0至100V电压采集方案

0至100V电压采集方案
0至100V电压采集方案

0至100V电压采集方案

测控122赵晨

一.总体设计方案

二、各单元介绍

1.电压变送器

是一种将被测交流电压、直流电压、脉冲电压转换成接线性比例输出直流电压或直流电流并隔离输出模拟信号或数字信号的装置。采用普遍传感器电压电流信号,输入电压信号:0~5V/0~100V/0~500V 输出电流信号:0~10mA、0~20mA、4~20mA 4、输出电压信号:0~5VDC、0~10VDC、1~5VDC 。

电压变送器分直流电压变送器和交流电压变送器,交流电压变送器是一种能将被测交流电流(交流电压)转换成按线性比例输出直流电压或直流电流的仪器,广泛应用于电力、邮电、石油、煤炭、冶金、铁道、市政等部门的电气装置、自动控制以及调度系统。交流电压变送器具有单路、三路组合结构形式。直流电压变送器是一种能将被测直流电压转换成按线性比例输出直流电压或直流电流的仪器,也广泛应用在电力、远程监控、仪器仪表、医疗设备、工业自控等各个需要电量隔离测控的行业。

跟踪式传感器的输出信号能快速跟踪输入信号的变化。本产品采用线性光耦隔离原理(电压型)和霍尔隔离原理(电流型),将输入的信号经电隔离后转换成标准模拟跟随信号。电压产品为三隔离产品,即输入、输出和辅助电源相互电隔离,电流产品为两隔离,输入与输出、电源隔离。本产品具有高精度、高隔离、低响应时间、低漂移等特点。解决了传感器、变送器或仪表信号高速传输过程中的共模干扰、电隔离及信号标准化等问题,特别适用于高速瞬态波形采集、谐波分析及快速监测报警等领域。可广泛用于电力、铁路、通信及多种工业部门的计算机、PLC等测控系统及各种自动控制系统。

本设计选择的变送器系列为PA-19

●PA—19是将直流电流、电压信号转换成标准的过程信号。用于DCS对电动机、泵或热网的中央监控,监视供电线路及其电流。

产品选型

直流电压变送器TEC_UXXX

例:PA—191F1,一进一出,输入0~100V,输出为4~20MA,电路图如下

2.I/V转换电路

由于4~20mA变送器输出4mA时,在取样电阻上的电压不等于0,直接经模拟数字转换电路转换后的数字量也不为0,单片机无法直接利用,通过公式计算过于复杂。因此一般的处理方法是通过硬件电路将4mA在取样电阻上产生的电压降消除,再进行A/D转换。

推荐采用运放OP07搭的4~20mA输入/0~5V输出的I/V转换电路

运放的供电采用了由DIP封装的TL431组成的高精度稳压电路,这种TL431采用DIP8封装,耗散功率达到1W,更改供电电压只需要更换分压电阻就可以轻易办到。运算放大器选择使用的是高精度低失调的OP-07,其参数指标大大优于普通廉价运放。最为关键的是在对零点信号的处理上,可以保证输入4mA的时候,运放ICC的输入电压等于零。

图三电路的工作原理

运放ICD的同相输入端端电压由经过TIA31稳压后的负电源提供,它通过R15与R14的分压,取R14上的电压与R10上在4mA时的电压一样,然后,经过运放的缓冲,从运放输出接有一只PNP型三极管用于扩展输出能力,实际这是一个典型的运算放大器稳压电源,其输出将跟随着运放的同相端电压,可以从接近零的电压起调。

R10就是4~20mA的I/V转换电阻,按照上述道理由于运放的作用,这个电阻的最小取值可以取得很小,电阻越小,电阻越小越能减轻前方传感变送器的供电要求。

正是考虑到传感变送器属于一种远传信号的使用环境,为了防止引入干扰信号吗,加油输入滤波电容CO和两支1N4148二极管对输入信号可能出现的危险电压进行保护。

本设计首先要将0~100V电压信号直接送入变送器再通过变送器输出0~5V直流电压。变送器可输入0~100V电压,并输出0~5V电压信号,可以供给AD0804采集,满足设计要求。

3.采样/保持电路

采样保持电路实质上是一种模拟信号存储器,它在数字指令控制下,使开关通断,对输入信号瞬时值进行采样并寄存,通常用两个运算放大器构成高输入阻抗的采样/保持电路,如图5-所示。

