二次函数图像的变化

二次函数图像的变化
二次函数图像的变化

二次函数教学设计

一、知识点复习

1、二次函数的一般形式是什么?顶点坐标呢?

2、二次函数图像平移的规律是什么?

设计意图:通过简单的知识点复习,引导学生将知识进行拓展。

二、知识提升

例1:若函数y =(m -3) 是二次函数,则m =______. 设计意图:本题其实是针对二次函数定义的练习,若此函数为二次函数,只要满足两点即可:一是最高项次数是2,二是最高项的系数不能为0。但此时,不妨借机引导学生升华知识,若函数为一次函数、反比例函数呢?

跟踪训练

1、若函数 是一次函数,

则m =_____. 2、若函数 是反比例函数,则m =_____ 拓展提高 若函数 与x 轴只有一个交点,那么m 的值为多少?

例2:将抛物线y =3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为( )

A .y =3(x -2)2-1

B .y =3(x -2)2+1

C .y =3(x +2)2-1

D .y =3(x +2)2+1

设计意图:此题为二次函数图像平移的基础题,只要学生对二次函数图像平移的规律理解就能做,因此,可以借此复习二次函数图像的简单平移,同时引导学生,二次函数并不一定是顶点式,那么一般的二次函数怎么平移呢,进行知识上的升华。同时,也与点的平移进行区别。

跟踪训练

2213m m x

+-4)1(222+-=-+m m x m y 122-+=m m mx y 121)2(2++++=m x m mx y

将抛物线y=3x2向右平移2个单位,再向上平移1个单位,所得抛物线为( )

A.y=3(x-2)2-1 B.y=3(x-2)2+1

C.y=3(x+2)2-1 D.y=3(x+2)2+1

拓展提高

1、将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位得到的抛物线是什么?

2、已知点A(-1, 2),将它先向左平移2个单位,再向上平移3个单位后得到点B,则点B的坐标是________

三、课堂小结

四、当堂检测

二次函数的图像教学设计

《二次函数的图像(1)》教学设计 教学目标: 1、经历描点法画函数图像的过程; 2、学会观察、归纳、概括函数图像的特征; 3、掌握2ax y =型二次函数图像的特征; 4、经历从特殊到一般的认识过程,学会合情推理。 教学重点: 2ax y =型二次函数图像的描绘和图像特征的归纳 教学难点: 选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。 教学设计: 一、回顾知识 前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。) 引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 2ax y =入手。因此本节课要讨论二次函数2ax y =(0≠a )的图像。 板书课题:二次函数2ax y =(0≠a )图像 二、探索图像 1、 用描点法画出二次函数2x y =和2x y -=图像 ①无论x 取何值,对于2x y =来说,y 的值有什么特征?对于2x y -=来说,又有什么特征? ②当x 取 1,2 1 ±±等互为相反数时,对应的y 的值有什么特征? (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来). (3) 连线,用平滑曲线按照x 由小到大的顺序连接起来,从而分别得到

2x y =和2x y -=的图像。 2、 练习:在同一直角坐标系中画出二次函数22x y =和22x y -=的图像。 学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评) 3、二次函数2ax y =(0≠a )的图像 由上面的四个函数图像概括出: (1) 二次函数的2ax y =图像形如物体抛射时所经过的路线,我们把它叫做抛物线, (2) 这条抛物线关于y 轴对称,y 轴就是抛物线的对称轴。 (3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y 轴的交点。 (4) 当o a 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x 轴的上方(除顶点外);当o a 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x 轴的下方(除顶点外)。 (最好是用几何画板演示,让学生加深理解与记忆) 三、 课堂练习 观察二次函数2x y =和2x y -=的图像 (2)在同一坐标系内,抛物线2x y =和抛物线2x y -=的位置有什么关系?如果在同一个坐标系内画二次函数2ax y =和2ax y -=的图像怎样画更简便? (抛物线2x y =与抛物线2x y -=关于x 轴对称,只要画出2ax y =与2 ax y -=中的一条抛物线,另一条可利用关于x 轴对称来画) 四、例题讲解 例题:已知二次函数2ax y =(0≠a )的图像经过点(-2,-3)。 (1) 求a 的值,并写出这个二次函数的解析式。 (2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。 练习:(1)课本第31页课内练习第2题。 (2)已知抛物线y=ax2经过点A (-2,-8)。 (1)求此抛物线的函数解析式;

