质 C.单宁 D.多糖 A 皂苷在哪些溶剂中溶解度较大

A. 热水 B. 含水稀醇 C. 热乙醇 D. 乙醚 E. 苯 ABC 可以用于皂苷元显色反应的试剂是 A. 醋酐-浓硫酸 B. 冰醋酸-乙酰氯 C. 苦味酸钠 D. 三氯醋酸 E. 五氯化锑 ABDE Liebermann-Burchard反应所使用的试剂是 A. 氯仿-浓硫酸 B. 冰醋酸-乙酰氯 C. 五氯化锑 D. 三氯醋酸 E. 醋酐-浓硫酸 E 有关皂苷的氯仿-浓硫酸反应叙述正确的是 A. 应加热至80℃,数分钟后出现正确现象 B. 氯仿层呈红色或篮色,硫酸层呈绿色荧光 C. 振摇后,界面出现紫色环 D. 氯仿层呈绿色荧光,硫酸层呈红色或篮色 E. 此反应可用于纸色谱显色 D 某天然化合药物的乙醇提取物以水溶解后,用正丁醇萃取,正丁醇萃取液经处理得一固体成分,该成分能产生泡沫反应,并有溶血作用,此成分对呈阴性反应。 A Liebermann反应 B Salkowiski反应 C Baljet反应 D Molish反应 C 鉴别三萜皂苷和甾体皂苷的方法有 A. 三氯醋酸反应 B. SbCl5反应 C. 发泡试验 D. 与胆甾醇反应 E. Liebermann-Burchard反应 ACE

灵芝三萜类化合物药理作用研究进展

灵芝三萜类化合物药理作用研究进展 【摘要】灵芝(Ganoderma)为层菌纲目灵芝菌科,灵芝属真菌的总称。习惯所称灵芝是灵芝属中赤芝[ Ganoderma lucidum (Lwyss.ex Fr) Karst ]的子实体部分,其主要成分之一是三萜类化合物。该类化合物有较高的脂溶性,分子量一般为400-600,化学结构复杂由于化学结构的多样性,使三萜类化合物有较广泛的药理活性。 【关键词】:三萜类;素芝;药理作用 对灵芝三萜类化合物的深入研究,有利于灵芝有效成分的寻找和进一步阐明其药理作用机制。现对近年有关灵芝三萜类的化学结构,药理作用及作用机制综述如下:(一)灵芝属三萜类新化合物 对灵芝脂溶性成分的研究在20世纪80年代达到了高潮,1982年Kubota等首次分离到灵芝酸A和灵芝酸B。1988年从灵芝属中先后又分离到19个三萜类新化合物,用波谱技术对其化学结构进行了鉴定。 (二)药理作用 1 保肝作用 王明宇等从赤芝子实体中得到粗组分GT,进一步经硅胶柱色谱得5个组分(GT-GT),JI 经HPLC检测证实该GT和GT2主要含灵芝酸A和赤芝酸A,实验表明GT和GT2对四氯化碳,氨基半乳糖苷和卡介苗,脂多糖所致的3种肝损伤模型小鼠有较好的保肝作用,可明显降低模型动物的血清ALT和肝脏TG含量,并不同程度减轻动物肝损伤。 2 抗肿瘤作用 作者从赤芝菌丝体中提取得到6个有细胞毒活性的三萜类化合物灵芝酸U V W X Y 和Z。体外实验能明显抑制小鼠肝肉瘤细胞的增殖。Lin等从赤芝子实体中分离到2个三萜类化合物灵芝酸A和双氢灵芝醛A,体外实验表明两者有较强的抑瘤活性,对人肝肉瘤细胞和KB细胞ED50 值均在1-11μg/ml。以灵芝醛A作用最强。 3 抗HIV-1`及HIV-1蛋白酶活性 Min等从赤芝孢子粉中分离得到灵芝酸β,灵芝酸B,多糖,和灵芝酸A.体外试验表明对HIV-1蛋白酶活性有明显抑制作用,其IC50分别是20.50.90.70和70μmol.L-1,此外灵芝酸A,灵芝酸B,灵芝酸C1亦有中度的抑制作用,其IC50为140-430μmol/L-1 。作者认为羊毛甾烷型母核C-23或C-24或C-25位上的羟基是其抗HIV-1蛋白酶活性的必需基团。Sahar 等用生物活性追踪法从赤芝子实体的甲醇提取物分离得到13种化合物。在抗HIV-1活性的初筛实验中,化合物灵芝粉F和灵芝多糖可抑制由HIV-1诱导的MI-4细胞的细胞毒效应。两者IC50均为7.8μg/ml。而且次浓度仅为其细胞毒浓度的50%。抗HIV-1蛋白酶实验采用受试物与重组HIV-1-PR及其合成底物。根据峰面积计算值,结果发现灵芝酸B和的抑制作用最强。在对HIV-1的实验中,13个化合物在浓度低于0.25mol/L-1时,均无抑制活性。尽管实验对所试化合物的构效关系未能得到明确的结论,但作者认为有双键架构的羊毛甾烷型三萜化合物与抗HIV-1活性密切相关,而甾醇类化合物(compound 10-12)则无此活性。 4 抑制组胺释放 Kohda等报道灵芝酸C和灵芝酸D在体外对Con A诱导的大鼠肥大细胞释放组案有抑制作用,药物浓度在0.4μg/ml时抑制率分别是30%和15%。 5 抑制血管紧张素转化酶(ACE) Morigiwa报道用Friedlang和Silvertein方法测定10个灵芝三萜类化合物在体外对ACE 酶的作用,发现灵芝酸F对ACE有抑制作用,其IC50为4.7*10-6mol.L-1,其他9个化合物

