伺服系统的扭矩控制

伺服系统的扭矩控制
伺服系统的扭矩控制

伺服系统的扭矩控制(Toque Control)和速度控制(Velocity Control)?

作者:不详来源:互联网

一般定位上的伺服系统之伺服马达控制方式可分为扭矩控制(Toque Control)及速度控制(Velocity Control)两类,这两种控制方式都需要控制器和驱动器一起配合才有办法动作,扭矩控制定位时,速度增益是在控制器上调整,驱动器只要把命令转换成马达相对的输出扭矩即可,而速度控制定位时,速度增益是在驱动器上调整,驱动器要把命令转换成马达相对的转速输出.两者方式详细说明如下:

所谓的扭矩控制就(Toque Control)是伺服控制器输出的+/- 10V电压命令到伺服驱动器上所代表的是要控制伺服马达扭矩的大小,正电压越大代表控制马达的正向输出扭矩越大,负电压越大代表控制马达的逆向输出扭矩越大, 若命令电压为0V时则表示马达没有输出扭矩,在动作时,控制器会先输出扭矩控制命令给驱动器,驱动器会根据这命令控制马达的输出扭矩 ,而控制器同时根据外部编码器(一般皆安装在马达尾端) 回授来决定输出的扭矩命令是否要加强或是减弱,然后连续重复执行这种动作以达到定位位置.这种控制方式对控制器本身来说会比较复杂一点,因为速度增益要在控制器上做调整,多了一项参数要执行,而驱动器上则较为简单,至要把输入的控制命令转换成马达相对的扭矩输出即可,不需要考虑扭力是否足够负荷外部负载,这问题是由控制器那边去考虑的,所以这类的伺服驱动器一般都只是单纯的马达电流比例控制而已 .

扭矩控制方式的优点是可以在控制器上随时改变马达的输出扭矩大小而不

需要在驱动器上做硬性的调整,这种灵活的扭矩控制方式可以在某些场合上达到

特殊的应用控制.例如,在应用中有某一段距离移动时不需输出 100%的扭矩,则可以暂时经由控制器把马达输出扭矩变小即可,然后在后面再把它恢复成100%扭矩即可.

而所谓的速度控制(Velocity Control)方式就是伺服控制器输出的+/-10V 电压命令到伺服驱动器上所代表的是要控制伺服马达速度的快慢,正电压越大代

表控制马达的正向速度越快,负电压越大代表控制马达的反向速度越快,若命令电压为0V时则表示马达为停止状态(速度为零).在动作时,控制器会先输出一个速度控制命令给伺服驱动器,此伺服驱动器会根据这速度命令控制马达的输出速度的

快慢,而控制器同时根据外部编码器(一般皆安装在马达尾端)回授来决定输出的

速度命令是否要调整加强或是减弱 ,然后连续重复执行这种动作以达到定位位置.这种控制方式的速度增益要在驱动器上面调整,驱动器会根据所接收的速度命令

去调整输出到马达上的电流大小(因为若有外在负载会使马达转速变慢)以达到所要求的速度,而控制器上面的速度增益则需设为零(不做调整) .

其实这两种控制器的定位方式,在控制器上都需要外部伺服马达的编码器(Encoder)配合回授接口来达到定位的目的,只是控制方式上有所不同而已,至于

你需要哪一种的控制方式 ,则需看你的控制器和伺服驱动器搭配上可否连接,有

些驱动器或控制器是两种模式都可以接受的,有些则不行 .故在选用上要考虑清楚,或者直接向厂商选用整组系统的方式(控制+驱动+马达)较为有保障 .

台达位置与扭矩模式伺服电机文档

一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页设定速度,当不设定此项时,电 机只有力矩,没有转速 P1-41:200,表示输入5V模拟电压,达到100%额定转矩 P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭

并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制伺 服电机的位置以及速度,其中PWM频率控制电机速度,PWM 的个数与P1-44与P1-45的结合控制电机的具体位置。使用 的脉冲输入为开集极NPN设备输入,电源为内部24v电源。 2.接线: 上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制 板的GND的连接线,用于控制器与伺服器的共地作用。 上图是伺服器CN1的接线,其中褐色线是CN1的41引脚, 其中的PWM信号是控制器的PWM输出的引脚串接一个电阻通 过一个NPN三极管之后连接到CN1的引脚。其中控制器的 pwm输出引脚连接NPN三极管的基极,三极管的发射极连接 CN1 的14脚(COM-),集电极连接到41引脚。35引脚与17 引脚需要短接,CN1的COM-也就是14引脚必须要与控制器 的GND连接,否则电机将不会转动。在位置模式下将伺服电 机的GND(19脚)与控制器的GND单独连接,电机将不会转 动。其他的线的连接方式见数据手册67页C3-1 3.设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-00:02,表示脉冲+方向控制方式