二次函数图像的变换练习题

二次函数图像的变换 1、 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 2、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .()221y x =+ B .()221y x =- C .221y x =+ D .221y x =- /3将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 4、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤 是:( ) A. 右移两个单位,下移一个单位 B. 右移两个单位,上移一个单位 C. 左移两个单位,下移一个单位 D. 左移两个单位,上移一个单位 5、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( ) A. 右移三个单位,下移四个单位 B. 右移三个单位,上移四个单位 C. 左移三个单位,下移四个单位 D. 左移四个单位,上移四个单位 6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 7、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 8、函数2y x =与2y x =-的图象关于______________对称,也可以认为 2y x =是函数2y x =-的图象绕__________旋转得到. 9、已知:点P (2,7)在函数2y ax =+b 的图象上,而且当x=-√3时,y=5;(1)求a,b 的值并确定此函数的解析式。(2)若(1/2,m )和点(n,17)也在函数的图像上,求m 和n 的值。 10、已知一个二次函数图像的形状与抛物线Y=4x 2相同,它的顶点坐标是(2,4),求该二次函数的解析式。

有关二次函数的图象变换

一、有关二次函数的图象变换 图形的变换是新课标下的初中数学中的重要内容,在复习二次函数时,可将它的图象--抛物线进行平移、关于x轴、y轴成轴对称或关于原点O(或它的顶点)成中心对称等变换,求对应的抛物线的解析式。 解决这类问题的关键是能正确求出变换后的抛物线的顶点坐标及确定抛物线的开口方向。 例:已知;抛物线y=-x2+2x+3,回答下列问题, (1)分别写出此抛物线的顶点P,与x轴的两个交点A、B(A点在B点的左侧),与y轴的交点c的坐标。 答:P(1,4),A(-1,0),B(3,0),C(0,3) (2)求抛物线y=-x2+2x+3关于y轴对称的抛物线的解析式。 解:y=-x2+2x+3=-(x-1)2+4,因为此抛物线的顶点P(1,4)关于y轴的对称点为P1(-1,4), 所以,所求抛物线的解析式为y=-(x+1)2+4,即y=-x2-2x+3。 (在这个变换过程中,点C(0,3)是不动点) (2)求抛物线y=-x2+2x+3关于x轴对称的抛物线的解析式。 解:若以抛物线y=-x2+2x+3的顶点入手, ∵点P(1,4)关于x轴的对称点为P2(1,-4),而且原抛物线y=-x2+2x+3在关于x轴对称的变换过程中,开口方向由向下变为向上,

∴所求抛物线的解析式为 y=(x-1)2-4,即y=x2-2x-3 (在这个变换过程中,点A(-1,0),B(3,0)是不动点) 若以函数值的正、负入手,抛物线y=-x2+2x+3关于x轴对称的抛物线的解析式为y=-(-x2+2x+3)=x2-2x-3。 (3)求抛物线y=-x2+2x+3关于原点O对称的抛物线的解析式 解:∵点P(1,4)关于原点O的对称点为P3(-1,-4),而且抛物线y=-x2+2x+3关于原点O对称的过程中开口方向由向下变为向上, ∴所求抛物线的解析式为y=(x+1)2-4,即y=x2+2x-3。 (在这个变换过程中,原抛物线y=-x2+2x+3上的点,都绕原点O旋转180°) (4)求抛物线y=-x2+2x+3关于顶点P对称的抛物线的解析式。 解:∵抛物线y=-x2+2x+3关于顶点P对称的抛物线与原抛物线的顶点相同,开口方向相反,

几种特殊的二次函数的图象特征如下

当时开口向上当时开口向下(轴) (轴) (0,) (,0) (,) () 的图象 的解 方程有两个相等实数解 四、规律方法指导 1.求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ),对称轴是直线.

