矩阵乘法AB

矩阵乘法AB
矩阵乘法AB

比如乘法AB

一、1)用A的第1行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第1行第1列的数;

2)用A的第1行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第1行第2列的数;

3)用A的第1行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第1行第3列的数;

依次进行,

(直到)用A的第1行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第1行第末列的的数,

二、1)用A的第2行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第2行第1列的数;

2)用A的第2行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第2行第2列的数;

3)用A的第2行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第2行第3列的数;

依次进行,

(直到)用A的第2行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第2行第末列的的数,

依次进行,

(直到)用A的第末行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第末行第1列的数;

2)用A的第末行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第末行第2列的数;

3)用A的第末行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第末行第3列的数;

依次进行,

(直到)用A的第末行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第末行第末列的的数

首先介绍“代数余子式” 这个概念:

设D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中把aij所在的第i行和第j列划去后,剩下的n-1 阶行列式叫做元素aij 的“余子式”,记作Mij。把Aij = (-1)^(i+j) * Mij 称作元素aij 的“代数余子式”。(符号^ 表示乘方运算)

其次,介绍伴随矩阵的概念

设E 是一个n阶矩阵,其矩阵元为aij。则E的伴随矩阵E'为

A11 A12 (1)

A21 A22 (2)

……

An1 An2 …… Ann

的转置矩阵。

E'中的矩阵元Aij 就是上面介绍的代数余子式。

======================

对于三阶矩阵

a11 a12 a13

a21 a22 a23

a31 a32 a33

首先求出各代数余子式

A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

……

A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

然后伴随矩阵就是

A11 A12 A13

A21 A22 A23

A31 A32 A33

的转置矩阵 AT(T为上标)

?定义:A关于第i行第j列的余子式(记作M ij)是去掉A的第i行第j 列之后得到的(n? 1)×(n? 1)矩阵的行列式。

?定义:A关于第i行第j列的代数余子式是:

?定义:A的余子矩阵是一个n×n的矩阵C,使得其第i行第j列的元素是A关于第i行第j列的代数余子式。

引入以上的概念后,可以定义:矩阵A的伴随矩阵是A的余子矩阵的转置矩阵:

也就是说,A的伴随矩阵是一个n×n的矩阵(记作adj(A)),使得其第i行第j列的元素是A关于第j行第i列的代数余子式:

一个矩阵的伴随矩阵是

.

[编辑] 3x3矩阵

对于的矩阵,情况稍微复杂一点:

.

其伴随矩阵是:

其中

.

要注意伴随矩阵是余子矩阵的转置,第3行第2列的系数应该是A关于第2行第3列的代数余子式。

对于数值矩阵,例如求矩阵

的伴随矩阵,只需将数值代入上节得到的表达式中。例如第2行第3列的代数余子式为

计算后的结果是:

。根据拉普拉斯公式,等于A的行列式。

如果i≠j,那么A adj(A)的第i行第j列的系数是

。拉普拉斯公式说明这个和等于0(实际上相当于把A的第j行元素换成第i行元素后求行列式。由于有两行相同,行列式为0)。

由这个公式可以推出一个重要结论:交换环R上的矩阵A可逆当且仅当其行列式在环R中可逆。

这是因为如果A可逆,那么

性质

对n×n的矩阵A和B,有:

1.

2.

3.

4.

5.

6.当n>2时,

7.如果A可逆,那么

8.如果A是对称矩阵,那么其伴随矩阵也是对称矩阵;如果A是反对称矩阵,

那么当n为偶数时,A的伴随矩阵也是反对称矩阵,n为奇数时则是对称矩阵。

10.如果矩阵A和B相似,那么和也相似。

11.如果n>2,那么非零矩阵A是正交矩阵当且仅当

设矩阵A在复域中的特征值为(即为特征多项式的n个根),则A的伴随矩阵的特征值为。

设p(t) = det(A?t I)为A的特征多项式,定义,那么:

,

其中是p(t)的各项系数:

行列式

方块矩阵A的行列式是一个将其映射到标量的函数,记作 det(A) 或 |A|,反应了矩阵自身的一定特性。一个方阵的行列式等于0当且仅当该方阵不可逆。系数是实数的时候,二维(三维)方阵A的行列式的绝对值表示单位面积(体积)的图形经过A对应的线性变换后得到的图形的面积(体积),而它的正负则代表了对应的线性变换是否改变空间的定向:行列式为正说明它保持空间定向,行列式为负则说明它逆转空间定向。