智能化集成系统方案

第1章智能化集成管理系统 1.1 系统概述 智能楼宇集成管理系统(IBMS)是将建筑内各智能化子系统集成在统一的平台上,运用标准化、规范化及系列化的开放性设计、同时采用统一的计算机平台、运行和操作在统一的人机界面环境下,实现信息、资源和任务共享,完成集中与分布相结合的监视、控制和管理的功能,以提高管理和服务效率,节省人工成本。 系统集成将建筑内各子系统在物理上,逻辑上和功能上连接在一起,将子系统有机结合以实现信息、资源和整体任务的共享,生成能够涵盖信息的收集与综合、信息的分析与处理、信息的交换与共享的能力,在提高各子系统水平的基础上,对涉及不同学科、不同专业的各种子系统进行协调与优化,以增加少量的投资,求得总体的优化,从而得到更高的经济、社会和环境效益。 1.2 系统功能要求 系统集成的目标是满足大厦物业管理的需要,系统需实现以下功能: 1、集成应用分类分析 各系统的末端设备点是IBMS系统集成的根本,必须有一个合理的“容器”对其进行归类管理,IBMS系统应根据其单幢建筑楼层分割的特性,以楼层作为一个“基础容器”将各系统的末端设备点进行分类展示,以达到管理的最短路由,系统将采用电子地图的形式对其点位进行有效部署及监控界面提供。 2、集成应用信息收集分析 作为一套需提供实时监控管理功能的系统,其从点位到系统各环节设备、设施运行的状态信息和工况信息是其收集的主体,此外一些设备、设施的静态信息(如品牌、型号等)也应成为IBMS中信息存储的重点,通过对所辖范围内的点位运行异常信息(如运行状态报警、工况运行故障等)收集,同时系统在运行过程中需结合如日志历史、配置记录等其他信息也是整个集成系统的一块较大比重的应用信息,形成多态信息的线性联动,为楼宇运营提供更完备的集中化管理建议,从而在信息上达到集成,达到统一,以落实系统信息集成的需求。 3、集成指令系统应用分析

智能化集成系统方案设计

集成管理系统 1.1.1 系统概述 智能建筑系统集成是指将各智能化子系统有机地连接起来,使它们相互间可以进行通信和协作,即实现子系统间资源的高度共享和任务全局一体化的综合管理,从而提高对建筑物的综合管理能力。 智能化集成管理系统的最终目标是要对辖区内所有建筑设备和建筑物内的应用信息系统进行全面有效的监控和管理。确保大厦内所有设备处于高效、节能、最佳运行状态。提供一个安全、舒适、快捷的工作环境。 系统能够通过屏幕实时动态地显示整个系统的网络运行状况及各个子系统的工作状况,综合各个控制系统的状态信息,提供相关报告。 在控制台能对各子系统流程进行监视,能及时对系统内的故障进行预警和报警,预警和报警的阀值可自行设定。在控制台能迅速准确地诊断出计算机网络系统的故障并排除;对于控制系统的故障,能及时发现并准确定位。 系统能够全面的综合节能管理(比如空调风机系统、电梯系统等的节能管理)、系统配置管理、系统安全运行管理。 1.1.2 系统功能要求 通过设备的自动监测与优化控制,实现信息资源的优化管理,实现投资合理,适合信息社会的需要,并具有安全、舒适、高效和灵活的特点。 1. 集中监视和综合管理:可对各子系统进行集中监视和管理,将各集成子系统的信息统一存储、显示和管理在同一平台上,并为其他信息系统提供数据访问接口。准确、全面地反映各子系统运行状态。并能提供建筑物关键场所的各子系统综合运行报告。 2. 分散控制:在保持各子系统的相对独立性的同时对各子系统进行分散式管理,以分离故障、分散风险、便于管理。 3. 优化运行:在各集成子系统的良好运行基础之上,应提供设备节能控制、节假日设定等功能。 4. 信息共享:实现与通信管理系统之间通信的能力,预留接口与物业管理系统实现各系统数据库的共享,充分发挥各子系统的功能。系统通过对各子系统运行情况进行综合,了解各子系统运行状态,及时发现并解决各种设备故障和突发事件,大大提高管理和服务效率。重点为集成系统与各子系统以及外围系统之间的信息畅通提供一个统一、标准的数据访问接口。