放大器A1是射随器。它对模拟信号提供了高输入阻抗,并提供了一个低的输出阻抗,使存储电容CH能快速充电和放电,放大器A2在存储电容和输出端之间起缓冲作用。开关K1在指令控制下通断,对电容CH充电或放电,开关S1通常使用FET开关或MOSFET开关,存储电容CH一般取0.01~0.1μF。

LF398具有采样和保持功能,它是一种模拟信号存储器,在逻辑指令控制下,对输入的模拟量进行采样和寄存。图5-3是该器件的引脚图。各引脚端的功能如下:

①和④端分别为VCC和V

EE电源端。电源电压范围为±5V~±15V。

②端为失调调零端。当输入Vi

=0,且在逻辑输入为1采样使,可调节②端使Vo

=0。

③端为模拟量输入端。

⑤端为输出端。

⑥端为接采样保持电容CH端。

⑦端为逻辑基准端(接地)。

⑧端为逻辑输入控制端。该端电平为

“1”时采样,为“0”时保持。

输入的模拟量信号可以从多路开关AD7501输入,在微机的控制下,选择一路从OUT端进入采样保持器LF398的IN端.采样保持器的逻辑控制端(8)应与微机的数据口连接,使采样保持器8引脚高则采样,低则保持。采样保持器的5

端为模拟量输出端OUT与A/D转换器ADC0804的输入VIN端相连。A/D转换器的输出的数字量接微机的数据口,完成模拟量的输入。

4.ADC0804芯片介绍

图3:ADC0804规格及引脚分配图

本试验采用的A/D芯片为ADC0804,它是CMOS 8位单通道逐次渐近型的模/数转换器,其规格及引脚图如图3所示,根据手册我们可以得到各个引脚的大致功能如下:

/CS:芯片片选信号,低电平有效,即/CS=0,该芯片才能正常工作,在外接多个ADC0804芯片时,该信号可以作为选择地址使用,通过不同的地址信号使能不同的ADC0804芯片,从而可以实现多个ADC通道的分时复用。

/WR:启动ADC0804进行ADC采样,该信号低电平有效,即/WR信号由高电平变成低电平时,触发一次ADC转换。

/RD:低电平有效,即/RD=0时,可以通过数据端口DB0~DB7读出本次的采样结果。

UIN(+)和UIN(-):模拟电压输入端,模拟电压输入接UIN(+)端,UIN (-)端接地。双边输入时UIN(+)、UIN(-)分别接模拟电压信号的正端和负

端。当输入的模拟电压信号存在“零点漂移电压”时,可在UIN(-)接一等值

的零点补偿电压,变换时将自动从UIN(+)中减去这一电压。

VREF/2:参考电压接入引脚,该引脚可外接电压也可悬空,若外界电压,则ADC的参考电压为该外界电压的两倍,如不外接,则Vref与Vcc共用电源电压,此时ADC的参考电压即为电源电压Vcc的值。

CLKR和CLKIN:外接RC电路产生模数转换器所需的时钟信号,时钟频率CLK = 1/1.1RC,一般要求频率范围100KHz~1.28MHz。

AGND和DGND:分别接模拟地和数字地。

/INT:中断请求信号输出引脚,该引脚低电平有效,当一次A/D转换完成后,将引起/INT=0,实际应用时,该引脚应与微处理器的外部中断输入引脚相连(如51单片机的INT0,INT1脚),当产生/INT信号有效时,还需等待/RD=0才能正

确读出A/D转换结果,若ADC0804单独使用,则可以将/INT引脚悬空。

DB0~DB7:输出A/D转换后的8位二进制结果。

5.AT89C51单片机

AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪速存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。下图为AT89C51单片机最小系统。

6.LCD显示

通过变送器将0~100V电压转成4~20mA电流,在通过I/V转换电路转换为0~5V电压,通过从多路开关AD7501输入至采样保持器LF398。采样保持器的5端为模拟

量输出端OUT与A/D转换器ADC0804的输入VIN端相连。再通过ADC0804将转换的数字信号输入到at89c51单片机,单片机经过数据处理,显示在LCD上,LCD 显示电路如下图。