2.直线与抛物线的交点 (1)轴与抛物线得交点为(0,). (2)与轴平行的直线与抛物线有且只有一个交点(,). (3)抛物线与轴的交点 二次函数的图象与轴的两个交点的横坐标、,是对应一元二次方程 的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别 式 判定: ①有两个交点抛物线与轴相交; ②有一个交点(顶点在轴上)抛物线与轴相切; ③没有交点抛物线与轴相离. (4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是的两个实数根. (5)一次函数的图象与二次函数的图象的交点,由方程 组的解的数目来确定:①方程组有两组不同的解时与有两个交点;②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点. (6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为, 由于、是方程的两个根,故 抛物线y=ax2+bx+c中a、b、c的作用

决定对称轴的位置,对称轴是直线 b-4ac<0 抛物线与x轴无公共点 确定二次函数的最大值或最小值,首先先看自变量的取值范围.再分别求出二次函数在顶点处的函数值和在端点处的函数值,比较这些函数值,其中最大的是函数的最大值,最小的是函数的最小值. ①若自变量的取值范围是全体实数,函数有最大值或最小值,如图所示. 图(1)中,抛物线开口向上,有最低点,则当时,函数有最小值是; 图(2)中,抛物线开口向下,有最高点,则当时,函数有最大值是. ②若自变量的取值范围不是全体实数,函数有最大值或最小值,如图所示.

二次函数的基本解析式与图像变换进阶篇(上)

题型一:二次函数的解析式 【引例】 如图,抛物线y=ax2+bx-3与x轴交于A、B两点,交y轴于C点,若OB=OC=3OA,则抛物线的解析式为__________。 【例1】 ⑴抛物线y=ax2-2ax+a2-1的顶点在直线y=x上,则抛物线的解析式为________。 ⑵如图,抛物线223 y ax ax =-+经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC。则抛物线的解析式为___________。 二次函数的基本解析式 与图像变换进阶篇(上)

⑶设抛物线y=-x2+(m+4)x-4m,其中0<m<4,与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式。 【例2】 对于二次函数y=ax2+bx+c,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线。(例如:y=x2+2x+2)。 ⑴请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式__________。(不必证明) ⑵请探索:是否存在二次项系数的绝对值小于1 2 的整点抛物线?若存在,请写出其中一条抛 物线的解析式;若不存在,请说明理由。 题型二:二次函数的图象变换 【引例】 在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0)。 ⑴求该二次函数的解析式; ⑵将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标。

【例3】 已知抛物线C1:y=ax2-2amx+am2+2m+1(a>0,m>1)的顶点为A,抛物线C2的对称轴是y轴,顶点为点B,且抛物线C1和C2关于点P(1,3) 成中心对称。 ⑴用含m的代数式表示抛物线C1的顶点坐标; ⑵求m的值和抛物线C2的解析式; ⑶设抛物线C2与x轴正半轴的交点是C,当△ABC为等腰三角形时,求a的值。 【挑战题】 已知二次函数y=ax2+bx+c的图象和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b。 ⑴求该二次函数的解析表达式; ⑵将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与抛物 线的另一个交点为C,求△ABC的面积。

9年级4.3—二次函数背景下的特殊图形问题

二次函数背景下的特殊图形问题 1.如图1,抛物线213442 y x x = --与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、B 、C 的坐标; (2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由; (3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.

2.如图1,抛物线233384 y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标; (2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.

作业、在直角坐标平面内,为原点,二次函数的图像经过A (-1,0) 和点B (0,3),顶点为P 。 (1)求二次函数的解析式及点P 的坐标; (2)如果点Q 是x 轴上一点,以点A 、P 、Q 为顶点的三角形是直角三角形,求点Q 的坐标。 O 2y x bx c =-++

1.已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8). (1)求此抛物线和直线的解析式; (2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值; (3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积. 备用图

二次函数图像的变换

二次函数图像的变换 第一环节 【知识储备】 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出 二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图 所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-; 4. 关于顶点对称 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,

3讲义特殊的二次函数图像三(教师版)

复习引入: (一)在同一直角坐标系中画出二次函数y = x2与y = (X T)2+1与y = (x-1 )2+1的图像列表(取点原则:取原点及左右对称点) 描点、连线 分 (1)函数y(x 1)2+1与y(x-1 )2+1的图像与y =x2图像有哪些相同处及不同处 析: (2)产生这三个图像的差异的本质原因是什么平移 (3)这三个二次函数若与坐 总结:y =a(x m)2 k的图像性质(左加右减,上加下减)