谈可视化智能集成控制系统的应用与开发

谈可视化智能集成控制系统的应用与开 发 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:可视化智能集成控制系统国内外现状、水平和发展趋势;系统开发的目的、意义;本系统达到的技术水平;系统主要内容、目标及关键技术;技术创新之处;主要技术路线。 关键词:可视化,集成控制、无缝集成 可视化智能集成控制系统是指在原有的智能化系统集中控制软件基础上,把被控系统所在的建筑物或空间立体化.虚拟化,使得被控对象直观的分布在虚拟出来的立体图象上,通过触摸屏可进行控制的一种新型的控制系统。这种系统目前在国外应用的较多,领域也很广,如军事.气象.遥测.科学探险等。但在国内应用的不多,应用在智能化系统集中控制上就更少了,目前才刚处于起步阶段,国内已经开发出此类产品的公司也寥寥无几。但是现在随着现在计算机科学技术的迅猛发展,使得这种控制系统走向实际应用成为现实,并且必将朝着傻瓜化.人性化方向发展。 目前传统的智能化系统集中控制软件市场上

有很多,如新基点。它是基于二维空间也就是平面上的一种计算机控制软件。它虽然也能把建筑物图形化,把控制对象标入图中,但那仅是把信号在图形上的简单叠加,形成一副简单的电子地图。如果建筑物楼层高,面积大的话,要由很多付电子地图组成,就更加不直观了。 所以本系统开发的目的就是要使得原本比较复杂的集中控制系统通过三维立体图象显示,变得更加直观明了,更加容易控制。能够让操作人员短时间地学会使用,并且提高工作效率,降低人员管理成本。通过这套直观易操作的控制系统,可以及时掌握整个智能化系统的应用情况.各个子系统的运行情况及出现的异常情况。 根据调查,最适合可视化智能集成控制系统的是智能化子系统多,系统复杂的高层大厦或建筑群。目前很多大厦的业主由于对智能化系统不是很熟悉,他们迫切需要智能化系统高度集成化,并且简单易懂,易于操作。这套系统正好迎合了他们的这种需求。同时这也是对智能化系统集成技术的一种创新和突破,代表了未来智能化系统集成技术发展方向。 这套控制系统对于推广智能化系统集中控制软件也有着重大的实际意义,使得智能化系统集中控

台达位置与扭矩模式伺服电机文档

台达ASD-B2伺服ECMA-C20401GS电机控制文档 一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连 接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页6.4.1 P2-14:14,设定速度,当不设定此项时,电机只有力矩,没有 转速 P1-41:200,表示输入5V模拟电压,达到100%额定转矩

P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭 并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制 伺服电机的位置以及速度,其中PWM频率控制电机速度, PWM的个数与P1-44与P1-45的结合控制电机的具体位置。 使用的脉冲输入为开集极NPN设备输入,电源为内部24v 电源。 2.接线:

上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制板的GND的连接线,用于控制器与伺服器的共地作用。 上图是伺服器CN1的接线,其中褐色线是CN1的41引脚, 其中的PWM信号是控制器的PWM输出的引脚串接一个 1.5K电阻通过一个NPN三极管之后连接到CN1的引脚。其