2×2矩阵的行列式是

矩阵A的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵:

行列式也写作,或明确的写作:

即把矩阵的方括号以细长的垂直线取代

对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图中红线和蓝线)。

?2阶矩阵的行列式:[27]

?3阶矩阵的行列式:

三阶矩阵的行列式为每条红线上的元素的乘积之和,减去蓝线上元素乘积之和。但对于阶数的方阵A,这样的主对角线和副对角线分别只有n条,由于A的主、副对角线总条数的元素个数因此,行列式的相加项中除了这样的对角线乘积之外,还有其他更多的项。例如4阶行列式中,项就不是任何对角线的元素乘积。不过,和2、3阶行列式情况相同的是,n阶行列式中的每一项仍然是从矩阵中选取n个元素相乘得到,且保证在每行和每列中都恰好只选取一个元素,而整个行列式恰好将所有这样的选取方法遍历一次。另外,n×n矩阵的每一行或每一列也可以看成是一个n元矢量,这时矩阵的行列式也被称为这n个n元矢量组成的矢量组的行列式

【线性代数】之矩阵的乘法运算

Born T o Win 考研数学线性代数之矩阵的乘法运算 任意两个矩阵不一定能够相乘,即两个矩阵要相乘必须满足的条件是:只有当第一个矩阵A 的列数与第二个矩阵B 的行数相等时A ×B 才有意义。一个m ×n 的矩阵A 左乘一个n ×p 的矩阵B ,会得到一个m ×p 的矩阵C 。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A 左乘E 即AE 。 一个m 行n 列的矩阵与一个n 行p 列的矩阵可以相乘,得到的结果是一个m 行p 列的矩阵,其中的第i 行第j 列位置上的数为第一个矩阵第i 行上的n 个数与第二个矩阵第j 列上的n 个数对应相乘后所得的n 个乘积之和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果矩阵的那个4(结果矩阵中第二(i )行第二(j)列)= 2(第一个矩阵第二(i)行第一列)*2(第二个矩阵中第一行第二(j)列) + 0(第一个矩阵第二(i)行第二列)*1(第二个矩阵中第二行第二(j)列): 矩阵乘法的两个重要性质:一,矩阵乘法满足结合律; 二,矩阵乘法不满足交换律。为什么矩阵乘法不满足交换律呢?这是由矩阵乘法定义决定的。因为矩阵AB=C ,C 的结果是由A 的行与B 的列相乘和的结果;而BA=D ,D 的结果是由B 的行与A 的列相乘和的结果。显然,得到的结果C 和D 不一定相等。同时,交换后两个矩阵有可能不能相乘。 因为矩阵乘法不满足交换律,所以矩阵乘法也不满足消去律。即由AB=AC 是得不到B=C 的,这是因为()AB AC A B C O =?-=是得不到A=O 或B-C=O 即B=C.例 111000010A B ????=≠=≠ ? ?-????0, 但0000AB O ??== ??? 那么由AB=O 一定得不到A=O 或B=O 吗?回答是否定的。比如A 是m ×n 阶矩阵,B 是n ×s 阶矩阵,若A 的秩为n ,则AB=O ,得B=O ;若B 的秩为m ,则AO ,得A=O.为什么吗?原因会在有关齐次线性方程组的文章里进行讲解.

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵乘法的法则

第六节.矩阵乘法的法则 教学目标: (1)通过几何变换,使学生理解矩阵乘法不满足交换律(但并不是绝对的)。 (2)通过实例,了解矩阵的乘法满足结合律。 教学重点:理解矩阵乘法不满足交换律。 教学难点:从图形变换的角度理解矩阵的乘法不满足交换律。 教学过程: 一、引入:对上节课的练习的讨论: 已知三角形ABC 的三个顶点的坐标分别为:A (0,0),B (2,0),C (2,2), 先将三角形作以原点为中心的反射变换(变换矩阵为?? ????--1001) ,再以x 轴为基准,将所得图形压缩到原来的一半(变换矩阵为??? ? ??? ?21001 ),试求:(1)这连续两次变换所对应的变换矩阵U ; 问:U=??????--1001????????21001=??? ?????--21001 U=????????21001??????--1001=??? ? ????--21001 问题:矩阵的乘法是否满足交换律呢? 2、例题 例1.已知矩阵A 、B ,计算AB 及BA ,并比较他们是否相同,能否从几何变换的角度给予解释? (1)A=???? ??2001,B=?? ????-0110; (2)A=??? ?????21001 ,B=??? ???1003。 解:(1)AB=???? ??2001??????-0110=??? ???-0210,BA=??????-0110? ?????2001=?? ????-0120 显然,AB ≠BA 。 从几何变换的角度,AB 表示先作反射变换(变换矩阵为B ),后作伸缩变换(变换矩阵为A );而BA 表示先作伸缩变换(变换矩阵为A ),后作反射变换(变换矩阵为B )。当连续进行一系列变换时,交换变换次序得到的结果,一般说会不相同。仍以正方形(顶点分别为A(0,0),B(1,0),C(1,1),D(0,1))为例,如下图:

c++课程设计-矩阵的转置与乘法计算

c++课程设计-矩阵的转置与乘法计算

C++课程设计实验报告 姓名学号班级 任课教师时间 9月 教师指定题目4-4 矩阵的转置与乘法计算评定难易级别 A 实验报告成绩 1.实验内容: 1.1 程序功能介绍 该程序定义了一个向量类,里面的元素是模板形式,定义了有关向量了类的各种属性、方法及运算符重载函数。 1.2 程序设计要求 (1)利用已知的向量类对象定义一个矩阵类,矩阵类的数据是向量子对象,同样定义矩阵类的各种属性、方法及运算符重载函数。 (2)完善成员函数,使矩阵可以由文件输入,具体的输入格式自己规定。 (3)完成矩阵的赋值、转置、乘法等运算,要求用整形矩阵和浮点型矩阵分别演算。 (4)更改main函数结构,可由用户选择输入矩阵数据的方法,程序可以连续运行,直到选择退出为止。

2. 源程序结构流程框图与说明(含新增子函数的结构框图)

作者:喻皓学号:0511590125

3. 基本数据结构 定义的类模板,将函数用链表将一些功能函数连接起来。其中定义了构造函数,析构函数,重载赋值、乘法、数乘、输入、输出,矩阵转置等函数,实现矩阵的矩阵的赋值、转置、乘法等运算。 template class CMatrix { struct node { Vector **f;//**************************************组成矩阵的向量指针 int refcnt;//*************************************************被引用次数 int length;//*************************************************矩阵的行数 T **tmppointer;//*******************************************头指针类型} *p; public: // Vector ** begin() const {return p->f;}; CMatrix();//****************************************************默认的构造 CMatrix(int xsize,int ysize,T init=0);//***************************构造函数 CMatrix(int xlength,const Vector *vec);//************************构造函

矩阵的各种运算详细讲解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设

矩阵与矩阵的乘积记作, 规定为 其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有

则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 ,

矩阵加减乘除

public Matrix Invs(){ int rw=row,rk=rank; Matrix imat=new Matrix(rw,rk); Matrix jmat=new Matrix(rw,rk); for(int i=0;i

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

矩阵的乘法运算

沈阳航空航天大学课程设计 学号2009040603045 班级94060302 姓名崔建国 指导教师刘学平 2011年7 月 6 日

沈阳航空航天大学 课程设计任务书 学院:机电工程学院专业:车辆工程班级:94060302 学号:2009040603045 题目:矩阵的乘法运算 一、课程设计时间 2011年6月27日~7月1日(第17周),共计1周。 二、课程设计内容 在“file05_矩阵相乘.txt”文件中存放了两个矩阵,请读取这两个矩阵进行乘法运算,并显示结果矩阵。 三、课程设计要求 程序质量: ?贯彻事件驱动的程序设计思想。 ?用户界面友好,功能明确,操作方便;可以加以其它功能或修饰。 ?用户界面中的菜单至少应包括“读取矩阵”、“开始计算”、“显示结果”、“退 出”4项。 ?代码应适当缩进,并给出必要的注释,以增强程序的可读性。 课程设计说明书: ?课程结束后,上交课程设计说明书和源程序。课程设计说明书的内容参见提 供的模板。 四、指导教师和学生签字 指导教师:刘学平学生签名:崔建国 五、成绩 六、教师评语

目录 一、需求分析 (4) 二、设计分析 (4) 三、关键技术 (6) 四、总结 (10) 五、完整的源程序 (11) 六、参考文献 (13)

