平板对接温度场及应力应变场模拟

平板对接温度场及应力应变场模拟
平板对接温度场及应力应变场模拟

-1-

平板对接温度场及应力-应变场模拟

摘要:本文是通过使用计算机模拟技术,用ANSYS 软件模拟平板对接焊接工艺的温度场,

并用间接求解的方法计算出焊接残余应力场。作者对比了面部加载高斯热源和内部热生成这

两种方法,总结两种热源的优缺点,并将两者结合起来作为一种复合热源。复合热源的计算

结果与传统的分析结果和理论相吻合。

关键词:计算机模拟;温度场;残余应力场;复合热源

1 引言

焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程,由于高度集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲),而这是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。焊接应力和变形不但可能引起热裂纹、冷裂纹、脆性断裂等工艺缺陷,而且在一定条件下将影响结构的承载能力,如强度,刚度和受压稳定性。除此以外还将影响到结构的加工精度和尺寸稳定性。因此,在设计和施工时充分考虑焊接应力和变形这一特点是十分重要的[1][2]。随着大规模工业生产和高新技术的发展,焊接结构正朝着大型化、复杂化、高容量、高参数方向发展,其复杂程度越大,工作条件越苛刻,造成焊接事故也越频繁,危害性也越大,所以提高和保证焊接质量已经成为当前焊接中的关键问题。

焊接过程中局部集中的热输入,使焊件形成非常不均匀、不稳定温度场。温度场不仅直

接通过热应变,而且还间接通过显微组织变化引起相变应变决定焊接残余应力。因此,温度场的分析是焊接应力和变形分析前提[3]。本文就是利用大型通用的有限元软件ANSYS 对焊接温度场、应力场和变形进行了计算机的三维实时动态数值模拟,通过先计算焊接温度场,再把温度场结果作为应力和变形计算时的载荷,从而得到任何时刻、任何点的焊接应力、变形的具体计算数值,这无论是对焊接设计还是工艺都很有价值。

2 平板对接温度场模拟

2.1 材料物理性能参数以及单元类型的选择

由于是探讨性的模拟,所以模型假设为100mm×50mm×6mm,电弧中心沿Z 方向移动。

并用以下命令流依次定义导热系数,比热容以及密度用于进行温度场模拟。

mp,kxx,1,66.6

mp,c,1,460

mp,dens,1,7800

单元类型的选择原则为 1.必须具备单元生死功能 2.具有耦合功能,可以进行热-应力耦

合分析3.必须为三维单元4.焊缝处单元可以进行规则划分。根据以上原则,选用ANSYS 单元库中的热分析单元,二维模型用四节点四边形单元PLANE55,三维模型用八节点六面体单元SOLID7O。

SOLID7O 是一个具有热量传导能力的三维单元。该单元有八个节点,每个节点具有一

-2-

个自由度—温度。该单元用于三维的稳态或瞬态热分析,还可从一个恒定的速度域补偿大量热流输入,形状如图2-1 所示

图2-1 SOLID7O 单元示意图

2.2 建模与划分网格

在比较面载高斯热源和内部热生成的时候,所建立的模型如图4-2。如图4-2 所示,笔

者总共划分了5 个体,中间的体用于模拟焊缝,与焊缝相邻的两个体用于模拟焊接热影响区,边上的两个体用于模拟母材。并合理的进行映射网格划分,尺寸分配为焊缝为4,焊接热影响区为2,母材为1。划分结果如图2-2 所示。