雅典娜智能家居集成控制系统系统说明

雅典娜智能家居集成系统系统配置 一、雅典娜智能家居集成控制系统架构 1、本系统以室内主机(中央控制器终端)为核心,构建智能化综合安全管理和远程控制体系。以互联网将将室内主机和各种报警终端以及电器控制终端有机连接。通过PC机客户端软件、智能手机客户端软件远程访问对所有设备实施操作管理。 2、系统遵循TCP/IP标准互联网通信协议和232(485)、ZigBee无线通信标准串行通信协议,另具有WIFI、3G网络功能,在任何有网络的地方均可实现设备互动。 3、室内部局域网与智能家居网络相互兼容,并行运行,为本系统的远程网络控制提供通道。 4,所有智能家居系统产品内部协议向外开放,均有强大的软件支持,具有较好升级扩展功能。 二、雅典娜智能家居集成控制系统平台配置 A、雅典娜智能家居集成控制系统硬件终端平台主要功能有: 1、智能照明控制系统(主要产品:智能开关、智能调光开关、智能插座) 功能说明: A、无需重新布线,适应任何负载及灯具,触摸式开关。 B、灯光软启动,亮度可调。 C、可以通过智能遥控器实施遥控,也可以使用PC机、手持智能网关、手机对其进行远程控制。 D、具有场景设置功能,任意设置用户想要的场景。 E、本系统中智能开关、智能插座具有停电自锁功能。 2、智能视频监控系统(主要产品采购市场上成熟的摄像头采集数据) 功能说明: A、全方位监视住宅大门入口、阳台和周边区域,室内主要监视阳台进出。 B、每一路摄像机24小时不间断录像,用户可以根据自己需要将视频数据储

存在智能家居主机搭载的电脑数据库中。 C、通过互联网在全球任何可以上网的地方看到别墅、住宅上述监视区域。 D、与报警探测器联动,抓拍报警一瞬间的现场图片,并且发送要移动终端上,为准确判断警情提供充分的依据,并有效减少误报。 3、智能安防报警系统(主要产品:智能安防报警器) 功能说明: A、门窗被非法入侵、燃气泄漏、出现火警时,立即报警; B、发出报警声、拨打预先设定的电话或发送预先设定手机短信通知主人; C、预先存储普通报警电话,不同种类的报警分别处理; D、电话、互联网、触摸屏、遥控器共计4中设防、撤防手段; E、与摄像机、灯光联动准确显示、报警的具体位置和报警性质。 4、智能视可视对讲系统(主要产品:智能门口机) 功能说明: A、门口机起到大门门禁兼门前区域监视功能。 B、门口机可以与室内主机,智能手机、智能遥控器之间通过互联网实现可 视对讲。 C、手机和室内主机之间可以通过互联网或3G网络实现可视对讲。 D、室内主机的手持智能网关之间可以能过互联网或3G网络可视对讲。 5、智能窗帘控制系统(主要产品:智能窗帘控制器) 功能说明: A、通过窗帘控制器开关可以控制窗帘开合、暂停。 B、窗帘开合度可任意控制。 C、可以通过智能遥控器、智能手机、PC客户端软件实现遥控窗帘。 D、可以通过室内主机控制遥帘。 6、智能家电控制系统(主要产品:智能遥控器) 功能说明: 智能遥控器可以对灯光行管理、家电、窗帘等近距离的控制,包括一切设备终端的工作状态和场景设置,也可以通过室内主机、远程计算机PC客户服务端软件程序和智能手机客户端软件程序实现远程控制。

智能化集成系统方案

智能化集成系统方 案

集成管理系统 1.1.1 系统概述 智能建筑系统集成是指将各智能化子系统有机地连接起来,使它们相互间能够进行通信和协作,即实现子系统间资源的高度共享和任务全局一体化的综合管理,从而提高对建筑物的综合管理能力。 智能化集成管理系统的最终目标是要对辖区内所有建筑设备和建筑物内的应用信息系统进行全面有效的监控和管理。确保大厦内所有设备处于高效、节能、最佳运行状态。提供一个安全、舒适、快捷的工作环境。 系统能够经过屏幕实时动态地显示整个系统的网络运行状况及各个子系统的工作状况,综合各个控制系统的状态信息,提供相关报告。 在控制台能对各子系统流程进行监视,能及时对系统内的故障进行预警和报警,预警和报警的阀值可自行设定。在控制台能迅速准确地诊断出计算机网络系统的故障并排除;对于控制系统的故障,能及时发现并准确定位。 系统能够全面的综合节能管理(比如空调风机系统、电梯系统等的节能管理)、系统配置管理、系统安全运行管理。 1.1.2 系统功能要求 经过设备的自动监测与优化控制,实现信息资源的优化管理,实现投资合理,适合信息社会的需要,并具有安全、舒适、