第七章 三萜及其苷类

第七章三萜及其苷类 一、选择题 (一)单项选择题(在每小题的五个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) 1. O H HO O H H O H glc glc按结构特点应属于() A.异螺甾烷型皂苷B.呋甾烷型皂苷C.四环三萜皂苷D.螺甾烷型皂苷E.五环三萜皂苷 2.皂苷具溶血作用的原因为() A.具表面活性B.与细胞壁上胆甾醇生成沉淀C.具甾体母核D.多为寡糖苷,亲水性强E.有酸性基团存在 3.极性较大的三萜皂苷分离多采用() A.氧化铝吸附柱色谱B.硅胶吸附柱色谱C.硅胶分配柱色谱D.聚酰胺柱色谱E.离子交换色谱 4.不符合皂苷通性的是() A.分子较大,多为无定形粉末B.有显著而强烈的甜味C.对粘膜有刺激D.振摇后能产生泡沫E.大多数有溶血作用 5.三萜皂苷结构所具有的共性是() A.5个环组成B.一般不含有羧基C.均在C3位成苷键D.有8个甲基E.苷元由30个碳原子组成 6.属于齐墩果烷衍生物的是() A.人参二醇B.薯蓣皂苷元C.甘草次酸 D.雪胆甲素E.熊果酸 7.溶剂沉淀法分离皂苷是利用总皂苷中各皂苷() A.酸性强弱不同B.在乙醇中溶解度不同C.极性不同 D.难溶于石油醚的性质E.分子量大小的差异 8.可以作为皂苷纸色谱显色剂的是() A.醋酐-浓硫酸试剂B.香草醛-浓硫酸试剂C.三氯化铁-冰醋酸试剂D.三氯醋酸试剂E.α-萘酚-浓硫酸试剂