图2-2

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

局部应力应变分析法

1.局部应力应变分析法、名义应力疲劳设计法、疲劳可靠性设计法、损伤容限设计法 2.磨损、腐蚀、断裂 3.交变应力水平低、脆性断裂、损伤积累过程、断口在宏观和微观上有特征 4.表面应力水平比内部高、表面晶体束缚少,易发生滑移、表面易发生环境介质腐蚀、表面的加工痕迹或划痕会降低零件疲劳强度 5.材料在循环应力、应变作用下,某点或某些点发生局部永久性结构变形,在经过一定循环次数后产生裂纹或发生断裂的过程。 6.外加应力水平和标准试样疲劳寿命之间关系的曲线 7.疲劳寿命无穷大时的中值疲劳强度 8.在各级应力水平下的疲劳寿命分布曲线上可靠度相等的点连成曲线就能得到给定可靠度的一组SN曲线 9.理论应力:局部应力与名义应力的比值Kt=6t/6n 10.在应力集中和终加工相同的情况下,尺寸为d的零件的极限寿命与标准直径试样的极限寿命的比值 11.史密斯图、海夫图、等寿命图(相同寿命时在不同应力下的疲劳极限间关系的线图) 12.线性积累损伤理论: 13.载荷随时间变化的历程应力随时间变化的历程 14.零件的疲劳破损都是从应变集中部位最大局部应变处开始的 裂纹萌生以前,一般都会产生塑性变形 塑性变形是裂纹萌生和扩展的先决条件 零件的疲劳强度和寿命由应变集中部位的最大局部应力应变决定 15参数应力(名义应力)应变(局部应变) 特征应力疲劳应变疲劳 范围104-105-5*106 103-104-105 寿命总寿命裂纹形成寿命 曲线SN曲线古德曼曲线EN曲线,循环应力应变曲线 变形弹性变形应力应变成正比塑性变形较大 16真实应力 17材料在循环载荷作用下的应力应变响应循环应力应变曲线 18循环硬化:应力幅6a为常数,应变幅Ea随着循环次数增加而减少,最后趋于稳定 循环软化:应变幅Ea为常数,应力幅6a随着循环次数增加而逐渐减少 19.漫森四点:应变寿命曲线的弹性线上取2点,塑性线上取2点,通用斜率法 20.雨流法:Y方向为时间,X方向为应力大小 21.在循环加载作用下应力应变响应称为循环应力应变曲线 在循环加载作用下应力应变轨迹线称为应力应变迟滞回线 件加载拉伸到A卸载到O加载压缩到B加载拉伸到C(与A重合)形成的环线 22.损伤容限设计:以断裂力学理论为基础 以无损检测技术和断裂韧性与疲劳裂纹扩展速率的测定技术为手段 以有初始缺陷的寿命估算为中心 以断裂控制为保障 确保零件在使用期内能够安全使用的一种疲劳计算方法 23.应力强度因子:K是度量裂纹端部应力场强弱程度的一个参数 24.断裂韧度:应力强度因子的临界值,发生脆断时的应力强度因子。 25.性能、可靠性(规定条件规定时间完成规定功能)、维修性指标(规定条件时间程序方法恢复到规定状态) 26.广义可靠性=狭义可靠性(不可维修产品的可靠性)+可维修性 27.故障和失效(产品不能完成其规定功能的状态) 28.可靠度(规定条件时间完成规定功能的概率)

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零, 六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,

例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示: 理想线弹性模型 理想刚塑性模型

应力应变关系

1.应力 物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。 在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。 应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。 方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。 通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。 对于应力仪或者应变仪,关键的指标有:测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。另外,有一些仪器是通过光谱,膜片等原理设计的。 应力的单位:应力的单位是Pa,简称帕(这是为了纪念法国科学家帕斯卡Blaise· pascal而命名的),即牛顿/平方米(N/ ㎡)。 2.应变 物体在受到外力作用下会产生一定的变形,变形的程度称应变。应变有正应变(线应变),切应变(角应变)及体应变。正应变公式为 ,式中l是变形的前长度,Δl是其变形后的伸长量。 应变单位:应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示。 3.弹性模量 一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。定义为理想材料有小

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中, c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