高效和灵活的特点。 1. 集中监视和综合管理:可对各子系统进行集中监视和管理,将各集成子系统的信息统一存储、显示和管理在同一平台上,并为其它信息系统提供数据访问接口。准确、全面地反映各子系统运行状态。并能提供建筑物关键场所的各子系统综合运行报告。 2. 分散控制:在保持各子系统的相对独立性的同时对各子系统进行分散式管理,以分离故障、分散风险、便于管理。 3. 优化运行:在各集成子系统的良好运行基础之上,应提供设备节能控制、节假日设定等功能。 4. 信息共享:实现与通信管理系统之间通信的能力,预留接口与物业管理系统实现各系统数据库的共享,充分发挥各子系统的功能。系统经过对各子系统运行情况进行综合,了解各子系统运行状态,及时发现并解决各种设备故障和突发事件,大大提高管理和服务效率。重点为集成系统与各子系统以及外围系统之间的信息畅通提供一个统一、标准的数据访问接口。 5. 跨子系统联动:与各子系统之间,实现监测信息的通信,以各集成子系统的状态参数为基础,实现各子系统之间的相关联动。弱电系统实现集成后,原本各自独立的子系统在集成平台上,就如同一个系统一样,无论信息点和控制点是否在一个子系统内都能够建立联动关系。 6. 易于升级:采用先进的组网结构,充分考虑高新技术

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 一般说驱动器控制的好不好,每个厂家的都说自己做的最好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000Hz以上,而速度环只能作到几十赫兹。 换一种比较专业的说法: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

智能化集成系统方案

集成管理系统 目录 1系统概述 (1) 2系统功能要求 (2) 3智能化集成系统内容 (2) 4系统集成层次 (3) 5系统建设基本要求 (4) 6系统技术与功能要求 (5) 7软件功能参数 (8) 8系统结构 (8) 9硬件设备要求 (9) 1系统概述 智能建筑系统集成是指将各智能化子系统有机地连接起来,使它们相互间可以进行通信和协作,即实现子系统间资源的高度共享和任务全局一体化的综合管理,从而提高对建筑物的综合管理能力。 智能化集成管理系统的最终目标是要对辖区内所有建筑设备和建筑物内的应用信息系统进行全面有效的监控和管理。确保大厦内所有设备处于高效、节能、最佳运行状态。提供一个安全、舒适、快捷的工作环境。 系统能够通过屏幕实时动态地显示整个系统的网络运行状况及各个子系统的工作状况,综合各个控制系统的状态信息,提供相关报告。 在控制台能对各子系统流程进行监视,能及时对系统内的故障进行预警和报警,预警和报警的阀值可自行设定。在控制台能迅速准确地诊断出计算机网络系统的故障并排除;对于控制系统的故障,能及时发现并准确定位。 系统能够全面的综合节能管理(比如空调风机系统、电梯系统等的节能管理)、系统配

置管理、系统安全运行管理。 2系统功能要求 通过设备的自动监测与优化控制,实现信息资源的优化管理,实现投资合理,适合信息社会的需要,并具有安全、舒适、高效和灵活的特点。 1. 集中监视和综合管理:可对各子系统进行集中监视和管理,将各集成子系统的信息统一存储、显示和管理在同一平台上,并为其他信息系统提供数据访问接口。准确、全面地反映各子系统运行状态。并能提供建筑物关键场所的各子系统综合运行报告。 2. 分散控制:在保持各子系统的相对独立性的同时对各子系统进行分散式管理,以分离故障、分散风险、便于管理。 3. 优化运行:在各集成子系统的良好运行基础之上,应提供设备节能控制、节假日设定等功能。 4. 信息共享:实现与通信管理系统之间通信的能力,预留接口与物业管理系统实现各系统数据库的共享,充分发挥各子系统的功能。系统通过对各子系统运行情况进行综合,了解各子系统运行状态,及时发现并解决各种设备故障和突发事件,大大提高管理和服务效率。重点为集成系统与各子系统以及外围系统之间的信息畅通提供一个统一、标准的数据访问接口。 5. 跨子系统联动:与各子系统之间,实现监测信息的通信,以各集成子系统的状态参数为基础,实现各子系统之间的相关联动。弱电系统实现集成后,原本各自独立的子系统在集成平台上,就如同一个系统一样,无论信息点和控制点是否在一个子系统内都可以建立联动关系。 6. 易于升级:采用先进的组网结构,充分考虑高新技术的发展,为今后的系统升级和发展提供基础保证。 7. 提供管理平台:为建筑物的现代化管理提供良好的硬件与软件环境。 8. 减少能源消耗:提高资源使用效率。 3智能化集成系统内容 智能化集成系统将集成以下内容: 与楼宇自控系统(BAS)的集成。