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

电压采集电路设计.(DOC)

目录 一、设计目的 ................................................................................................................... - 2 - 二、设计内容 ................................................................................................................... - 2 - 三、整体设计方案设计..................................................................................................... - 2 - 四、设计任务 ................................................................................................................... - 3 - 五、硬件设计及器件的工作方式选择............................................................................... - 3 - 1、硬件系统设计方框图:.................................................................................................- 3 - 2、中断实现:8259A工作方式选择及初始化..................................................................- 4 - 3、定时功能实现:8253的工作方式及初始化................................................................- 4 - 4、数码管显示及ADC的数据传输:8255的工作方式及初始化 ...................................- 5 - 5、模拟电压转换为数字量:ADC0809的初始化.............................................................- 5 - 6、地址编码实现:74LS138及逻辑器件 ..........................................................................- 6 - 7、显示功能:数码管显示.................................................................................................- 6 - 六、软件设计 ..............................................................................................................................- 7 - 1、主程序流程图.................................................................................................................- 7 - 2、中断子程序.....................................................................................................................- 7 - 3、显示子程序.....................................................................................................................- 8 - 4、初始化.............................................................................................................................- 9 - 8295A初始化流程图 ...................................................................................................- 9 - 8253初始化流程图......................................................................................................- 9 - 8255初始化流程图......................................................................................................- 9 - 5、程序清单及说明.......................................................................................................... - 10 - 七、本设计实现功能 ...................................................................................................... - 13 - 八、元件清单 ................................................................................................................. - 14 - 九、所遇问题与小结 ...................................................................................................... - 14 - 1、问题与解决.................................................................................................................. - 14 - 2、小结体会...................................................................................................................... - 15 - 附:系统硬件连线图 ............................................................................................................... - 16 -

单片机电压采集装置课程设计(AD转换及编程实现)

单片机课程设计 姓名:学号: 专业:电子科学与技术 题目:单片机电压采集装置 专题: AD转换及编程实现 指导教师: 设计地点:实验楼时间: 2012 年12月 单片机课程设计任务书

专业年级电科学号学生姓名 任务下达日期:2012年 12 月20 日 设计日期: 2012年12月1日至 2012 年 12月20日 设计题目:单片机电压采集装置 设计专题题目:AD转换及编程实现 设计主要内容和要求:制作单片机电压采集装置 基本要求 1、模拟通道0电压采集功能 在ADC0809的输入0~5V电压,数码管实时显示被测电压值(显示精度0.001V,即显示1位整数,3位小数)。 2、指定通道电压采集功能 通过模式选择按键切换到“指定通道电压采集功能”,利用+/-按键改变通道值,显示同上。 3、8通道自动循环电压采集功能制作单片机电压采集装置 通过模式选择按键切换到“8通道自动循环电压采集功能”, 默认通道切换时间为2秒。 扩展要求 1、超限报警功能 当Vi超出程序预设报警限值时,报警灯以1Hz速度闪烁显示,并显示提示符以区别上限或下限报警。 2、可修改上限和下限报警值的超限报警拨弄能 可随意设置上、下限报警值(步长0.1V,默认下限为0V,上限为5V)。设置时,当下限≥上限(或上限≤下限)时予以提示,并拒绝接受数据。 指导教师签字: 摘要:

此单片机电压采集装置使用AT89S52芯片和ADC0809芯片进行电压采集,实现AD转换的基本功能。,键盘电路和8个LED数码显示电路。扩展电路中包含了A/D转换电路,AD转换五种工作模式下对应要实现的功能:即模式0下完成通道0的模拟信号采集;模式1时完成指定模拟通道电压采集,按加、减(K2,K3)按键手动实现模拟通道的切换, 此外,通过内部定时器T1实现报警功能,即超过上限电压4.999V时报警,同时点亮P1.1即L2发光LED小灯,低于下限电压0.000V时也实现报警功能,只是报警的频率改变,同时点亮P1.0即L1发光LED小灯;而模式2完成8通道模拟信号自动循环采集功能,通过加入内部定时器T0中断,从而实现每隔1秒通道值自动加1的功能;进入模式3的时候,需要人为设置报警上限,此程序设定报警上限为4V,而报警上限默认值为3.999V,通过按加、减(K2/K3)按键实现上限加减0.1V;模式4的时候设置报警下限电压,默认报警下限电压为1.999V,本程序中设置的报警下限电压为2V,通过加减(K2/K3)按键实现电压加减0.1V的功能,最终实现电压采集和扩展功能。 关键词:AT89S52芯片、ADC0809芯片