天然气管道穿孔局部应力应变分析

天然气管道穿孔局部应力应变分析 发表时间:2020-03-24T09:49:13.023Z 来源:《文化时代》2020年1期作者:张益 [导读] 本文主要以X70天然气管道为研究对象,针对穿孔管道的局部力学特性进行分析,通过模拟针对穿孔管道的局部等效应力和塑性应变分布状况进行分析。 中国石油天然气管道公司中原输油气分公司山东省德州市 253000 摘要:本文主要以X70天然气管道为研究对象,针对穿孔管道的局部力学特性进行分析,通过模拟针对穿孔管道的局部等效应力和塑性应变分布状况进行分析。 关键词:天然气管道;穿孔;局部应力;应变 引言 天然气是一种高效的清洁能源,目前在生产生活中的应用非常广泛,而管道运输是天然气输送的主要方式,这种推广方式具有安全、高效的特征。天然气管道在长期运行过程中不可避免的会受到腐蚀作用影响,腐蚀深度不断增加会最终导致天然气管道出现穿孔现象,进而引发天然气泄漏,造成不可挽回的后果。 1 天然气管道穿孔模型 1.1穿孔实验模型 天然气管道在出现腐蚀现象后,随着时间的不断推移,发生腐蚀的位置会逐渐扩散,最终会形成穿孔。本次实验中选择的天然气穿孔管道内壁直径达到20mm,外壁直径为6mm[1]。 1.2穿孔有限元模型 以上述天然气穿孔管道模型为基础,充分利用Solid185单元来建立起从内向外以及从外向内两种穿孔管道模型,将管道利用自由网格进行划分,并针对发生穿孔位置附近的管道进行网格加密,并在此基础上对网格质量进行多次性的改善。 1.3材料模型 本次研究中主要选取了X70管线钢天然气管道为模型,这种天然气管道材质本身的弹性模量达到了210Gpa,柏松比达到0.3。该管材具备了一定的连续屈服特征,而且没有明显的屈服平台,针对建立模型进行多线推动强化,以此来描述管道本身的弹塑性[2]。 2 内压对最大应力-应变的影响最大 2.1 应力-应变随内压变化分析 为了能够针对天然气管道穿孔在不同的压力状况下局部位置的应力以及应变分布状况进行全面分析。针对天然气管道内壁施加了一个压力为25.0MPa的内压,与此同时设置了50个子部,也就是说,每一个子部增加表示内压升高了0.5MPa,针对每一个子部的最终计算结果进行详细统计之后就能够最终得出不同压力状况下天然气管道的应力-应变分布状况。在针对天然气管道穿孔局部最大等效应力、塑性应变变化趋势进行分析,为了能够对其变化状况进行更加清晰的展示,以16.0MPa为基点将所有应变数据划分成两组,并分别绘制曲线。 针对最终绘制出的曲线进行分析后可以知道,在最大等效应力、塑性应变变化方面内外穿孔相似度非常高,当内压上升到5.0MPa的情况下,最大应力增长趋势趋于缓慢。而与穿孔位置距离较远的位置开始出现塑性应变时,内压达到了16.0MPa,而此时,天然气管道发生穿孔的位置,最大应力、应变增长速度开始明显变大。 之所以出现这种现象是因为只有穿孔位置周围的天然气管道进入了塑性区,其他部分天然气管道管壁仍然处在弹性阶段,而天然气管道的弹性性能对塑性区塑性流动会产生一定的限制作用,导致塑性区实际产生的应变并不明显,而随着整个管道大部分位置进入塑性区之后,穿孔位置附近实际产生的塑性流动受到了限制作用也逐渐减小,在此基础上使得应变出现了明显增加现象。 随着内压的进一步增加,达到19.5MPa的时候,穿孔位置的最大应力达到了极限强度,因此开始逐渐趋于稳定。内压进一步增长到20.0MPa的情况下,内外穿孔位置附近最大塑性硬件呈现出指数倍的增长,在这种情况下天然气管道非常容易出现开裂现象。而管道穿孔之后,内压与正常运行压力相比较要小很多,因此要想达到20.0MPa比较困难,因此常温状态下通常不会出现开裂问题。 2.2 应力应变云图分析 在针对不同压力条件下穿孔局部应力应变云图技术分析可以知道,在穿孔位置的外壁边缘出现了应力-应变最大值,而且在天然气管道的径向方向上分布着较大的应力-应变。 当天然气管道内压达到16.0MPa的情况下,整个天然气管壁开始出现屈服现象,当内压进一步缓慢增加的时候,天然气管道关键部位最大应力应变出现了快速的增加现象,穿孔位置周边较大的应变分布范围也在迅速扩大;当内压达到19.0MPa的情况下,应变值超过0.026的分布范围外边缘与穿孔位置的距离已经非常远;当内压进一步增加,达到20.0MPa的时候,天然气管道的绝大部分管壁的应变值已经超过了0.026,沿着厚度方向天然气管道应变值分布在0.077~0.231和范围内[3],由此也可以知道,天然气管道的穿孔开裂首先会从关键点开始,对沿着管壁的厚度方向逐渐形成贯穿性裂纹。 3 管道各参数对最大附近应变影响分析 3.1 穿孔尺寸影响 当天然气内压在20.0MPa情况下,分析最大应变于穿孔半径的关系趋势可以发现,随着穿孔孔径的逐渐增加,最大应变值在逐渐减小,当穿孔孔径超过一定数值的时候,最大塑性应变波动呈现出复杂化。这主要是因为,当穿孔半径相对比较小的时候,仅仅在穿孔的外壁边缘位置出现最大塑性应变,而当其超过某一个数值时,发生最大塑性应变的位置也会逐渐向着中间移动,这样就导致应变值的变化更加复杂。 3.2 管道壁厚对最大塑性硬件影响 天然气管道的壁厚对管道本身承载能力的影响非常大,因此天然气管道穿孔局部应力-应变分布状况也必然会受到管道壁厚的巨大影响。针对内压为20.0MPa情况下不同管道壁厚下最大应变与和穿孔距离较远位置的应变变化趋势分析可以知道。在壁厚不断增加的情况下,穿孔局部最大促进应变会出现明显下降,而且与距离穿孔位置较远位置的管壁应变变化状况相比较,穿孔局部实际发生的最大促进应