实验室智能控制集成系统

实验室智能控制集成系统推荐博森科技。实验室智能化不仅是一门技术,更是一种理念、一种潮流,它将实验室世界带入一个崭新的时代,改变着人们的观念,影响着人们的工作方式,体现了实验室的现代管理模式,充分演绎实验室的科技精髓。 实验建筑智能化系统包括楼宇自控系统、实验室信息管理系统、办公自动化系统、综合布线系统、安全防范系统、火灾自动报警系统和停车场管理系统。 智能通风系统由数字化节能风机、通风管道、可调节的风口末端、分体式能量回收设备、新风处理设备、智能变风量末端、空气品质感应子系统及智能中央控制子系统等组成,系统综合性能优于传统通风系统。智能通风系统具有保障室内空气品质,提高建筑通风安全,节能效果明显、运行管理智能化程度高等特点。智能通风系统可以根据建筑功能和设计需要,集成相关设备及部件组成系统,实现本地和远程智能化控制管理,既满足建筑室内通风功能需求,保障通风安全,又节能降耗。系统可智能感应室内空气品质(或温度、压力等参数),自动控制主风机和支路风机转速,调节送、排风量二可选用将分体式能量回收机组、新风机组与排风机组连成环路,以乙二醇水溶液为能量回收介质,实现排风能量的回收利用.该系统特别适用于空调系统与各空间功能及空气品质要求不同、污染程度不一的建筑(如大型医院建筑)。

公司介绍: 南京博森科技有限公司坐落于六朝古都—南京,公司致力于智慧实验室、恒温恒湿、生物安全、空气洁净、医用手术室、净化厂房、智能化系统、实验室仪器设备、网络中心机房、气候模拟环境、焓差室、非标准环境及系统节能等领域的规划与建设,以高精度、高质量、高可靠性为标准,引领科技进步为目标,注重节能环保,是集整体规划、设计、安装及运行维护等全方位为一体的高科技企业。 公司拥有由教授、高级工程师、工程师、技术人员等组成的技术研发、专业设计及工程技术团队,在精度控制、自动化控制等领域领先业界,且拥有具备一级、二级建造师资格的施工管理团队,炼就了一支技术精湛、作风过硬的施工队伍,在长期的实践中积累了丰富的设计、施工经验。 南京博森科技长期坚持不转包、不挂靠的原则,完全采用公司统一管理标准的施工队伍,为项目的品质控制、过程管理奠定了坚实的基础。 公司资质:

伺服电机位置速度转矩控制的区别

伺服电机位置、速度、转矩控制的区别? “位置”、”速度”、”转矩”是伺服系统由外到内的三个闭环控制方式。 位置控制方式有伺服完成所有的三个闭环的控制,计算机只需要发送脉冲串给伺服单元即可,计算机一侧不需要完成 PID控制算法;使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制,计算机需要发送模拟量给伺服单元,计算机一侧需要完成PID 位置控制算法,然后通过D/A输出。 一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。 扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,上位机的算法也简单,只需要发送给伺服单元一个目标扭矩值,是一个模拟量。多用在单一的扭矩控制场合,比如在印刷机系统中,一个电机用速度或位置控制方式,用来确定印刷位置,另一个电机用作扭矩控制方式,用来形成恒定的张力。这三种工作方式实际上由三个控制回路来实现的。 位置控制方式由位置环实现,即将输出位置与指令位置比较生成控制量,使输出位置与输入位置保持一致。 位置控制模式是上位机给到电机的设定位置和电机本身的编码器位置反馈信号,或者设备本身的直接位置测量、反馈进行比较形成位置环,以保证伺服电机运动到设定的位置。位置环的输出给到速度环作为速度环的设定。 速度方式时,由速度环实现,速度回路则将输出速度与指令速度比较,生成控制量,位置环断开。使输出速度与输入速度信号保持一致。 速度模式下就是电机速度设定和电机上所带编码器的速度反馈形成闭环控制。以伺服电机实际速度和和设定速度一致。速度环的控制输出就是转矩模式的下的电流环的力矩给定。 转矩方式时,由电流环实现,速度环与位置环均断开,它的用途是使输出的电流与输入的电流保持一致。 转矩控制模式,就是让伺服电机按给定的转矩进行旋转就是保持电机电流环的输出恒定。如果外部负载转矩大于或等于电机设定的输出转矩则电机的输出转矩会保持在设定转矩不变,电机会跟随负载来运动。如果外部负载转矩小于电机设定的输出转矩则电机会一直加速直到超出电机或驱动的最大允许转速后报警停在。 电流环为最内环,速度环为次外环,位置环为外环。所以说,转矩控制模式是利用了伺服电机控制最基层的电流控制环,速度控制环是建立在电流环之上的,位置控制环又是建立在速度环之上的还有底层的电流环。 早期的伺服驱动一般没有位置环。由定位模块和数控装置实现位置环。