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

单片机温度采集与显示

1、课程设计目的 (1)利用单片机及相应温度传感器设计单检测节点或多检测节点数字温度计 (2)精度误差:0.5摄氏度以内;测温范围:10-50摄氏度 (3)LED数码管或LCD直接显示 (4)完成对设计系统测试 2、数字温度计正文 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术,本文主要介绍了一个基于89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行介绍,该系统可以方便的实现温度采集和显示,并可根据需要任意设定上下限报警温度,使用起来相当方便,适合于我们日常生活和嵌入其它系统中,作为其AT89C52结合最简温度检测系统,该系统恶劣环境下进行现场温度测量,有广泛的应用前景。本文将介绍一种基于单片机往制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 关键词:单片机,数字控制,温度计,DSIBB20, AT89C52 2.1引言 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段 ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能温度传感器 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89C52单片机为控制器构成的数字温度测量装置的工作

开关量采集电路设计

开关量采集电路设计 开关量采集电路适用于对开关量信号进行采集,如循环泵的状态信号、进出仓阀门的开关状态等开关量。污染源在线监控仪可采集16路开关信号,输入24V 直流电压;设定当输入范围为18~24VDC 时,认为是高电平,被监视的设备处于工作状态;当输入低于18VDC 时,认为是低电平,被监视的设备处于停止状态。 为了避免电气特性及恶劣工作环境带来的干扰,该电路采用光电耦合器TLP521对信号实现了一次电-光-电的转换,从而起到输入\输出隔离的作用。 同时,还安装有LED 工作指示灯,可以使用户对每一通路的工作情况一目了然。其中一路的开关量采集电路如图1所示: 图 1 开关量采集电路 光耦TLP521将红外发光二极管和发光三级管相互绝缘的组合在一起,发光二极管为输入回路,它将电能转换成光能;发光三极管为输出回路,它将光能再转换成电能,实现了两部分电路的电气隔离。 当输入范围为18 ~24VDC 时,认为是高电平,此时光耦导通,电阻R10、R14和发光二极管共同构成输入回路。 根据光耦导通时电流为4 ~10mA ,当输入最高电压24V 时, mA V R R mA V 42414101024<+<,即Ω<+<Ωk R R k 614104.2 当输入低于18V 时认为是低电平,此时光耦的工作电流肯定低于4m A ,此时光耦不导通,电阻 R10、 R14和R12共同构成输入回路,所以: mA R R R V 412 141018<++,即R10+R14+R12>Ω。在设计中,选择R10=R12=2 k Ω,R12=1 k Ω。 光耦导通的最小电流为4mA ,根据光耦的电流传输比CTR(Current Transfer

基于51单片机的电压采集与显示系统设计

课程设计 题目:51单片机的电压采集与显示系统设计专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2010 年 9 月5 日

摘要 随着电子科技的不断发展与进步,电压测量成为广大电子领域中必须掌握的过程,并且对测量的精度和采集功能的要求也越来越高,而电压的测量与显示系统甚为重要。本文介绍的重点是电压数据的采集与显示系统,数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机8051来实现,硬件部分是以单片机为核心,还包括模-数转换模块,显示模块,和串行接口部分,还有一些简单的外围电路。8路被测电压通过通用ADC0809模-数转换,实现对采集到的数据进行模拟量到数字量的转换,由单片机对数据进行处理,用数码管显示模块来显示所采集的结果,由相关控制器完成数据接收和显示,VB程序编写了更加明了化数据显示界面。本系统主要包括四大模块:数据采集模块、控制模块、显示模块、A/D转换模块。绘制电路原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路。在软件编程上,采用了C语言进行编程,开发环境使用相关集成开发环境。开发了显示模块程序、通道切换程序、A/D转换程序。 关键词:单片机, ADC0809,A/D转换,模块显示电压测量 Abstract Along with the development of electronic technology progress, voltage measurement of electronic fields become broad must grasp of the process, and the accuracy of measurement and collection function requirements, and more and more is also high voltage measurement and display system is very important. This paper focuses on voltage data acquisition and display system, data collection and communication control using modular design, data collection and communication control adopted MCU 8051, hardware part is, still include singlechip mode - several conversion module, display module, and the serial interface, and some simple outer circuit. 8 and the voltage to be measured by general ADC0809 mode - and to count the collected data for analog to digital, by SCM processing of data, using a digital display module to show the tube, the related results of collecting data receiving and display controller, VB programming and the data showed that the interface. This system mainly including four modules: the data acquisition module, control module, display module, A/D conversion module. Draw circuit principle diagram and the work flow, and debugging, finally completed the system design of hardware circuit. In software programming, the C language program development environment, use the integrated development environment. Develop A display module procedures, channel switching procedures, A/D conversion program..