9. OH 按结构特点应属于() A.螺甾烷型皂苷元B.五环三萜类C.乙型强心苷元D.呋甾烷型皂苷元E.四环三萜类 10.可用于分离中性皂苷与酸性皂苷的方法是() A.中性醋酸铅沉淀B.碱性醋酸铅沉淀C.分段沉淀法 D.胆甾醇沉淀法E.酸提取碱沉淀法 11.三萜类化合物结构的共同特点是都有() A.30个碳原子B.8个甲基C.6个甲基 D.E环为五元环E.都在C3位成苷键 12.Liebermann-Burchard反应所使用的试剂是() A.氯仿-浓硫酸B.三氯醋酸C.香草醛-浓硫酸 D.醋酐-浓硫酸E.盐酸-对二甲氨基苯甲醛 13.从水溶液中萃取皂苷类最好用() A.氯仿B.丙酮C.正丁醇 D.乙醚E.乙醇 14.区别三萜皂苷与甾体皂苷的反应() A.3,5-二硝基苯甲酸B.三氯化铁-冰醋酸C.α-萘酚-浓硫酸反应D.20%三氯醋酸反应E.盐酸-镁粉反应 15.有关人参皂苷叙述错误的是() A.C型是齐墩果酸的双糖链苷 B.人参总皂苷可按皂苷提取通法提取 C.A型、B型苷元是达玛烷型衍生物 D.A型、B型有溶血作用,C型有抗溶血作用 E.人参皂苷的原始苷元应是20(S)-原人参二醇和20(S)-原人参三醇 16.下列皂苷中具有甜味的是() A.人参皂苷B.甘草皂苷C.薯蓣皂苷 D.柴胡皂苷E.远志皂苷 17.制剂时皂苷不适宜的剂型是() A.片剂B.注射剂C.冲剂 D.糖浆剂E.合剂 18.下列成分的水溶液振摇后能产生大量持久性泡沫,并不因加热而消失的是()A.蛋白质B.黄酮苷C.皂苷 D.生物碱E.蒽醌苷

三萜类化合物的提取分离及测定方法研究

三萜类化合物的提取分离及测定方法研究 辛 国,王恩鹏,张 辉3 (长春中医药大学药学院,吉林长春130117) 摘 要:目的:研究总结三萜类化合物的提取分离方法及测定方法。方法:三萜类成分提取分离方法一般根据其溶解性采用不同的有机溶剂进行提取分离。结果:该方法需要消耗大量的有机溶剂易造成医药污染,且提取的选择不高,使制得药物剂型单一,多为汤剂或者丸、散等剂型,服用量大且携带不便,不利于中药的现代化。结论:由于色谱等分离技术、波谱测定技术等分析手段的迅速发展,使三萜类化合物的提取分离及测定方法取得了可喜的研究进展。 关键词:三萜类化合物;提取分离;测定方法 中图分类号:R285 文献标识码:A 文章编号:1007-4813(2008)04-0378-02 基金项目:吉林省中医药管理局资助项目(课题号:06ZY 01)  作者简介:辛 国(1971-),男,硕士研究生。研究方向:中药有效成分提取及应用开发研究。3通讯作者:张 辉,男,教授,博士研究生导师 E 2mail :zhrxr @https://www.360docs.net/doc/9a15523235.html, T el :(0431)86172080 三萜类化合物(triterpeno ,ds )是由30个碳原子构成的萜类化合物,由6个异戊二烯单位连接而成,是类异戊二烯代谢途径的重要产物之一[122]。近年来,由于色谱等分离技术、波谱测定技术等分析手段的迅速发展,使三萜类化合物的提取分离及测定方法取得了可喜的研究进展。1 三萜类化合物的提取分离111 传统的三萜类成分提取分离方法 一般根据其 溶解性采用不同的有机溶剂进行提取分离,如:将药材用乙醇浸提3次,提取液浓缩得到的浸膏溶于适量 水中,然后用氯仿萃取3次,合并氯仿层,减压浓缩到原体积的1/3,用饱和NaHC O 3溶液碱化,取氯仿层部分浓缩,得到棕色浸膏将所得浸膏用硅胶柱层析分离等。该方法需要消耗大量的有机溶剂易造成医药污 技术等。纳米技术在中药制剂中的应用,将极大地丰富中药的剂型。如将中药制成毫微囊,或制成纳米粉针剂,或将水溶性小及难溶的药物加工成纳米颗粒,还可将中药制成高效透皮释放制剂、口服控释剂、含片、干粉吸入剂、鼻喷雾剂、舌下速溶片,以及植入制剂和微乳剂、脂质体等多种剂型[10]。丰富的剂型选择,可大大提高中药的稳定性和疗效,降低毒副作用。3 结语 纳米技术是一门新兴的、多学科交叉的技术领域,在中药现代化中引入纳米技术是时代发展的需要。尽管纳米中药尚处于起步阶段,其研制开发存在许多问题,但是我们相信,随着纳米技术在各个领域中的应用不断取得成功,在中医药学领域中的应用也会逐步呈现蓬勃发展的态势。纳米技术将中药研究提升到探讨物理性状,化学结构和生物活性三者之间关系的高度,为中药发展提供新的动力,带来全新的中药加工方法和工艺,从而加速传统中药向产业化、现代化、国际化发展,必将产生极其深远的影响。参考文献: [1]白吉庆,王昌利.纳米技术在中药制剂研究中的应用[J ]. 现代中医药,2005,25(6):48250. [2]刘金洪,张冰冰,郝永龙.纳米技术在中药研发中的应用前 景展望[J ].四川中医,2004,22(4):24225. [3]徐辉碧,谢长生.纳米技术在中药研究中的应用[J ].中国 药科大学学报,2001,32(8):1612165. [4]方 琴.纳米技术在医药领域中的应用[J ].贵州医学,2002,26(11):1040. [5]张文萍,张志耘.我国纳米技术在药学领域中应用现状[J ].天津药学,2002,14(5):17. [6]阮 鸣.纳米技术及其在中药研究中的进展[J ].内蒙古中 医药,2004,(4):27229. [7]韩 静,巴德纯,唐 星.纳米技术在中药制剂中的作用与 意义[J ].中医药学刊,2004,22(3):5752576. [8]王 勇,胡 坪,刘清飞,等.纳米技术在载药系统及中药 研究中的应用[J ].中成药,2007,29(1):1122117. [9]周长江,崔黎丽.生物可降解聚合物及其在药物纳米控释 系统中的应用[J ].药学服务与研究,2002,2(2):1122115. [10]王 静,卢卫红,张庆华.纳米技术在中药研究中的发展 与应用[J ].中医药信息,2006,23(3):325. (收稿日期:2008-04-16) — 873—