一、需求分析 矩阵乘法运算是通过读取文本文件的资料,将两个矩阵进 行乘法运算,并显示结果。要求: ①学生会编程读取文本文会运open ②会运用Do while loop 的循环语句 ③懂得矩阵运算的法则. 二、设计分析 (1) 基本原理:运用打开顺序文件 open 文件名For Input/ output/ As # 文件号, 在文本文件中读取数据矩阵相乘采用二维数组For 循环 结构。矩阵相乘是将每个数字赋予一个字符,然后把字符 用公式写出来,进而进行计算,将得出的结果按矩阵的形 式打印在窗体上。

矩阵乘法题目

十个利用矩阵乘法解决的经典题目 By Matrix67 好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

n维矩阵的乘法AB-1_

《数据结构》课程设计 题目____n维矩阵的乘法AB-1______ 学号_________________ 姓名______________________ 专业_____________________ 指导老师___________________

第一章:课程设计的目的 (3) 第二章:课程设计的内容和要求 (3) 课程设计的内容 (3) 运行环境 (3) 第三章:课程设计分析 (4) 矩阵的存储 (4) 矩阵的输入与输出 (4) 矩阵的乘法运算 (4) 矩阵的求逆运算 (4) 第四章:课程设计的算法描述 (4) 矩阵的存储 (4) 矩阵的输出 (5) 矩阵的乘法 (5) 矩阵的求逆运算 (5) 第五章:源代码 (7) 第六章:结束语 (11)

第一章:课程设计的目的 本学期我们对《数据结构》这门课程进行了学习。这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。 具体说来,这次课程设计主要有两大方面目的。 一是让实习者通过实习掌握《数据结构》中的知识。对于矩阵乘法这一课题来说,所要求掌握的数据结构知识主要是数组的相关概念和数组用来存储矩阵的相关便利性。 二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。 第二章:课程设计的内容和要求 课程设计的内容 设计一个矩阵相乘的程序,首先从键盘输入两个矩阵a,b的内容,并输出两个矩阵,输出ab-1结果。 要求 要求 1)界面友好,函数功能要划分好 2)总体设计应画一流程图 3)程序要加必要的注释 4)要提供程序测试方案 5)程序一定要经得起测试,宁可功能少一些,也要能运行起来,不能运行的程序是没有价值的。 运行环境 该程序的运行环境为Windows xp系统,Microsoft Visual C++6.0版本。

矩阵n次方的几种求法的归纳

矩阵n 次方的几种求法 1.利用定义法 () () ,,ij kj s n n m A a B b ??==则() ,ij s m C c ?=其1122...ij i j i j in nj c a b a b a b =+++ 1 n ik kj k a b ==∑称为A 与B 的乘积,记为C=AB ,则由定义可以看出矩阵A 与B 的乘积C 的第i 行第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的第j 列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相[]1 同。 例1:已知矩阵34 125310210134A ??? ?=- ? ???,44 5 130621034510200B ??? ? ? = ? ? ??,求AB 解:设C AB ==() 34 ij c ?,其中1,2,3i =;1,2,3,4j = 由矩阵乘积的定义知: 111526533032c =?+?+?+?=121122543231c =?+?+?+?= 131321553030 c =?+?+?+?=14102051305 c =?+?+?+?= 21150623101c =-?+?+?+?= 22110224129c =-?+?+?+?= 23130125107c =-?+?+?+?= 24100021102c =-?+?+?+?= 310516334015c =?+?+?+?= 320112344222c =?+?+?+?= 330311354016c =?+?+?+?= 34001031403c =?+?+?+?= 将这些值代入矩阵C 中得:

C AB ==34 323130519721522163??? ? ? ??? 则矩阵A 的n 次方也可利用定义的方法来求解。 2.利用矩阵的分块来求解 这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵 由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义来求解这些小矩阵的乘积所构成的矩阵。即设 () () ,,ij kj s n n m A a B b ??==把A ,B 分解成一些小矩阵: 1111l t tl A A A A A ?? ?= ? ???K M O M L ,1111 r l lr B B B B B ?? ? = ? ??? K M O M L ,其中ij A 是i j s n ?小矩阵且1,2...i t =,1,2...j l =,且12...t s s s s +++= ,12...l n n n n +++=;ij B 是j k n m ?小矩阵且1,2...j l =,1,2...k r =;且12...l n n n n +++=, 12...r m m m m +++=;令C AB ==1111r t tr C C C C ?? ? ? ??? K M O M L ,其中ij C 是i j s m ?小矩阵且1,2...i t =,1,2,...,j r =,且12...t s s s s +++=, 12...r m m m m +++=;其中1122...ij i j i j il lj C A B A B A B =+++。这里我们应注意:矩阵A 列的分法必须与矩阵B 行的分法一[]1 致。