工程师必备的伺服电机3种控制方式

工程师必备的伺服电机3种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制,位置控制是通过发脉冲来控制。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。 接下来,给大家介绍伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用速度或位置模式比较好。 如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看:转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率;如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么做。 一般说驱动器控制的好坏,有个比较直观的比较方式,叫响应带宽。当转矩控制或速度控制时,通过脉冲发生器给它一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时频率的高低,就能说明控制的好坏了,一般电流环能做到1000HZ以上,而速度环只能做到几十赫兹。 1、转矩控制 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出

伺服电机的PLC控制

伺服电机的PLC控制方法 以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。 伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线3(PULS1), 4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V 直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求. 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW). 5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

《智能系统集成控制技术》教学大纲

《智能系统集成控制技术》教学大纲 一、课程的性质、地位与任务 《智能系统集成控制技术》是建筑智能化工程技术专业核心课程,本课程是一门紧密结合工程实际的技术性课程,有一定的深度和广度。它是信息时代的产物,是以计算机、自动化和网络为核心的信息技术向建筑行业的应用和渗透。本课程的任务是使学生了解智能建筑的内涵和发展趋势,初步掌握智能建筑各个子系统的基本原理、主要技术、设计方法和工程实施步骤,以及智能建筑系统集成的方法和技术。 二、教学基本要求 1、了解目前国内、外楼宇智能化管理的动态和发展趋势; 2、理解楼宇智能化的的技术基础,包括计算机控制技术,网络技术,通讯技术等; 3、掌握楼宇设备自动化系统的组成及功能,并能进行简单的维护和保养。 第一章概述…… 4学时 本章教学目的和要求:了解智能建筑的组成;熟悉智能建筑的支持技术;掌握智能建筑的功能及特点;了解智能建筑的现状及发展趋势。 重点和难点:智能建筑的组成;智能建筑的支持技术。 第一节智能建筑概述

一、智能建筑的组成 二、智能建筑的支持技术 第二节国内外智能建筑的动态与发展趋势 一、智能建筑的功能与特点 二、智能建筑的现状与发展趋势 第二章楼宇智能化的关键技术……8学时 本章教学目的与要求:熟悉计算机控制系统的组成及各部件的作用;熟悉楼宇智能化系统的各种关键技术;熟悉各种典型的传感器和执行器的结构、工作原理及应用;熟悉分散控制系统的组成、工作原理及功能;了解楼宇智能化集成技术的现状及发展趋势。 重点和难点:计算机控制系统的组成及各部件的作用;各种典型的传感器和执行器的结构、工作原理及应用。 第一节楼宇智能化的技术基础 一、计算机控制系统的组成 二、各部分的作用 三、算机控制、网络、通信三大技术 第二节典型BA系统设备 一、各种典型传感器和执行器 二、传感器和执行器的结构 三、工作原理及应用 第三节楼宇智能化系统的集成技术 一、系统集成的概念 二、常用楼宇智能化技术 三、分散控制技术 第三章智能楼宇设备自动化系统…… 10学时 本章教学目的与要求:掌握楼宇自动化系统组成及监控功能;熟悉楼宇自动化系统各个子系统的工作原理,并掌握各子系统监控系统的组成及其监控功能;熟悉监控系统常用设备;了解楼宇设备自动化系统在智能楼宇内的集成与联网;掌握楼宇自动化系统各个子系统的实现方法。 重点和难点:楼宇自动化系统各个子系统的工作原理,并掌握各子系统监控 系统的组成及其监控功能;楼宇自动化系统各个子系统的实现方法。 第一节楼宇设备自动化系统的组成及功能 一、自动化系统的组成 二、自动化系统的监控功能 第二节暖通空调监控系统 一、暖通空调监控系统组成 二、暖通子系统工作原理 第三节建筑给排水监控系统 一、建筑给排水监控系统组成 二、建筑给排水监控系统工作原理 第四节供配电监测系统 一、供配电监测系统组成