电动车辆动力电池组电压采集电路设计

电动车辆动力电池组电压采集电路设计 作者:张彩萍, 张承宁, 李军求 作者单位:北京理工大学机械与车辆工程学院,100081 刊名: 电气应用 英文刊名:ELECTROTECHNICAL APPLICATION 年,卷(期):2007,26(12) 被引用次数:3次 参考文献(4条) 1.朱正动力电池组分布式管理系统设计及实车试验 2006 2.卢居霄;黄文华;陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电源技术 2006(05) 3.何朝阳;戴君蓄电池在线监测系统的设计与实现[期刊论文]-今日电子 2006(10) 4.童诗白;华成英模拟电子技术基础 2000 本文读者也读过(3条) 1.张彩萍.张承宁.李军求.张玉璞.ZHANG Cai Ping.ZHANG Cheng Ning.LI Jun Qiu.ZHANG Yu Pu电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用2008,34(9) 2.赵慧勇.罗永革.王保华.刘珂路.Zhao Huiyong.Luo Yongge.Wang Baohua.Liu Kelu多路电压采集单元模块仿真设计[期刊论文]-湖北汽车工业学院学报2010,24(2) 3.卢居霄.黄文华.陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电子设计应用2006(5) 引证文献(3条) 1.张彩萍.张承宁.李军求.张玉璞电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用 2008(9) 2.雷晶晶.李秋红.龙泽.王太宏.张金顶锂电池组单体电压精确检测方法[期刊论文]-电源技术 2012(3) 3.雷晶晶.李秋红.陈立宝.张金顶.王太宏动力锂离子电池管理系统的研究进展[期刊论文]-电源技术 2010(11)引用本文格式:张彩萍.张承宁.李军求电动车辆动力电池组电压采集电路设计[期刊论文]-电气应用 2007(12)

单片机电压采集装置

单片机课程设计任务书 专业年级学号学生姓名 任务下达日期: 设计日期: 设计题目:单片机电压采集装置 设计专题题目:单片机系统设计 设计主要内容:制作单片机电压采集装置 设计要求: 1、基本要求 制作单片机电压采集装置电压采集功能在ADC0809的0通道输入0~5V 电压,实时显示被测电压值(显示精度0.001V,即显示1位整数,3位小数)。 2、扩展要求 指定通道采集,模式0:通道0模拟信号采集,模式1:指定通道模拟信号采集,模式2:8通道模拟信号自动循环采集,模式3:设定报警上限值,模式4:设定报警下限值。系统有三个按键,分别是:模式切换、加、减按钮,模式切换:1号按键,模式加1;加:2号按键,则值加1;模式1下改变通道,模式3下改变报警值;减:3号按键,则值减1,模式1下改变通道,模式3下改变报警值。 报警设置:设置报警上限、下限,超过上线或者低于下线时LED会亮,并发出警报声。 3、创新部分 将数码管换成LCD1602显示模式通道及电压值。 指导教师签字:

摘要 本设计介绍了基于用89S52单片机和AD0809进行电压采集的基本电路。系统硬件电路是由主板电路和扩展板电路两部分组成。主板电路包括单片机的最小系统,键盘电路和8个LED数码显示电路,这部分电路已制成电路板。扩展电路中包含了A/D转换电路,单片机电压采集电路,通过调节电位器来改变输入的电压值,在主板电路的数码管中显示出所采集的电压值,该部分电路的布线部分是由自己手工完成的。。通过程序调试各个部分的功能,运用C语言编程,完成各功能模块,通过下载软件下载到单片机芯片中,最终实现电压采集功能和扩展功能。 关键词:单片机; ADC0809芯片; C语言编程;模数转换

