动态规划法回溯法分支限界法求解问题实验报告

动态规划法回溯法分支限界法求解问题实验报告
动态规划法回溯法分支限界法求解问题实验报告

(完整版)分支限界算法作业分配问题

分支限界法的研究与应用 摘要: 分支限界法与回溯法的不同:首先,回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。其次,回溯法以深度优先的方式搜索解空间树,而分支限界法则一般以广度优先或以最小耗费优先的方式搜索解空间树。再者,回溯法空间效率高;分支限界法往往更“快”。 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 常见的分支限界法有:队列式分支限界法,按照队列先进先出原则选取下一个结点为扩展结点。栈式分支限界法,按照栈后进先出原则选取下一个结点为扩展结点。优先队列式分支限界法,按照规定的结点费用最小原则选取下一个结点为扩展结点(最采用优先队列实现)。 分支搜索法是一种在问题解空间上进行搜索尝试的算法。所谓分支是采用广度优先的策略国,依次搜索E-结点的所有分支,也就是所有的相邻结点。和回溯法一样,在生成的结点中,抛弃那些不满足约束条件的结点,其余结点加入活结点表。然后从表中选择一个结点作为下一个E-结点,断续搜索。 关键词: 分支限界法回溯法广度优先分支搜索法

目录 第1章绪论 (3) 1.1 分支限界法的背景知识 (3) 1.2 分支限界法的前景意义 (3) 第2章分支限界法的理论知识.................. 错误!未定义书签。 2.1 问题的解空间树 ............................................... 错误!未定义书签。 2.2 分支限界法的一般性描述 (6) 第3章作业分配问题 (7) 3.1 问题描述 (7) 3.2 问题分析 (7) 3.3 算法设计 (8) 3.4 算法实现 (10) 3.5 测试结果与分析 (12) 第4章结论 (13) 参考文献 (14)

动态规划法,回溯法,分支限界法求解TSP问题实验报告

TSP问题算法实验报告 指导教师:季晓慧 姓名:辛瑞乾 学号:1004131114 提交日期:2015年11月

目录 总述 (2) 动态规划法 (3) 算法问题分析 (3) 算法设计 (3) 实现代码 (3) 输入输出截图 (6) OJ提交截图 (6) 算法优化分析 (6) 回溯法 (6) 算法问题分析 (6) 算法设计 (7) 实现代码 (7) 输入输出截图 (9) OJ提交截图 (9) 算法优化分析 (10) 分支限界法 (10) 算法问题分析 (10) 算法设计 (10) 实现代码 (10) 输入输出截图 (15) OJ提交截图 (15) 算法优化分析 (15) 总结 (16) 总述 TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城

市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。 动态规划法 算法问题分析 假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。 算法设计 输入:图的代价矩阵mp[n][n] 输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度 1.初始化第0列(动态规划的边界问题) for(i=1;i #include #include #include #include #include #include #include #include #include #include

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较 摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。 关键词:回溯法分支限界法n后问题布线问题 1、引言 1.1回溯法 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。这种以深度优先方式系统搜索问题解的算法称为回溯法。 1.2分支限界法 分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。 2、回溯法的基本思想 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少应包含问题的一个解。之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。在组织解空间时常用到两种典型的解空间树,即子集树和排列树。确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。 3、分支限界法的基本思想 用分支限界法解问题时,同样也应明确定义问题的解空间。之后还应将解空间很好的组织起来。分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。两者的区别在于:队列式分支限界法按照队列先进先出的原则选取下一个节点为扩展节点,而优先队列式分支限界法按照优先队列

回溯法论文-回溯法的分析与应用

沈阳理工大学算法实践与创新论文

摘要 对于计算机科学来说,算法的概念是至关重要的,算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。为了更加的了解算法,本篇论文中,我们先研究一个算法---回溯法。 回溯法是一种常用的重要的基本设计方法。它的基本做法是在可能的范围之内搜索,适于解一些组合数相当大的问题。圆排列描述的是在给定n个大小不等的圆 C1,C2,…,Cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。图着色问题用数学定义就是给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的 K值。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。 在本篇论文中,我们将运用回溯法来解决着图的着色问题,符号三角形问题,图排列问题,将此三个问题进行深入的探讨。 关键词: 回溯法图的着色问题符号三角形问题图排列问 题