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

混凝土受压应力-应变全曲线方程(描述)备课讲稿

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin,P.T.Wang,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

机械零件的应力应变分析

§3-3机械零件的应力应变分析 一、拉(压)杆应力应变分析 (一)应力分析 前面应用截面法,可以求得任意截面上内力的总和,现在进一步分析横截面上的应力情况,首先研究该截面上的内力分布规律,内力是由于杆受外力后产生变形而引起的,我们首先通过实验观察杆受力后的变形现象,并根据现象做出假设和推论;然后进行理论分析,得出截面上的内力分布规律,最后 确定应力的大小和方向。 现取一等直杆,拉压变形前在其表面上画垂直于杆轴的直线和(图3-28)。拉伸变形后,发现 和仍为直线,且仍垂直于轴线,只是分别平行地移动至和。于是,我们可以作出如下假设: 直杆在轴向拉压时横截面仍保持为平面。根据这个“平面假设”可知,杆件在它的任意两个横截面之间的伸长变形是均匀的。又因材料是均匀连续的,所以杆件横截面上的内力是均匀分布的,即在横截面上各点处的正应力都相等。若杆的轴力为,横截面积为,,于是得: ???????????????????????? (3-2) 这就是拉杆横截面上正应力的计算公式。当为压力时,它同样可用 于压应力计算。规定拉应力为正,压应力为负。 例3-3? 图3-29(a)为一变截面拉压杆件,其受力情况如图示,试确定其危险截面。 解? 运用截面法求各段内力,作轴力图[图3-29(b)]: 段:????????? 段: 段:???????? 段: 根据内力计算应力,则得: 段:????????? 段:

段: 最大应力所在的截面称为危险截面。由计算可知,段和段为 危险截面。 (二)、拉(压)杆的变形 杆件受轴向拉力时,纵向尺寸要伸长,而横向尺寸将缩小;当受轴 向压力时,则纵向尺寸要缩短,而横向尺寸将增大。 设拉杆原长为,横截面面积为(图3-30)。在轴向拉力P作用下, 长度由变为,杆件在轴线方向的伸长为, 。 实验表明,工程上使用的大多数材料都有一个弹性阶段,在此阶段范围内,轴向拉压杆件的伸长或缩短量,与轴力和杆长成正比,与横截面积成反比。即,引入比例常数则得到: ??????????????????? (3-3) 这就是计算拉伸(或压缩)变形的公式,称为胡克定律。比例常数称为材料的弹性模量,它表征材料抵抗弹性变形的性质,其数值随材料的不同而异。几种常用材料的值已列入表3-1中。从公式(3-3)可以看出,乘积越大,杆件的拉伸(或压缩)变形越小,所以称为杆件的抗拉(压) 刚度。 上式改写为: 其中,而表示杆件单位长度的伸长或缩短,称为线应变(简称应变),即。是一个无 量纲的量,规定伸长为正,缩短为负。 则(3-3)式可改写为:????????????????????????????????????????????? ?????????????????????????????????????????????????????? (3-4)式(3-17)表示,在弹性范围内,正应力与线应变成正比。这一关系通常称为单向胡克定律。 杆件在拉伸(或压缩)时,横向也有变形。设拉杆原来的横向尺寸为,变形后为(图3-30),则 横向应变为: 实验指出,当应力不超过比例极限时,横向应变与轴向应变之比的绝对值是一个常数。即 称为横向变形系数或泊松比,是一个无量纲的量。和弹性模量E一样,泊松比也是材料固有的弹 性常数。 因为当杆件轴向伸长时,横向缩小;而轴向缩短时,横向增大,所以和符号是相反的。

真实应力应变

真实应力=工程应力*(1+工程应变) 真实应变=Ln(1+工程应变) 这是现行的通用做法,应该是不会出问题的。 不过用此法时推导真实应力的过程中假设结构体积不变,俺觉得是有问题的,如果考虑体积变化,则真实应力为:真实应力/工程应力=(1 + 工程应变)/(1 +工程应变- 2 工程应变* 泊松比) 或者:真实应力/工程应力=1/(1 - 工程应变* 泊松比)^2 后两者很相近,且比上述做法要低不少。 请您仔细读以下说明: Run ROR's Keygen, Use the serial number for installation, Write down the Registration ID, After installation, Copy the "orglab.lic" file to "C:\Program Files\OriginLab\OriginPro75\FLEXlm". Start OriginPro, When ask for registration, Select I'm already registered. Enter the Registration ID. OK! 解压程序包后,注意crack 这个东东~~备用。 1. 运行注册机,用生成的sn 安装软件,next 2. 记下您相应sn 的ID 以备后用(sn 和id 应该是相互对应滴一组~~) 3. 安装完成后先不运行程序,把orglab.lic 这个文件复制到您的程序安装目录下(不一定是c 盘) X:\program files \ originlab \ originpro75 \ FLEXLM 文件夹下 4. 然后起动程序,按照要求输入刚记下的ID →就应该ok 了吧~~ 如果不行可能是其他原因,您要是能抓一些问题出现时的图片更有助于问题的解决! 当然,仍安装不上也可能是您的程序或系统或其他问题。 Luck! 安装搜狗输入法,在哪个键盘符号上点右键,点第二项,希腊字母里面去选就是了 αβγδεδεζηθικλμνπξζηυθχψω ΑΒΓΓΔΕΖΘΗΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΦΧΨ абвгде?жзийклмнопрстуфхцчшщъыьэюя