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

矩阵相乘的快速算法

矩阵相乘的快速算法 算法介绍 矩阵相乘在进行3D变换的时候是经常用到的。在应用中常用矩阵相乘的定义算法对其进行计算。这个算法用到了大量的循环和相乘运算,这使得算法效率不高。而矩阵相乘的计算效率很大程度上的影响了整个程序的运行速度,所以对矩阵相乘算法进行一些改进是必要的。 这里要介绍的矩阵算法称为斯特拉森方法,它是由v.斯特拉森在1969年提出的一个方法。 我们先讨论二阶矩阵的计算方法。 对于二阶矩阵 a11 a12 b11 b12 A = a21 a22 B = b21 b22 先计算下面7个量(1) x1 = (a11 + a22) * (b11 + b22); x2 = (a21 + a22) * b11; x3 = a11 * (b12 - b22); x4 = a22 * (b21 - b11); x5 = (a11 + a12) * b22; x6 = (a21 - a11) * (b11 + b12); x7 = (a12 - a22) * (b21 + b22); 再设C = AB。根据矩阵相乘的规则,C的各元素为(2) c11 = a11 * b11 + a12 * b21 c12 = a11 * b12 + a12 * b22 c21 = a21 * b11 + a22 * b21 c22 = a21 * b12 + a22 * b22 比较(1)(2),C的各元素可以表示为(3) c11 = x1 + x4 - x5 + x7 c12 = x3 + x5 c21 = x2 + x4 c22 = x1 + x3 - x2 + x6 根据以上的方法,我们就可以计算4阶矩阵了,先将4阶矩阵A和B划分成四块2阶矩阵,分别利用公式计算它们的乘积,再使用(1)(3)来计算出最后结果。 ma11 ma12 mb11 mb12 A4 = ma21 ma22 B4 = mb21 mb22 其中 a11 a12 a13 a14 b11 b12 b13 b14 ma11 = a21 a22 ma12 = a23 a24 mb11 = b21 b22 mb12 = b23 b24 a31 a32 a33 a34 b31 b32 b33 b34 ma21 = a41 a42 ma22 = a43 a44 mb21 = b41 b42 mb22 = b43 b44 实现 // 计算2X2矩阵 void Multiply2X2(float& fOut_11, float& fOut_12, float& fOut_21, float& fOut_22, float f1_11, float f1_12, float f1_21, float f1_22, float f2_11, float f2_12, float f2_21, float f2_22)

矩阵乘法的概念

矩阵乘法的概念 The latest revision on November 22, 2020

2006-2007后塍高中高二下学期数学教案(矩阵乘法的概念) 命题人:瞿蕴雅 教学目标: 1.熟练掌握二阶矩阵与二阶矩阵的乘法。 2.理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表示的是原来两个矩阵的连续两次变换。 教学重点: 矩阵乘法的概念。 教学过程: 一、问题情境 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样 二、建构数学 1.矩阵乘法法则: 2.矩阵乘法的几何意义: 3.初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 三、数学应用 1.例题 例1:(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2:已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M

(2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。 例3: 已知A= cos sin sin cos αα αα - ?? ? ?? ,B= cos sin sin cos ββ ββ - ?? ? ?? ,试求AB,并对其几何意 义给予解释。 2.课堂练习 P46 1,2 四、回顾小结 1. 二阶矩阵乘法运算法则 2. 二阶矩阵乘法的几何意义 五、课外作业 同步导学