目录 第1章引言 (1) 第2章回溯法的背景 (2) 第3章图的着色问题 (4) 3.1 问题描述 (4) 3.2 四色猜想 (4) 3.3 算法设计 (5) 3.4 源代码 (6) 3.5 运行结果图 (10) 第4章符号三角形问题 (11) 4.1 问题描述 (11) 4.2 算法设计 (11) 4.3 源代码 (12) 4.4 运行结果图 (16) 第5章圆的排列问题 (17) 5.1 问题描述 (17) 5.2 问题分析 (17) 5.3 源代码 (18) 5.4 运行结果图 (22) 结论 (23) 参考文献 (24)

分支限界算法报告

实验五分支限界算法的应用 一、实验目的 1 ?掌握分支限界算法的基本思想、技巧和效率分析方法。 2?熟练掌握用分支限界算法的基本步骤和算法框架,FIFO搜索,LIFO搜索,优先队列式搜索的思想。 3 ?学会利用分支限界算法解决实际问题。 二、算法问题描述 批处理作业调度问题:n个作业{1,2,…,要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i 所需时间为bi ( K i菊n,批处理作业调度问题(batch-job scheduling problem)要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。 注意:由于要从n个作业的所有排列中找出具有最早完成时间的作业调度,所以,批处理作业调度问题的解空间是一棵排列树,并且要搜索整个解空间树才 能确定最优解,因此,其时间性能是O(n!)。在搜索过程中利用已得到的最短完成时间进行剪枝,才能够提高搜索速度。 三、算法设计 批处理作业调度问题要从n个作业的所有排列中找出具有最小完成时间和 的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树

业集:1--'……:。以该节点为根的子树中所含叶节点的完成时间和可 表示为: 匸工代+工的 设|M|=r ,且L 是以节点E 为根的子树中的叶节点,相应的作业调度为 {pk,k=1,2,……n},其中pk 是第k 个安排的作业。如果从节点 E 到叶节点L 的 路上,每一个作业pk 在机器1上完成处理后都能立即在机器 2上开始处理,即 从p 叶1开始,机器1没有空闲时间,则对于该叶节点 L 有: IX 二£ [%+心+1)仏+切」諾 踰 也'+! 注:(n-k+1)t1pk,因 为是完成时间和,所以,后续的(n-k+1)个作业完成时间和都得算上tlpk 。 如果不能做到上面这一点,则si 只会增加,从而有: 。 类似地,如果从节点E 开始到节点L 的路上,从作业p 叶1开始,机器2没 有空闲 时间,贝 n 炳辽画(咏凡+卿 同理可知,s2是 的下界。由此得到在节点E 处相应子树中叶 在作业调度问相应的排列空间树中, 每一个节点E 都对应于一个已安排的作 』+山“ + 1)抵]二£ 2 B 2 2 3 3 F 3 2 2 3 IG L P M 19 20 21

回溯法和分支限界法解决背包题

0-1背包问题 计科1班朱润华 32 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至

装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例, n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。由此得一个解为[1,,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int);

分支限界法实验(最优装载问题)

算法分析与设计实验报告第八次附加实验

for(int i=1;i

完整代码(分支限界法) //分支限界法求最优装载 #include #include #include #include using namespace std; class QNode { friend void Enqueue(queue&,int,int,int,int,QNode *,QNode *&,int *,bool); friend void Maxloading(int *,int,int,int *); private: QNode *parent; //指向父节点的指针 bool LChild; //左儿子标志,用来表明自己是否为父节点的左儿子 int weight; //节点所相应的载重量 }; void Enqueue(queue&Q,int wt,int i,int n,int bestw,QNode *E,QNode *&bestE,int bestx[],bool ch) { //将活节点加入到队列中 if(i==n) //到达叶子节点 { if(wt==bestw) //确保当前解为最优解 { bestE=E; bestx[n]=ch; } return; } //当不为叶子节点时,加入到队列中,并更新载重、父节点等信息 QNode *b; b=new QNode; b->weight=wt; b->parent=E; b->LChild=ch; Q.push(b); } void Maxloading(int w[],int c,int n,int bestx[]) //其中w[]为重量数组| { // c为船的总载重量,n为节点数 //初始化 queue Q; //活节点队列