弹性力学基础分析

岩石力学-第三讲:弹性力学基础(一、应力应变分析) 教学备忘录

大多数物质在受到外力时发生变形,在外力撤除后又能恢复到原来的形状。我们把物质的这种性质称之为弹性。弹性是岩石力学的基础,外力和相应的变形间呈线性关系是最简单的情况。当在外力的作用下,物质发生的变形足够小,那么这种关系几乎总是线性的。因此,线弹性是所有弹性问题的基础。1.1介绍了固体物质的线弹性特性。 在实际情况下,线弹性的有效区域经常被超越。1.1中介绍了一些岩石非线性行为的一般特征。在石油工程岩石力学中,更多的兴趣集中在那些具有有效孔隙和渗透性的岩石上。固体材料的弹性理论不能完全描述这种介质,因此,应该引入多孔弹性的概念。岩石的弹性反应也可能是与时间相关的,因此,介质的变形也是随着时间而变化的,甚至在外力不变的情况下也是这样。1.3节和1.4节分别介绍了多孔物质的弹性特性和随时间变化效应。 1.1 线性弹性理论 弹性理论建立在应力和应变这两个概念之上,在1.1.1和1.1.2节中对应力和应变分别做了介绍。1.1.3节和1.1.4节分别介绍了各向同性介质和各向异性介质应力和应变之间的线性本构方程 1.1.1 应力 考虑图1.1所示(见多媒体)的情况,一个重物加在柱子的顶部。由于重物的重量,一个作用力施加在柱子上,同时柱子会产生一个大小相等、方向相反的力。而柱子本身支撑在地面上,因此,施加在柱子顶部的作用力必然会通过柱子的任意横截面。 a)处横截面的区域如A 所示。如果施加在横截面上的力为F ,则该截面处的应力σ定义为: A F = σ (1.1) 应力经常用Pa(=Pascal=N/m 2 )、 bar 、atmosphere 、 psi(=lb/sq.inch.)或 dynes/cm 2 等单位来表示。在理论计算中,国际单位Pa 是最合适的单位,而其它单位大多应用于工程计算。 应力符号σ不仅表示受力面的物理性质,而且已经依照惯例进行了定义。在岩石力学中,符号惯例规定:压应力为正。历史原因在于:岩石力学涉及到的应力几乎都是压应力。当符号惯例被一直使用时并没有引发问题,但是,记住一些其它科学,包括弹性力学使用相反的符号惯例是重要的。 正如公式(1.1)所表明的那样,应力被一个力和一个截面(或通常来说是一个平面)所定义,力是被施加的。看看b)处的截面,施加在截面上的力等于施加在截面a)处的力(忽略柱子本身的重量)。然而,b)处横截面的区域A ′明显小于A 。因此,b)处的应力σ′=F/A ′大于a)处的应力,即在受力试件中,应力随位置变化而变化。我们可以将a)处截面分为无数个小单元ΔA ,总力F 的一个无限小单元力ΔF 施加在这个小单元ΔA 上(图1.2)。不同的小单元,力ΔF 也不同。设想一小单元i ,其包含一点P 。当其面积Δai 趋近于零时,点P 处的应力被定义为Δfi/Δai 的极限,即: i i A A F i ??=→?lim σ (1.2)

我所认识的应力应变关系讲解

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在 物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相 应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力 和应变也必然存在一定的关系。 一应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度) 、 加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、 粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况 图中0A 为线弹性阶段,AB 为非线弹性阶段,故0B 为初始弹性阶段,C 点位 初始屈服点, J ?为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中二=E ;, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段, CDE 为强化阶段,应变 强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载, 本构关系,所谓简单情况就是六个应力分量 J 、y 、z 、?邓* zx 只有一个不为零, 六个应变分量 1-

例如在D点卸载至零,应力应变关系自D点沿DO'到达O'点,且DO' II OA其中 00'为塑性应变;p,DG为弹性应变;e,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF变化,D点为后继屈服点,0D为后继弹性阶段,Cs'.为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段COC',、二s . - ;「s_,而在强化阶段DOD',匚_,称为Bauschinger效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T、t的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幕强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示:

2.4 位错的弹性性质

2.4 位错的弹性性质 位错的弹性性质是位错理论的核心与基础。它考虑的是位错在晶体中引起的畸变的分布及其能量变化。处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。从理论发展和取得的效果来看,连续介质模型发展得比较成熟。我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。 一、位错的连续介质模型 早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。 1.位错的连续介质模型基本思想 将位错分为位错心和位错心以外两部分。在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。用线性弹性理论处理。即位错畸变能可以通过弹性应力场和应变的形式表达出来。对此,我们仅作一般性的了解。 2.应力与应变的表示方法 (1)应力分量 如图1所示。物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。它们是: 图1 物体中一受力单元的应力分析 σxx σxy σxz σyx σyy σyz σzx σzy σzz 其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。如σxy表示作用在与yoz坐标面平行的小平面上,而指向y方向的力,显而易见,它表示的是切应力分量。同样的分析可以知道:σxx,σyy,σzz3个分量表示正应力分量,而其余6个分量全部是切应力分量。平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx,σyy,σzz,σxy,σxz和σyz,而σxy =σyx,σxz =σzx,σyz =σzy。同样在柱面坐标系中,也有6个独立的应力分量:σrr,σθθ,σzz,σrθ,σrz,σθz。(2)应变分量 与6个独立应力分量对应也有6个独立应变分量。直角坐标系中:εxx,εyy,εzz,ε,εxz和εyz。柱面坐标系中:εrr,εθθ,εzz,εrθ,εrz和εθz。 xy 二位错的应力场