矩阵乘积的运算法则的证明

矩阵乘积的运算法则的证明 矩阵乘积的运算法则 1 乘法结合律:若n m C A ?∈,p n C B ?∈ , q p C C ?∈,则C AB BC A )()(=. 2 乘法左分配律:若A 和B 是两个n m ?矩阵,且C 是一个p n ?矩阵,则 BC AC C B A +=+)(. 3 乘法右分配律:若A 是一个n m ?矩阵,并且B 和C 是两个p n ?矩阵,则BC AC C B A +=+)(. 4 若α是一个标量,并且A 和B 是两个m n ?矩阵,则B A B A ααα+=+)(. 证明 1 ①先设n 阶矩阵为)(ij a A =,)(ij b B =, )(ij c C =,)(ij d AB =,)(ij e BC = )(ij f ABC =,)()(ij g BC A =,有矩阵的乘法得: n j i b a b a b a d nj in j i j i ij 2,1,.2211=+++= n j i c b c b c b e nj in j i j i ij 2,1,.2211=+++= n j i c d c d c d f nj in j i j i ij 2,1,.2211=+++= n j i e a e a e a g nj in j i j i ij 2,1,.2211=+++= 故对任意n j i 2,1,=有: nj in j i j i ij c d c d c d f +++= 2211 ++++=j n in i i c b a b a b a 11212111)( ++++j n in i i c b a b a b a 22222121)( nj nn in n i n i c b a b a b a )(2211++++ ++++=)(12121111nj n j j i c b c b c b a

矩阵的基本运算法则

矩阵的基本运算法则 1、矩阵的加法 矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数): (1)交换律:+=+A B B A (2)结合律:()()++++A B C =A B C 注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。 2、数与矩阵相乘 数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数): (1)结合律:()λμλμ=A A (2)分配律:()λμλμ+=+A A A (3)分配律:()λλλ+=+A B A B 注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。 3、矩阵与矩阵相乘 矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的): (1)交换律:≠AB BA (不满足) (2)结合律:()()=AB C A BC (3)结合律:()()()λλλλ==其中为数AB A B A B (4)分配律:()(),+=++=+A B C AB AC B C A BA CA 4、矩阵的转置 矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置): (1)()T T =A A

(2)()T T T +=+A B A B (3)()T T λλ=A A (4)()T T T =AB B A 5、方阵的行列式 由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数): (1)T =A A (2)n λλ=A A (3)=AB A B 6、共轭矩阵 共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的): (1)+=+A B A B (2)λλ=A A (3)=AB AB 7、逆矩阵 方阵的逆矩阵满足下述运算规律: (1)若A 可逆,则1-A 亦可逆,且()11--=A A (2)若A 可逆,数0λ≠,则λA 可逆,且()111 λλ--=A A (3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A 参考文献: 【1】线性代数(第五版),同济大学

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a )的元素仅有一行 ij 或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它 们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵

在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相 等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij ) m×n 和B=(b ij ) m×n 相加时,必须要有相同的行数和列数。如以C=(c ij ) m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则:

2.1.2矩阵的乘法

2.1.2矩阵的乘法 1.生活实例 (1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:初赛复赛 甲8090 乙8688 如果规定歌唱比赛最后成绩由初赛和复赛综合裁定,其中初赛占40%,决赛占60%,那么甲、乙的最后成绩可用如下矩阵的形式表示:(2)某牛仔裤商店经销A、B、C、D、E五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示 A B C D E 28英寸 1 3 0 1 2 30英寸 5 8 6 1 2 32英寸 2 3 5 6 0 34英寸 0 1 1 0 3 假设不同牌子的每条牛仔裤的平均利润分别为:A为30元,B为35元,C为40元,D为25元,E为40元,试问28英寸牛仔裤在该星期内获得的总利润是多少? 28英寸牛仔裤的销售量: A B C D E [1 3 0 1 2] 不同牌子的平均利润 30 35 40 25 40 M 1 30 3 35 0 40 1 25 2 40 240(元) 如果要求各种规格大小的牛仔裤的总利润,就自然地得出下列的矩阵乘法 1 3 0 1 2 30 240 28英寸牛仔裤的利润 5 8 6 1 2 35 775 30英寸牛仔裤的利润 2 3 5 6 0 40 = 515 32英寸牛仔裤的利润 0 1 1 0 3 25 195 34英寸牛仔裤的利润

一般地: (1)行矩阵与列矩阵的乘法规则 (2)二阶矩阵与列向量的乘法规则 2.二阶矩阵乘列向量——几何意义 (1) 矩阵平面上每个向量(点)变成了向量(点),因此它是平面到平面的一个变换.这个变换实际上是把平面上的图形在y轴方向拉伸了两倍.一般地: (1)平面变换的定义 (2)平面变换的记号 (3)平面变换的规则

相关文档
最新文档