a 的符号 开口方向 顶点坐标 对称轴 性质 a >0 向上 (-m,k) 直线 x = _m x > —m 时,y 随x 的增大而增大;x £ —m 时, y 随x 的增大而减小;x = -m 时,y 有最小值 k . a cO 向下 (-m, k) 直线 x = -m x > —m 时,y 随x 的增大而减小;x £ —m 时, y 随x 的增大而增大;x = -m 时,y 有最大值 k . 1 ?平移步骤: ⑴ 将抛物线解析式转化成顶点式y =a(x m)2 k ,确定其顶点坐标(-m,k); ⑵ 保持抛物线y 二ax 2的形状不变,将其顶点平移到(-m,k)处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 例题分析 1. 填表 抛物线 开口方向 对称轴 顶点坐标 2 y = -(x -2) +4 下 直线X=2 (2,4) 1 2 厂尹3)2_5 上 直线X=-3 (-3,-5) 2,1 y = —3(x —2) + — 3 下 直线X=2 (2,1/3) —3、2 7 y = ——(x —一) 一 — 12 4 12 下 直线X=3/4 (3/4,-7/12) 向左平移1个单位,再向下平移 3个单位,得到的抛物线的表达式为 y=-5(x+1) 2-3 ___________ 3. 抛物线y =2x 2沿x 轴向 _______ 左 ___ 平移_2 ____ 单位,再沿y 轴向 _______ 下 _______ 移 ¥ y=a(x-h)2 y=ax 2+k ! 向右(h>0)【或左(h<0)】 平移KI 个单位 y=a(x-h)2+k 向上(k>0)【或向下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】 平移|k 个单位 向右(h>0)【或左(h<0)】 平移|k|个单位 向右(h>0)【或左 (h<0)】 平移kl 个单位

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系 课时学习目标: 1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。 2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。 3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。 学习重点: 利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。 学习难点:利用图像认识总结函数性质变化规律。 一、复习预备 1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。 2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。 3.已知函数y= x 2 -2x -3 , (1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图; (5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a 其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像 与系数a 、b 、c 、ac b 42-的关系

二次函数图象与几何变换

二次函数图象与几何变换 1.将抛物线y=x2﹣2x+3平移得到抛物线y=x2,则这个平移过程正确的是() A.先向左平移1个单位,再向下平移2个单位 B.先向左平移2个单位,再向下平移1个单位 C.先向右平移1个单位,再向上平移2个单位 D.先向右平移2个单位,再向上平移1个单位 【变式1】.将函数y=x2+x+b的图象向右平移a(a>0)个单位,再向上平移2个单位,得到函数y=x2﹣3x+4的图象,则a、b的值分别为() A.a=1、b=4 B.a=2、b=2 C.a=2、b=0 D.a=3、b=2 【变式2】如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为() A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1 【变式3】.若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为() A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4 【变式4】.将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是() A.1 B.2 C.3 D.4 2.与抛物线y=x2﹣2x﹣4关于x轴对称的图象表示为() A.y=﹣x2+2x+4 B.y=﹣x2+2x﹣4 C.y=x2﹣2x+6 D.y=x2﹣2x﹣4 【变式】.二次函数y=x2﹣4x﹣5的图象关于直线x=﹣1对称的图象的表达式是() A.y=x2﹣16x+55 B.y=x2+8x+7 C.y=﹣x2+8x+7 D.y=x2﹣8x+7

二次函数平移、旋转、轴对称变换

二次函数专题训练(平移、旋转、轴对称变换) 一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。 y=a(x-h)2+k y=a(x-h)2+k ±m y=a(x-h)2 y=a(x-h ±m)2+k 练习:(1)函数 图象沿y 轴向下平移2个单位,再沿x 轴向右平移3 个单位,得到函数__________________的图象。 (2)抛物线2 25y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。 2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。 (1)将抛物线绕其顶点旋转180?(即两条抛物线关于其顶点成中心对称) ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+。 (2)将抛物线绕原点旋转180?(即两条抛物线关于原点成中心对称) ()2y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-。 练习:(1)抛物线2 246y x x =-+绕其顶点旋转180?后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 练习:已知抛物线C 1:2 (2)3y x =-+ (1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。 二、二次函数的系数与图象的关系。 热身练习:1、抛物线y=ax 2+bx+c 的开口方向与 有关。 2、抛物线y=ax 2+bx+c 的对称轴是 . 3、抛物线y=ax 2+bx+c 与y 轴的交点坐标是 ,与x 轴的交点坐标是 。