电压电流采样

电压电流采样 前言:在学习这个主题的时候,上网查了大量的资料,但大多都是基于电网里的交流大电压和大电流的采样,我个人觉得关于交流的采样以下链接有非常详尽的介绍,而我自己也只是对其进行了较为细致的阅读因为我们队里用的直流电压最大为24V,所以接下来我就直流电压及电流的采样说一下自己的见解。 一、基本电路设计及原理学习 1、电压采集回路的设计 工作原理如下所述:从分压电阻取来的电压信号经滤波后,被单片机周期采样。将采样信号转化为0~5V的模拟电压量送给单片机的A/D采样通道,使单片机能采集到当时的电压,以便进行稳压、稳流或限压、限流调节,为控制算法的分析、处理,实现控制、保护、显示等功能提供依据。 (公式推导参见电气专业的模电书,不作详细介绍) 根据上述原理,设计电压采样电路如图下图所示 由于521-4的四个光耦制的电流放电倍数是相同的。即

即把输入电压从较大的直流电压衰减到0~5V。 2、电流采集回路的设计 电流采集的原理图如上图所示。其工作原理与电压采集的原理基本相同,区别主要在电流的输入信号为分流器输出的信号,信号范围为0-75mV,显然信号太弱,对于分辨率不高的A/D精度显然不够。通过LM324将其放大。根据放大器的工作原理,放大的倍数为β=R63B/R61B=400K/10K=40。从而使得VI点的电压范围为0-3V,而VI点相对于AGNDW的电压与AC1点相对于AGND的电压的关系跟中,Vi点电压与AC0点电压的关系类似。在此处我们通过调节RW6,将0-75mV 的电压信号(分流器上的电压)放大到0-5V,供单片机采样。 二、自己设计(DIY) 经过一段时间的学习,我根据上述基本原理和所学知识设计了一款新的采样电路

单片机温度采集与显示

目录 1.系统分析与设计 (2) 1.1系统分析 (2) 1.2数字温度计总体设计方案.............................. 错误!未定义书签。 1.2.1数字温度计总体设计框图....................... 错误!未定义书签。 2.软件控制 (3) 2.1作用 (3) 2.2技术方案 (3) 2.3 RS232通讯原理 (4) 2.4单片机与PC机串口通讯 (4) 3.课程设计总结 (13) 4.参考文献 (14)

1.系统分析与设计 1.1系统分析 要想实现微数字温度计的显示,从理论上分析,最简单的方法就是用开关控数码 管的亮灭来控制温度的显示与否,也可以直接将温度显示在液晶显示屏上。也就是说,只要用单片机直接控制数码管的显示温度就可以了。 为了实现更加人性化的便捷操作,通过PC上位机来显示温度更加的便利,PC上位机的显示界面可以同时显示多个温度值,极大地提高了需要严格控制温度时的场合,便于工作人员及时的调整需要,也提高了工作人员的工作效率,实现了现代工业的自动化与便利性。 1.2 数字温度计总体设计方案 1.2.1数字温度计总体设计框图如图1所示。 控制器采用单片机A289S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示以及在上位机界面上显示温度值。 图1总体设计方框图 主控制器:单片机AT89C51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计。

显示电路:显示电路采用3位共阳LED数码管,从P0口输出段码,P2口输出位选。 温度传感器:DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。DS18B20的性能特点如下: (1)独特的单线接口仅需要一个端口引脚进行通信; (2)多个DS18B2。可以并联在惟一的三线上,实现多点组网功能; (3)无须外部器件; (4)可通过数据线供电,电压范围为3. 0-5. 5V; (5)零待机功耗; (6)温度以9或12位数字; (7)用户可定义报警设置: (8)报警搜索命令识别并标志超过程序限定温度〔温度报警条件)的器件: (9)负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作; 2.软件控制 2.1作用 利用单片机实现数字温度计一个优点是可以利用软件控制温度的显示与否,从而将计算机软件和硬件动作联系起来,通过上位机的界面显示温度更加方便用户对环境的温度的测定。 采用串口通信的方式连接上位计算机和单片机有若干好处。首先,对于危机而言,控制外部设备的接口有多种多样,如并口、串口、PCI、ISA等。从电路设计的简便性考虑,利用串口最为理想这是因为,一般的微机均带有4个以上的串行接口,而并口只有一个,机箱和微机的生产厂家不可能仅仅为了活动门而占用微机有限的并口资源。 同样,使用PCI、ISA插槽不仅占用了主板资源,更是需要开发独立的驱动,开发成本较高;此外,从开发的成本和复杂性上考虑,采用串口无疑是最为简便而低廉的设计方案。 2.2技术方案 用户通过软件界面直接观测温度值。控制界面和单片机相当于是上、下位机的关系。控制界面通过串口通信接受来至下位机数据并且可以对数据进行保存。