伺服电机及选型

伺服电机及选型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。

2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 ? 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 ? 4、运行效率高。 ? 5、可支持低速长时间运行。 ? 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 2.1、电机转矩

中控智能家居集成系统解决方案

中控智能家居集成系统 技术方案 中控智能家居系统集系统、结构、服务、管理控制于一体,利用先进的CAN-BUS 通讯技术,电力自动化技术、无线技术,将居家生活有关的各设备有机地结合起来,通过CAN-BUS 总线及计算机网络综合管理家中设备,来创造一个优质、舒适、安全、便利、节能、环保的居住生活环境空间。 中控智能家居在保持了传统居住功能的基础上,优化了人们的生活方式和居住环境,帮助人们有效地安排时间,节约能源,实现了家电(如DVD 、空调)控制、照明控制、窗帘遥控及温度定时控制等,提供了全方位的信息交换功能。 系统构成 家居智能系统构成:灯光控制子系统、窗帘控制子系统、温度控制子系统、远程网络通讯子系统等。 系统特点 整个系统只须一条CAN —bus双绞线,没有大量的电缆附设和繁杂的控制设计。 控制器模块安装在强电箱内,可与微型断路器同装于照明箱中。 现场控制器只需一条CAN —bus双绞线进行连接,采用24V安全低电压供电方式,安全可靠, 操作方便。 功能修改、控制修改方便灵活,只需做小的程序调整,不必现场重新布线就可以实现。节约能源,提高效率。通过时钟,自动控制设定,自动运行到最佳状态,合理节约能源,方便管理和维护。

所有执行器模块均为模数化产品,采用标准35m m导轨安装方式。 所有现场控制器及移动感应器均采用墙装方式,施工简单,并且不同的面板及移动感应器可随时互换,控制功能变更方便。 基本执行器模块安装体积小,可安装在照明箱中,无需定制特殊箱体,尤其适合于别墅安装空间小的环境。 空调控制:在控制终端上,可以控制户内每个房间空调的温度、风量、模式等等,不仅仅只是简单的开关设备。用户通过本地的温控器进行温度风量等参数的选择。空调主机就会进行相应的动作,并且将各状态实时反馈到网关上。此外通过智能控制终端控制可以监测当前环境的情况,住户通过设定所需温度和预约控制功能保持想要的室内状态的同时有效防止能源浪费。 场景控制(灯光窗帘):中控照明控制解决方案包括调节照明的开关和亮度、场景控制等,能够与一般市场上的照明设备100%兼容。进行区域灯光的开关和亮度控制,并且联动窗帘,从而根据用户需要如会客模式,休息模式等提供相应的场景联动,营造出人性化的氛围。调光部分主要包括门厅、客厅、餐厅、主卧等区域。 安防监控:在户内各卧室与主卫生间可设置紧急按钮,在阳台等设置红外幕帘探测器,门厅设置烟雾报警器。这些设备统一由控制终端进行设防与撤防,构建出一个立体安防网络,并与小区消控中心实时通讯,使家庭安全更加有保障。这些都是由安防厂家做完提供接口给我们集成。

伺服电机控制方式的选择

伺服电机控制方式的选择 一般伺服电机主要有三种控制方式,即速度控制方式,转矩控制方式和位置控制方式,下面分别对每种控制方式进行详细说明。 1.速度控制方式 通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位机控制装置的外环PID控制时,速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位机反馈以做运算用。速度模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 2.转矩控制方式 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为:例如10V对应5Nm的话,当外部模拟量设定为5V时,电机轴输出为2.5Nm,如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转。可以通过即时的改变模拟量的设定来改变设定力矩的

大小,也可以通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备。 3.位置控制方式 位置控制方式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服驱动器可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置,应用领域如数控机床、印刷机械等等。 如何选择伺服电机的控制方式呢? 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 如果对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如

伺服电机速度环位置环扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入 值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的 前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要是比例增益和积分处理)后输出到电流环。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。速度环控制包含了速度环和电流环。 3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处 理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。位置环的反馈也来自于编码器。位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。

编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 三种控制模式 位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为:如果电机轴负载低于时电机正转,外部负载等于时电机不转,大于时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显着特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。 2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常

相关文档
最新文档