局部应力应变法

局部应力应变法 传统的局部应力应变法以Manson 一Coffin 公式为材料疲劳性能曲线.以应力集中处的局部点应力作为衡量结构受载严重程度的参数.这一方法在大应变低寿命时与实际情况符合很好.但进人高周疲劳,由于Manson 一Coffin 公式与实验结果的差距逐渐增大,由于缺口根部塑性的消失而使应力梯度变大,致使传统的局部应力应变法过低地估计了结构的疲劳寿命.就实际工程结构而育,通常受到随机载荷的作用,在大多数情况下,载荷谱中的高载处于低周疲劳阶段,大多数的中低级载荷处于高周疲劳阶段,所以寻找一个同时适用于高周和低周疲劳寿命估算的方法是其有很大实际意义的。 ( ε-f N ) 曲线是是重要的材料疲劳性能曲线,在局部应力应变法中,它是结构疲劳寿命估算的基本性能数据。传统的局部应力应变法采用Manson-Coffin 公式来描述 ''(2)(2)f b c a f f f N N E σεε=+ (1) Manson-Coffin 公式虽然在工程上得到了广泛的应用,但也存在着一些严重的不足:①大多数金属材料按Manson-Coffin 分解后的塑性线不能很好地用直线来拟合,而是向下弯曲的曲线;②Manson-Coffin 公式仅适用于解决低周疲劳寿命的计算,而在高周疲劳时计算出的寿命与实验结果相差较大;③当(1)式中的 f N 趋于无穷时,ε趋于零,即Manson-Coffin 公式没有反映出的疲劳极限,这与实际情况不符。文献[1]针对传统的局部应力应变法存在的这两个缺陷,提出解决这一问题的方法:用等效应变一寿命曲线或四参数应变一寿命曲线替换Manson 一Coffin 公式,用更合适的缺口疲劳系数或缺口场强度来描述缺口受载的严重程度,希望将传统的局部应力应变法推广到高周疲劳寿命的估算。四参数(ε-f N )曲线:在中高疲劳区(1)式已不太适用,文献[2]提出了一个四参数的(ε-f N )曲线拟合公式 2013lg(/)lg *ln{}lg(/) t f t A N A A A εε?=+? (2) 式中:为四个回归参数。(2)式具有以下特点:①它适用于中高周疲劳阶段 (ε-f N ),克服了Manson-Coffin 公式在高周疲劳段误差较大的缺点;②当 f N 趋于无穷时,ε趋近于A3,可反映出材料的疲劳极限;③与当量应变-寿命曲线公式(1)相比,不需由实验给出参数同时比(ε- f N )曲线的拟合度高。 文献[3]指出现行方法在计算中低周疲劳有较好的寿命预测精度,但对高周疲劳寿命预测精度不高。它认为主要是因为没有考虑到应力集中、表面加工状况、尺寸和环境介质的

第四章应力应变关系

4 应力应变关系 4.1弹性变形时应力和应变的关系 当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即 1()1() 1() 111222x x y z y y x z z z x y xy xy yz yz zx zx E E E G G G εσνσνσεσνσνσεσνσνσετετετ?=--?? ?=--???=--???===? ,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足() 21E G ν=+关系。 由上式可得 11212()()33m x y z x y z m E E νν εεεεσσσσ--=++= ++= (4.2) 于是 11 ()'2x m x m x E G νεεσσσ+-= -= 或 1112''22x m x x m G G E ν εεσσσ-=+ =+ 类似地可以得到 1112''22y m y y m G G E ν εεσσσ-=+ =+ 1112''22z m z z m G G E ν εεσσσ-=+=+ 于是,方程(4.1)可写成如下形式 121 2'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-?????? ? ? ?=+ ? ? ? ? ? ????? ?? 即 '1122ij ij m ij ij m G E ν εεεσδσ-'=+= + (4.3)