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、源程序 #include "" #include #include #include<> #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值

float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系 long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn); ~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() {

用回溯法和队列式分支限界算法求解0-1背包问题

华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业 班级:200915326 学号:200915326 姓名:郜莉洁 一、实验题目: 分别用回溯法和分支限界法求解0-1背包问题 二、实验内容: 0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、程序源代码: A:回溯法: // bag1.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include #define MaxSize 100 //最多物品数 int limitw; //限制的总重量 int maxwv=0; //存放最优解的总价值 int maxw; int n; //实际物品数 int option[MaxSize]; // 存放最终解 int op[MaxSize]; //存放临时解 struct { int weight; int value; }a[MaxSize]; //存放物品数组 void Knap( int i, int tw, int tv) //考虑第i个物品 { int j; if(i>=n) //找到一个叶子结点 { if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它 { maxwv=tv; maxw=tw; for(j=0;j

分支限界法实现单源最短路径问题

实验五分支限界法实现单源最短路径 一实验题目:分支限界法实现单源最短路径问题 二实验要求:区分分支限界算法与回溯算法的区别,加深对分支限界法的理解。 三实验内容:解单源最短路径问题的优先队列式分支限界法用一极小堆来存储活结点表。其优先级是结点所对应的当前路长。算法从图G的源顶点s和空优先队列开始。 结点s被扩展后,它的儿子结点被依次插入堆中。此后,算法从堆中取出具有最小当前路长的结点作为当前扩展结点,并依次检查与当前扩展结点相邻的所有顶点。如果从当前扩展结点i到顶点j有边可达,且从源出发,途经顶点i再到顶点j的所相应的路径的长度小于当前最优路径长度,则将该顶点作为活结点插入到活结点优先队列中。这个结点的扩展过程一直继续到活结点优先队列为空时为止。 四实验代码 #include using namespace std; const int size = 100; const int inf = 5000; //两点距离上界 const int n = 6; //图顶点个数加1 int prev[n]; //图的前驱顶点 int dist[] = {0,0,5000,5000,5000,5000}; //最短距离数组 int c[n][n] = {{0,0,0,0,0,0},{0,0,2,3,5000,5000}, //图的邻接矩阵 {0,5000,0,1,2,5000},{0,5000,5000,0,9,2}, {0,5000,5000,5000,0,2},{0,5000,5000,5000,5000,0}}; const int n = 5; //图顶点个数加1 int prev[n]; //图的前驱顶点 int dist[] = {0,0,5000,5000,5000}; int c[][n] = {{0,0,0,0,0},{0,0,2,3,5000},{0,5000,0,1,2},{0,5000,5000,0,9}, {0,5000,5000,5000,0}};

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

实验报告 分支限界法01背包

《算法设计与分析》实验报告六 学号: 1004091130 姓名:金玉琦 日期:2011-11-17得分: 一、实验内容: 运用分支限界法解决0-1背包问题。 二、所用算法的基本思想及复杂度分析: 分支限界法 分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。 0-1背包问题 1)基本思想 给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数: u b = v + ( W - w) × ( vi + 1/ wi + 1 ) 根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。 2)复杂度分析 时间复杂度是O(2n); 三、源程序及注释: #include #include #include #include using namespace std; int *x; struct node { //结点表结点数据结构