二次函数图像过定点的研究

函数图像过定点的研究 二、方法剖析与提炼 例1.求证:拋物线y =(3- 2定点,并求出定点的坐标. y =(3-k)x 2+(k -2)x =3x 2-2x -1-kx 2+kx +2k =3x 2-2x -1-k( )(k≠3), 上式中令 =0,得x 1= ,x 2= . 将它们分别代入y =3x 2-2x -1-k(x 2-x -2), 解得y 1= ,y 2= , 把点(-1,4)、(2,7)分别代入y =3x 2-2x -1-k(x 2-x -2), 无论k 取何值,等式总成立, 即点 、 总在抛物线y =(3-k)x 2+(k - 2)x +2k -1(k≠3)上, 即拋物线y =(3-k)x 2+(k -2)x +2k -1(k≠3)过定点(-1,4)、(2,7). 【解析】因为不论k 取何值,函数均过某定点,所以思考的方向是将k 前面的系数化为零,从而得到本题的解法。另外,本题也可以任意取两个K 的值,然后列方程组,求解即可。

例2.(北京市西城区)无论m 为任何实数,二次函数 的图像总过的点是( ) A. (1,3) B. (1,0) C. (-1,3) D. (-1,0) 【解答】解法一、特殊值法:任意给m 妨设m=0和m=2。 则函数解析式变为: 联立方程组 解得 把 中,无论m 为何值,等式总成立。 所以,抛物线群 中所有的抛物线恒经过定点(1,3)。 故应选A 。 ① 令???==???=-+=-310 2012y x y x x x 解得, 所以,无论m 为何值时, 恒满足①式,故该二次函数的图像恒过定点(1,3)。 故应选A 。 【解析】图像总过定点说明函数的取值与m 的取值无关,所

2二次函数图象的几何变换

一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函 数2y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是 ()2 y a x h k =-+-; 4. 关于顶点对称 2 y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+- ; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 知识点拨 二次函数图象的几何变换

沪教版(上海)初中数学九年级第一学期26.2(1)特殊二次函数的图像(二次函数 的图像) 教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。——高斯 §26.2(1)特殊二次函数的图像(二次函数2 y ax =的图像) 【教学目的】 (1)了解二次函数2 y ax =的图像是抛物线,会用描点法画二次函数2 y ax =的图像. (2)借助二次函数2 y ax =的图像归纳二次函数2 y ax =的基本性质并加以直观描述.(主要讨论顶点坐标、开口方向、对称性). (3) 在运用图像研究二次函数性质的过程中,领会和运用数形结合的思想方法. (4) 培养学生通过独立思考,归纳、概括、提炼数学知识的方法. 【教学重点】会用描点法画出二次函数2 ax y =的图像,概括出图象的特点及函数的性质. 【教学难点】会用描点法画二次函数2 ax y =的图像. 【教学过程】一、复习导入 问题 1.二次函数的一般式及定义域; 2.一次函数的特殊函数是什么函数?它的解析式及图像分别是什么? 二、探究新课 用描点法画出函数2 x y =的图像 (1)描点法画函数2 x y =的图像前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(由解析式可以看出x 可以取任意实数,不妨以0为中心,均匀选取一些便于计算的x 的值,看看画出来的图形的大致形状,如有问题再加以修正或补充.) 步骤:1)列表: x … -2 23- -1 21 - 0 21 1 23 2 … 2x y = … 4 4 9 1 4 1 0 4 1 1 4 9 2 … 2) 描点: 3) 连接成光滑曲线: 说明:画图时曲线不能画到端点为止,必须超过端点,表示可以向上(或向下)无限延伸.顶点处要画得光滑,不能画成尖端. (2)观察函数2 x y =的图象,它的形状、位置有哪些特征?(引导学生观察列表中的数据) 函数2 x y =的图像形如物体抛射时所经过的路线,我们把这种图像叫做抛物线。