显然,弹性变形包括体积改变的变形和形状改变的变形。前者与球应力分量成正比,即 12m m E νεσ-= (4.4) 后者与偏差应力分量成正比,即 ''12''12''1211 1222x x m x G y y m y G z z m z G xy xy yz yz zx zx G G G εεεσεεεσεεεσετετετ? =-=?=-=??=-=??=== ? ,, 或简写为 2ij ij G σε''= (4.5) 此即为广义Hooke 定律。 4.2塑性变形时应力和应变的关系 弹性力学是以应力与应变成线性关系的广义Hooke 定律为其基础的;而在塑性力学的范围内,一般来说,应力与应变间的关系是非线性的,同时这种非线性的特征,又与所研究的具体材料和塑性应变有关。 塑性变形过程中的应力应变关系十分复杂,相关的理论较多,但可将它们分为两大类,即增量理论和全量理论。 4.2.1增量理论 在弹性极限范围内,弹性全量应变与当时的应力状态有确定的一一对应关系,而与加载的历程无关。但由于塑性变形的不可恢复性,塑性全量应变与当时的应力状态不是单值关系,而与加载的历史有关。图4.1所示低碳钢拉伸实验的结果表明:在应力超过弹性极限条件下卸载时,其应力应变基本呈平行于弹性线的线性关系,直到材料反向时的屈服极限's σ,这就是材料的卸载规律(图4.1a )。因此,当材料发生塑性 图4.1 单向拉伸随加载历史变化的应力应变关系

材料力学应力应变部分

材料力学(应力应变部分) →规定载荷作用下, 强度要求,就是指构件应有足够的抵抗破坏的能力。 刚度要求,就是指构件应有足够的抵抗变形的能力。 →变形的基本假设:连续性假设,均匀性假设,各向同性假设。 →沿不同方向力学性能不同的材料,称为各向异性材料,如木材、胶合板和某些人工合成材料。 →分布力 表面力 集中力(火车轮对钢轨压力,滚珠轴承对轴的反作用力) 体积力是连续分布于物体内各点的力,例如物体的自重和惯性力等。 →动载荷,静载荷 →应力p应分解为正应力?,切应力τ。 →应力单位pa,1pa=1N/m2;常用Mpa,1Mpa=106pa。 第二章拉伸、压缩与剪切 2.2 轴向拉伸或压缩时横截面上的内力和应力 →习惯上,把拉伸的轴力规定为正,压缩时的轴力规定为负。 →用横截面上的应力来度量杆件的受力程度。 →F N=?A;?(x)=F N(x)/A(x) 2.3 直杆轴向拉伸或压缩时斜截面上的内力和应力 α 轴向拉伸(压缩)时,在杆件的横截面上,正应力为最大值;在与杆件轴线成45°的斜截面上,切应力为最大值。最大切应力在数值上等于最大正应力的二分之一。此外,α=90°时,?α=τα=0,这表示在平行于杆件轴线的纵向截面上无任何应力。 (应力,p=F/A,45°斜截面上,力→ 2 2 ,面积→2 2 。) 2.7 安全因数 许用应力和安全因数的数值,可以在有关部门的一些规范中查到。 目前一般机械制造中,在静载的情况下,对塑性材料可取n s=1.2~2.5。脆性材料均匀性较差,且断裂突然发生,有更大的危险性,所以取n b=2~3.5,甚至取到3~9。 2.8 轴向拉伸或压缩时的变形 →胡克定律,当应力不超过材料的比例极限时,应力与应变成正比。?=Eε,弹性模量E的值随材料而不同。 ?l l =ε=? E =F AE ;?l=FL AE 即,对长度相同,受力相等的杆件,有EA越大则变形Δl越小,所以称EA为杆件的抗拉/压刚度。 →泊松比, 当应力不超过比例极限时横向应变ε’与轴向应变ε之比的绝对值是一个常数,即

相关文档
最新文档