三相电信号采集电路设计方案

引言 当前,电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生畸变,电能质量受到严重影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量 的要求越来越高,电能质量问题成为近年来各个方面关注的焦点,电能质量监测是当前国际上的一个研究热点[1],有必要对三相电信号进行高精度采集,便于进一步分析控制,提高电能质量。对电力参数的采样方法主要有两种,即直流采样法和交流采样法。直流采样法采样的是整流变换后的直流量,软件设计简单,计算方便,但测量精度受整流电路的影响,调整困难。交流采样法则是按一定规律对被测信号的瞬时值进行采样,再按一定算法进行数值处理,从而获得被测量,因而较之直流采样法更易获得高精度、高稳定性的测量结果[2]。 三相电信号采集电路设计 三相电信号采集电路框架 三相电信号采集电路的框架如图1所示。三相电压电流信号经过电压电流互感器转换为较低的电压信号。其中A相的电压信号经过波形调整成为频率与A相电压信号相同的方波信号,用于测量频率。同时将转换后方波频率信号进行频率的整数倍放大作为A/D转换的控

制信号。经过六路互感器降压后,将信号送入AD7656进行A/D转换,转换完的数字信号就可以供于DSP/MCU进行数据分析。 电压电流互感器的选用 电压/电流互感器均采用湖北天瑞电子有限公司TR系列检测用 电压输出型变换器。电压互感器采用检测用电压输出型电压变换器TR1102-1C,如图2为其结构图,规格为300V/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。电流互感器采用检测用电压输出型电流变换器TR0102-2C,规格为5A/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。 电源电路 AD7656共有两种模拟信号输入模式,一是模拟输入信号为二倍的参考电压(2.5V)即+/-5V之间,另一种是四倍的参考电压即+/-10V 之间。为提高采样的精度,本电路采用输入信号为+/-10V之间,因此需要+/-10V~+/-16.5V之间电源供电。AD7656同时需要5V的AVCC

用单片机实现电压采集课程分析

中国矿业大学 单片机课程设计 姓名:学号: 专业:电子科学与技术 题目:用单片机实现电压采集 专题:单片机系统设计 指导教师: 设计地点:时间: 2011-04 2011 年4月

单片机课程设计任务书 专业年级学号学生姓名 任务下达日期:2011年 4月 18日 设计日期:2010年4月18日至 2010年 4月29日 设计题目:用单片机实现电压采集 设计专题题目:单片机系统设计 设计主要内容: 1、制作可产生0至+5V电压模块 2、制作单片机电压采集装置 设计要求: 一、基本要求 (1)制作可产生0至+5V电压模块 (2)制作单片机电压采集装置 电压采集功能在ADC0809的0通道输入0~5V电压,实时显示被测电压值(显示精度0.001V,即显示1位整数,3位小数)。 二、扩展要求 (1)指定通道采集默认采集通道为0,按2:通道+1,按3:通道-1,按1:进入下一模式。 (2)循环采集显示,默认每通道显示2秒钟。按1:进入下一模式。 (3)报警设置报警上限默认为4.0V ,警下限默认为0.0V 按2进行上限设置,按3进行下限设置,按1:进入制定通道选择。 指导教师签字:

摘要 随着电子科技的不断进步,电压测量成为广大电子领域中必须掌握的过程,并且对测量的精度和采集功能的要求越来越高,而电压的测量与显示系统甚为重要。本文介绍的重点是电压数据采集与显示系统,数据采集与通信控制采用了模块化设计,数据采集与通信控制采用了单片机52来实现,硬件部分是以单片机为核心,还包括模-数转换模块,显示模块,和串行接口部分,还有一些简单的外围电路。8路被测电压通过通用ADC0809模-数转换,实现对采集到的数据进行模拟量到数字量的转换,由单片机对数据进行处理,用数码管显示模块来显示所采集的结果,由相关控制器完成数据接收和显示。本系统主要包括四大模块:数据采集、控制模块、显示模块、A/D转换模块。绘制电路原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路。在软件编程上,采用了C语言进行编程,开发环境使用相关集成开发环境。开发了显示模块程序、通道切换程序、A/D转换程序。 关键词:单片机 ADC0809 A/D转换模块显示电压测量

DSP交流采样电路设计..

DSP 交流采样电路设计

1.实验目的 本次实验针对电气工程及其自动化专业及测控专业。通过综合实验,使学生对所学过的DSP在继电保护中的应用有一个系统的认识,并运用自己学过的知识,自己设计模拟继电保护过程实验系统。要求用DSP完成对电网的电压的采样,然后经过DSP的处理,可以对系统继电器的跳合进行控制,自己设计,自己编程,最后自行调试,自行实现自己的设计。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生试验应做到以下几点: 1. 通过DSP程序的设计模拟继电保护跳闸实验,进一步了解DSP在继电保护中的应用。 2. 通过实验线路的设计,计算及实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 3. 培养动手能力,增强对DSP运用的能力。 4..培养分析,查找故障的能力。 5. 增加对DSP外围电路的认识。 2.实验设备 DSP板、仿真器、面包板、采样板器件,电烙铁,其它工具。

3.实验原理 1、DSP最小系统电路图

1、模拟电子线路 (一)、电流采样电路的设计

本次电流采样电路选择的电流互感器总共由两级,前一级互感器变比为4A :1A ,第二级互感器采用TA1015-1,其变比为5A:5mA ,也就是1000:1,两级总共的互感器比例为4000:1。 即电流互感器一次侧的电流大小为4A ,二次侧的电流大小为1A ,二级互感器的二次侧电流大小为1mA 。如图3-6,在互感器二次侧并一个1K 的电阻即可将一次侧的4A 的强电流信号变换为二次侧的弱电压信号,其计算公式为: )(0.14000/4/12mA A k i i === (3-1) )(0.1101100.13322V R i u =***==- (3-2) 其峰值为: )(414.10.1222V u u p =*== (3-3) 即电流互感器二次侧输出的电压范围为-1.414V 至+1.414V ,即一次回路里的220V 的工频交流便被线性转化为-1.414V 至+1.414V 。 信号电路共有三级,第一级为偏置放大环节,它能够将交流信号调理成DSP 能准确进行AD 转换的0V 至3.3V 的直流信号。第二级为有源滤波环节,该环节能够滤去信号调理电路里的高频干扰信号。第三极为跟随环节,其输入高阻抗,输出低阻抗,进一步增加了信号调理电路的抗干扰能力。

温度采集电路设计

题目:温度采集电路设计

电子技术课程设计任务书 学院专业班级学生: 题目:温度采集电路的设计 课程设计从 2015年 9月 7 日起到 2015 年 12 月 20日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): 1.根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4)图纸幅面为A4。 (5)布局、布线规范合理,满足电磁兼容性要求。(在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。

2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 课程设计说明书(报告)中图表、公式要求如下: (a)图:图的名称采用中文,中文字体为五号宋体,图名在图片下面。引用图应在图题右上角标出文献来源。图号以章为单位顺序编号。格式为:图1-1,空一字符后,接图名。 (b)表格:表的名称及表内文字采用中文,中文字体为五号宋体,表名在表格上面。表号以章为单位顺序编号,表内必须按规定的符号标注单位。格式为:表1-1,空一字符后,接表格名称。 (c)公式:公式书写应在文中另起一行,居中排列。公式序号按章顺序编号。字体为五号宋体,序号靠页面右侧。格式为:(1-1)……。 3、课程设计工作进度计划: 指导教师:日期: 教研室主任:日期:

电压电流采样电路设计

- 常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 控制电路电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 】 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数 <

相关文档
最新文档