二次函数二次函数的概念及特殊二次函数的图像

二次函数二次函数的概念 及特殊二次函数的图像 The pony was revised in January 2021

【新知归纳与梳理】 【主要结论归纳】 【例题分析】 【例1】判断下列函数中,哪些是二次函数? (1)22y x =-++(2)21y x =+(3)212y x x =+ +(4)2(2)23y a x x =--++ 【例2】函数33222)1(---=k k x k y 的图像是抛物线,求k 的值。 【例3】二次函数2223m m x mx y -+-=的图像过原点,求m 的值。 【例4】若抛物线m x x y ++=62的顶点在x 轴上,求m 的值。 【例5】在二次函数n mx x y ++=2中,如果0=-n m ,那么它的图像一定经过点_________。 【例6】抛物线3212+= x y 的对称轴是__________,顶点坐标是__________,它与抛物线22 1x y =的形状___________。 【例7】把抛物线22x y -=向_______平移________个单位,就得到函数622--=x y 的图像。 【例8】把函数22x y -=的图像_________________________就会得到函数22x y =的图像。 【例9】已知抛物线的顶点为原点,对称轴是y 轴,且经过点(2,-2),求此抛物线的表达式_。 【例10】二次函数2ax y =与一次函数43-=x y 的图像都经过点A )2,(b ,求a ,b 的值。 【例11】如图所示,直线AB 过x 轴上的点A (2,0),且与抛物线2ax y =交于B 、C 两点,已知B (1, 1)。

中考数学:二次函数与图形变换

中考数学:二次函数与图形变换 二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。其中,关于函数解析式的确定是非常重要的题型。而今年的中考正是面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。 图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。 1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。 例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____ 分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。 2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。 二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。 二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a 值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。 例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

第二讲 特殊二次函数的图像

九年级上册数学教案 特殊的二次函数图像 第二讲 特殊二次函数的图像 知识框架 知识点 1、 二次函数2y ax c =+的图像 一般地,二次函数2y ax c =+的图像是抛物线,称为抛物线2y ax c =+,它可以通过将抛物线2y ax =向上(0c >时)或向下(0c <时)平移c 个单位得到. 抛物线2y ax c =+(其中a 、c 是常数,且0a ≠)的对称轴是y 轴,即直线x = 0;顶点坐标是(0,c ).抛物线的开口方向由a 所取值的符号决定,当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点 2.二次函数()2 y a x m =+的图像 一般地,二次函数()2 y a x m =+的图像是抛物线,称为抛物线()2 y a x m =+,它可以通过将抛物线2y ax =向左(0m >时)或向右(0m <时)平移m 个单位得到. 抛物线()2 y a x m =+(其中a 、m 是常数,且0a ≠)的对称轴是过点(-m ,0)且平行(或重合)于y 轴的直线,即直线x = -m ;顶点坐标是(-m ,0).当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点.

【例1】 在同一平面直角坐标系中,画出函数21y x =+、2y x =和21y x =-的图像 【例2】 将函数21y x =+、21y x =-与函数2y x =的图像进行比较,函数21y x =+、21y x =-的图像有哪些特征?完成下表. 【例3】 说出下列函数的图像如何由抛物线2 12 y x = 平移得到, 再分别指出图像的开口方向、 对称轴和顶点坐标. (1)2 122 y x = +; (2)2 112 y x = -. 【例4】 在函数123y x =;22213y x = +;325 24 y x =--中,图像开口大小按题号顺序表 示为( ) A .1>2>3 B .1>3>2 C . 2>3>1 D .2>1>3

二次函数图象的几何变换

二次函数图象的几何变换 知识点拨 -、二次函数图象的平移变换 (1)具体步骤: 2 先利用配方法把二次函数化成 y =a(x -h) k 的形式,确定其顶点(h,k),然后做出二次函 2 2 数y = ax 的图像,将抛物线 y = ax 平移,使其顶点平移到 (h, k) ?具体平移方法如图所示: (2)平移规律:在原有函数的基础上 左加右减” 2 y = ax ■ bx 关于顶点对称后,得到的解析式是 2 y =a x - h k 关于顶点对称后,得到的解析式是 关于点m , n 对称 2 2 y=ax-h k 关于点 m ,n 对称后,得到的解析式是 y --a x ? h -2m ? 2n -k 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变?求 抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原 抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向, 然后再写出其对称抛物线的表达式. ∕=?ιx 1+Λ 嚼gl?駕 g-*÷l?l 秋1. 2. 3. 4. 二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于X 轴对称 ^aX ■ b X 关于X 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于X 轴对称后,得到的解析式是 关于y 轴对称 2 y =ax ■ bx 关于y 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于y 轴对称后,得到的解析式是 关于原点对称 2 y = ax ■ bx 关于原点对称后,得到的解析式是 2 y = a x- h ■关于原点对称后,得到的解析式是 关于顶点对称 Y= -aχ2「bx —c ; 2 y = -a x -h ; —k ; y = ax 2 - bx C ; 2 y=a xfj 亠k ; y = -aχ2 bx -c ; 2 y = —a x h [ —k ; 2 2 b y - -ax -bx c _ a 2 y = -a x —h I 亠 k . 5. 冏上(tx>>.下(KO)平移 "I 个单位■