回溯法及其应用

八皇后问题的基本策略及其应用 郭洋洋王刚李晴孙佳 (陕西师范大学计算机科学学院09级计算机科学与技术,西安,710062) 摘要:针对八皇后问题,本文采用回溯法,给出递归与非递归两种算法的设计与分析,并通过实验验证两种算法的性能,得出最佳的算法。 关键词:八皇后;回溯法;递归算法;非递归算法 The Basic Algorithm Strategy For Eight Queens And Its Application Guo Yangyang,Wang Gang,Li Qing, Sun Jia (School of Computer Science ,Shanxi Normal University ,Xi’an ,710062 ) Abstract: Aiming at the problem of Eight Queens,this paper gives Backtracking , and Recursive algorithm and Non-recursive algorithm , and show the design and analysis of the two kinds of algorithms,and through the experiment ,verified the performance of them,getting the most suitable algorithm. Keywords: Eight Queens; Backtracking; Recursive; Non-Recursive 1 引言 八皇后问题由19 世纪著名的数学家高斯在1850 年提出:在8 ×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法. 回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就调头”的思想,作为其控制结构[1]。回溯法在用来求问题的所有解时,要回溯到根,且根节点的所有可行的子树都已被搜索遍才结束。而回溯法在用来求解问题任一解时,只要搜索到问题的一个解就可以结束。这就是以深度优先的方式系统的搜索问题解的回溯法,它适用于解决一些类似n皇后问题等就切方案问题,也可以解决一些最优化问题。 2 问题描述与模型 八皇后问题:在8 ×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法. 例如图一所示:

毕业设计(论文)开题报告 分支限界算法的研究与实现

毕业设计(论文)开题报告 计算机科学与信息工程学院2013 届 题目分支限界算法的研究与实现Research and application of branch threshold algorithm 课题类型应用研究课题来源老师指定 学生姓名李瑞杰学号200903010017 专业班级09届计算机科学与技术(应用) 指导教师冯慧玲职称讲师 填写日期:2013 年3 月30 日

一、本课题研究的主要内容、目的和意义 1.课题内容 以旅行售货员问题、0/1背包问题、作业分配问题、布线问题、货物装载问题为例进行算法的分析、设计、实现及模拟演示。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 在现实生活中,有这样一类问题:问题有n个输入,而问题的解就由n个输入的某种排列或某个子集构成,只是这个排列或子集必须满足某些事先给定的条件。把那些必须满足的条件称为约束条件;而把满足约定条件的排列或子集称为该问题的可行解。满足约束条件的子集可能不止一个,也就量说可行解一般来说是不唯一的。为了衡量可行解的优劣,事先也可能给出了一定的标准,这些标准一般以函数形式给出,这些函数称为目标函数。那些使目标函数取极值的可行解,称为最优解。如工作安排问题,任意顺序都是问题的可行解,人们真正需要的是最省时间的最优解。 2.研究方法 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 3.课题研究的意义 用回溯算法解决问题时,是按深度优先的策略在问题的状态空间中,尝试搜索可能的路径,不便于在搜索过程中对不同的解进行比较,只能在搜索到所有解的情况下,才能通过比较确定哪个是最优解。这类问题更适合用广度优先策略搜

回溯法

第8章回溯法 (1) 8.1概述 (1) 8.1.1 问题的解空间树 (1) 8.1.2 回溯法的设计思想 (2) 8.1.3 回溯法的时间性能 (3) 8.1.4 一个简单的例子——素数环问题 (4) 8.2图问题中的回溯法 (5) 8.2.1 图着色问题 (5) 8.2.2 哈密顿回路问题 (8) 8.3组合问题中的回溯法 (10) 8.3.1 八皇后问题 (10) 8.3.2 批处理作业调度问题 (13) 习题8 (16)

第8章回溯法 教学重点回溯法的设计思想;各种经典问题的回溯思想教学难点批处理作业调度问题的回溯算法 教学内容 和 教学目标 知识点 教学要求 了解理解掌握熟练掌握问题的解空间树√ 回溯法的设计思想√ 回溯法的时间性能√ 图着色问题√ 哈密顿回路问题√ 八皇后问题√ 批处理作业调度问题√ 8.1 概述 回溯法(back track method)在包含问题的所有可能解的解空间树中,从根结点出发,按照深度优先的策略进行搜索,对于解空间树的某个结点,如果该结点满足问题的约束条件,则进入该子树继续进行搜索,否则将以该结点为根结点的子树进行剪枝。回溯法常常可以避免搜索所有的可能解,所以,适用于求解组合数较大的问题。 8.1.1 问题的解空间树 复杂问题常常有很多的可能解,这些可能解构成了问题的解空间(solution space),并且可能解的表示方式隐含了解空间及其大小。用回溯法求解一个具有n个输入的问题,一般情况下,将问题的可能解表示为满足某个约束条件的等长向量X=(x1, x2, …, x n),其中分量x i(1≤i≤n)的取值范围是某个有限集合S i={a i,1, a i,2, …, a i,r i },所有可能的解向量构成了问题的解空间。例如,对于有n个物品的0/1背包问题,其可能解由一个等长向量{x1, x2, …, x n}组成,其中x i=1(1≤i≤n)表示物品i装入背包,x i=0表示物品i没有装入背包,则解空间由长度为n的0/1向量组成。当n=3时,其解空间是:

[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01背包问题

[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01 背包问题 一、实验内容: 分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。 C注:0/1背包问题:给定种物品和一个容量为的背包,物品的重量ni 是,其价值为,背包问题是如何使选择装入背包内的物品,使得装入背wvii 包中的物品的总价值最大。其中,每种物品只有全部装入背包或不装入背包两种选择。 二、所用算法的基本思想及复杂度分析: 1.蛮力法求解0/1背包问题: 1)基本思想: 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。 2)代码: #include #include using namespace std; #define N 100 //最多可能物体数 struct goods //物品结构体 { int sign; //物品序号 int w; //物品重量 int p; //物品价值

}a[N]; bool m(goods a,goods b) { return (a.p/a.w)>(b.p/b.w); } int max(int a,int b) { return an-1){ if(bestP

回溯法

回溯法 回溯法也是搜索算法中的一种控制策略,但与枚举法不同的是,它是从初始状态出发,运用题目给出的条件、规则,按照深度优秀搜索的顺序扩展所有可能情况,从中找出满足题意要求的解答。回溯法是求解特殊型计数题或较复杂的枚举题中使用频率最高的一种算法。 一、回溯法的基本思路 何谓回溯法,我们不妨通过一个具体实例来引出回溯法的基本思想及其在计算机上实现的基本方法。【例题12.2.1】n皇后问题 一个n×n(1≤n≤100)的国际象棋棋盘上放置n个皇后,使其不能相互攻击,即任何两个皇后都不能处在棋盘的同一行、同一列、同一条斜线上,试问共有多少种摆法? 输入: n 输出: 所有分案。每个分案为n+1行,格式: 方案序号 以下n行。其中第i行(1≤i≤n)行为棋盘i行中皇后的列位置。 在分析算法思路之前,先让我们介绍几个常用的概念: 1、状态(state) 状态是指问题求解过程中每一步的状况。在n皇后问题中,皇后所在的行位置i(1≤i≤n)即为其时皇后问题的状态。显然,对问题状态的描述,应与待解决问题的自然特性相似,而且应尽量做到占用空间少,又易于用算符对状态进行运算。 2、算符(operater) 算符是把问题从一种状态变换到另一种状态的方法代号。算符通常采用合适的数据来表示,设为局部变量。n皇后的一种摆法对应1..n排列方案(a1,…,a n)。排列中的每个元素a i对应i行上皇后的列位置(1≤i≤n)。由此想到,在n皇后问题中,采用当前行的列位置i(1≤i≤n)作为算符是再合适不过了。由于每行仅放一个皇后,因此行攻击的问题自然不存在了,但在试放当前行的一个皇后时,不是所有列位置都适用。例如(l,i)位置放一个皇后,若与前1..l-1行中的j行皇后产生对角线攻击(|j-l|=|a j -i|)或者列攻击(i≠a j),那么算符i显然是不适用的,应当舍去。因此,不产生对角线攻击和列攻击是n皇后问题的约束条件,即排列(排列a1,…,a i,…,a j,…,a n)必须满足条件(|j-i|≠|a j-a i|) and (a i≠a j) (1≤i,j≤n)。 3、解答树(analytic tree) 现在让我们先来观察一个简单的n皇后问题。设n=4,初始状态显然是一个空棋盘。 此时第一个皇后开始从第一行第一列位置试放,试放的顺序是从左至右、自上而下。每个棋盘由4个数据表征相应的状态信息(见下图): (××××)

相关文档
最新文档