天然药物化学三萜类化合物有哪些结构类型

南开大学现代远程教育学院考试卷 《天然药物化学》 主讲教师:郭远强 一、请同学们在下列(20)题目中任选五题,写成期末试卷答案,每题20分。 1. 简述天然化合物的提取、分离方法。 2. 聚酰胺分离化合物的基本原理是什么?简述其基本用途。 3. 确定化合物分子量的方法有哪些? 4. 简述测定化合物结构的四大波谱及其各自原理。 5. 化合物的纯度检测有哪些方法? 6. 简述八区律及其应用。 7. 苷键裂解方法有哪些?各有什么规律?试比较各种方法的异同点。 8. 写出 D-葡萄糖、L-鼠李糖的结构式(三种表示方法)。 9. 糖的甲基化有哪几种方法、优缺点。 10. 从结构特点看,木脂素可分为哪些类型? 11. 结合香豆素的结构特点,设计从中草药中提取、纯化香豆素化合物的方案(画 流程图并给出简单的解释)。 12. 对于蒽醌类化合物,用pH 梯度萃取法设计分离方案。 13. 简述黄酮类化合物的生物活性及其应用。 14. 青蒿素是哪类化合物?设计从植物中提取分离青蒿素的方案。 15.变形的单萜、倍半萜有哪些类型?结构上有何特征? 16. 酯苷、酚苷的苷化位移有何规律? 17. 三萜类化合物有哪些结构类型? 18. 强心苷、甾体皂苷的结构类型。 19. 生物碱显碱性的原因以及影响碱性大小的因素。 20. 从某一中药中分离得一白色结晶,质谱测得分子式为C10H8O3,该化合物的核 磁共振氢谱数据如下:1H NMR (400 MHz, CDCl3) δ ppm:7.58(1H, d. J = 9.5 Hz), 6.17(1H, d. J = 9.5 Hz), 6.78(1H, dd. J = 2.5, 8 Hz), 6.72(1H, d. J = 2.5 Hz), 7.32(1H, d. J = 8 Hz), 3.82(3H, s)。在NOE 谱中照射3.82ppm 共振峰, 6.78 和6.72ppm 共振峰有增益。请根据以上波谱数据推断化合物结构。画出该化 合物的结构式,并归属各质子信号。 二、期末试卷答案要求 学员所选题目应为授课教师指定题目内的题目,论述要层次清晰、准确; 写作要理论联系实际,同学们应结合课堂讲授内容,广泛收集与题目有关资料,含有一定案例,参考一定文献资料。 三、写作格式要求:

第八节皂苷类讲解

[讲义编号[讲义编号 [讲义编号

[讲义编号[讲义编号[讲义编号

分类: 螺旋甾烷醇类(菝葜皂苷元和剑麻皂苷元) 异螺旋甾烷醇类(薯蓣皂苷元和沿阶草皂苷D苷元) 呋甾烷醇类(原蜘蛛抱蛋皂苷) 变形螺旋甾烷醇类(燕麦皂苷B) [讲义编号NODE70267800231300000107:针对本讲义提问] 引申知识点——螺旋甾烷醇和异螺旋甾烷醇类结构特点。 (1)甾体皂苷元由27个碳,六个环,其中A、B、C、D环为环戊烷骈多氢菲结构的甾体基本母核,E和F环以螺缩酮形式相连接。 (2)一般B/C和C/D环的稠合为反式,A/B环有反式也有顺式。 (3)分子中可能有多个羟基,大多在C-3上有羟基。 (4)在甾体皂苷元的E、F环中有三个不对称碳原子C-20、C-22和C-25。C-20位上的甲基都是α构型, C-22位对F环也是α构型。C-25甲基则有两种取向,直立键时为β型,其绝对构型为L型;平伏键时则为α型, 其绝对构型为D型。 (5)甾体皂苷分子中不含羧基,呈中性,故又称中性皂苷。 [讲义编号NODE70267800231300000108:针对本讲义提问] 多项选择题 甾体皂苷的结构特点有 A.苷元由27个碳原子组成 B.E环和F环以螺缩酮的形式相连接 C.C-25位甲基有两种取向 D.分子中多含羧基 E.分子中多含羟基

[讲义编号[讲义编号[讲义编号

[讲义编号NODE70267800231300000112:针对本讲义提问] 二、皂苷的理化性质 大纲要求: (1)皂苷的性状、溶解性、发泡性和溶血性 (2)皂苷的水解反应和显色反应 (一)性质 1.性状:多数具有苦而辛辣味,对人体黏膜有强烈的刺激性,鼻内黏膜尤其敏感;具有吸湿性。 2.酸性:多数三萜皂苷多呈酸性;大多数甾体皂苷呈中性。 3.溶解性:极性较大,易溶于水、热甲醇和乙醇等极性较大的溶剂;在含水正丁醇中有较大的溶解度; 有助溶性能,可促进其他成分在水中的溶解。 4.发泡性:水溶液经强烈振荡能产生持久性的泡沫,且不因加热而消失,这是由于皂苷具有降低水溶液表面张力的缘故。 5.溶血性:皂苷的水溶液大多能破坏红细胞产生溶血,这是因为多数皂苷能与胆固醇结合生成不溶于水的复合物。(人参总皂苷没有溶血现象,但经分离后,人参三醇及齐墩果酸为苷元(B型和C型)的人参皂苷具有显著的溶血作用, 而以人参二醇为苷元(A型)的人参皂苷则有抗溶血作用。)溶血指数:在一定条件(等渗、缓冲溶液及恒温)下能使同一动物来源的血液中红细胞完全溶解的最低溶血浓度。 [讲义编号NODE70267800231300000113:针对本讲义提问] 多项选择题 大多数皂苷共同的性质有 A.苦味及辛辣味 B.吸湿性 C.易溶于氯仿 D.能产生泡沫 E.溶血性 [讲义编号NODE70267800231300000114:针对本讲义提问] 最佳选择题 对人体黏膜有刺激性的化合物是 A.黄酮苷 B.香豆素苷 C.皂苷 D.环烯醚萜苷 E.蒽醌苷 [讲义编号NODE70267800231300000115:针对本讲义提问]

相关文档
最新文档