二次函数图象的平移和对称变换

二次函数图象的平移、旋转、轴对称专题 有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。下面由具体的例子进行说明。 一、平移。 例1、把抛物线y=x2-4x+6向左平移3个单位,再向下平移4个单位后,求其图象的解析式。 法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3个单位,再向下平移4个单位后得到三个新点(-3,2),(-2,-1),(-1,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c中,求出各项系数即可。 例2、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。 法(二) 先利用配方法把二次函数化成2 =-+的形式,确定其顶点(2,-3),然 () y a x h k 后把顶点(2,-3)向上平移4个单位,再向右平移3个单位后得到新抛物线的顶点为(5,1),因为是抛物线的平移,因此平移前后a的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(5,1),就可以求出其解析式了。

【平移规律:在原有函数的基础上“左加右减、上加下减”】. 法(三) 根据平移规律进行平移,不论哪种抛物线的形式,平移规律为“左右平移即把解析式中自变量x改为x加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。” 例3、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。 平移后的图象的解析式为:y=2(x-3)2-8(x-3)+5+4.然后化简即可。 针对练习 1、求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。 2、抛物线2 y x =怎样平移得到的? 2 2(1)3 y x =-+是由抛物线2 3、若抛物线2 y x =-向左平移2个单位,再向下平移4个单位,求所得到的解析式。 二、二次函数图象的轴对称变换 二次函数图象的对称一般有关于x对称和关于y对称等情况,可以用一般式或顶点式表达 1.关于x轴对称 例4、把抛物线y=x2-4x+6关于x轴对称后,求其图象的解析式。 法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求关于x轴对称后得到三个新点(0,-6),(1,-3),(2,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c 中,求出各项系数即可。 例5、已知抛物线y=2x2-8x+5,求其关于x轴对称后的解析式。 法(二)

26.2(1)_特殊二次函数的图像

26.2(1)特殊二次函数的图像 一、教学目标设计 1.理解和掌握二次函数y=ax2的图像,并从图像上观察出二次函数y=ax2的性质. 2.通过观察、实验、猜想、总结和类比,提高归纳问题的能力. 二、教学重点及难点 重点:通过二次函数y=ax2的图像总结出有关性质. 难点:二次函数y=ax2的图像性质的应用. 三、教学用具准备 黑板、直尺、多媒体 四、教学流程设计 一、复习引入 复习提问: 1、二次函数的一般形式、自变量的取值范围; 2、提问:一次函数和反比例函数的图像是什么? 3、思考:二次函数的图像是什么?

二、学习新课 1. 例题分析 (1)研究二次函数y=x2 的图像.先列表,首先要考虑自变量的取值范围,自变量x的取值范围是什么?y的值为什么是非负数?当x取一对相反数,y的值有什么关系?在坐标系内描出这两个点,这两个点有什么关系? (2)考虑自变量x可以取任意实数,因此以0为中心选取x的值,列出函数对应值表. (3)然后在坐标平面中描点,在描点过程中分别取x的值和相应的函数值y作为点的坐标. (4)最后用光滑的曲线顺次联结各点,得到函数y=x2的图像. 观察:二次函数y=x2的图像是一条曲线,分别向左上方和右上方无限伸展,它属于一类特殊的曲线,这类曲线称为抛物线,二次函数y=x2的图像就称为抛物线y=x2,观察抛物线y=x2的形状,位置有哪些特征? 归纳: 抛物线y=x2的开口方向向上;它是轴对称图形,对称轴是y轴,即直线x=0.抛物线y=x2与y轴的交点是原点O;除这个交点外,抛物线上所有的点都在x轴的上方,这个交点是抛

物线的最低点. 抛物线与它的对称轴的交点叫抛物线的顶点.抛物线y=x2的顶点是原点O(0,0). 试一试用上述方法画出二次函数y=-x2的图像,再归纳它的特征. 三、问题拓展 例题1在同一平面直角坐标系中,分别画出二次函数y=1 2 x2和y=2x2的图像. 解(1)列表 议一议:抛物线y=1 2x2和y=2 x2的图像有什么共同特征,又有什么不同?

相关文档
最新文档