A380飞机设计特点分析

A380飞机设计特点分析
A380飞机设计特点分析

A380飞机设计特点分析

情报组

科技信息档案室2005.9.21

目录

1. 引言 (1)

2. 项目进度 (1)

3. 设计特点 (2)

3.1 操纵面 (2)

3.2 结构 (2)

3.3 起落架 (3)

3.4 动力装置 (3)

3.5 座舱 (4)

3.6 系统 (4)

3.7 电子设备 (4)

3.8 几何尺寸 (5)

4. 先进的气动技术 (6)

4.1 选择最佳机身截面 (6)

4.2 机体CFD优化设计 (6)

4.3 精心的机翼设计 (7)

5. 新材料的应用 (9)

5.1 先进新型金属材料仍占主导地位 (9)

5.2 复合材料用于大型结构件的技术突破 (11)

5.3 充分利用GLARE材料的性能优势 (12)

6 先进制造技术对A380的贡献 (13)

6.1 先进复合材料制造技术 (13)

6.2 激光焊接 (13)

7 减轻结构重量的种种努力 (13)

7.1 中央翼盒 (14)

7.2 巨型机腹整流罩 (14)

7.3 客舱地板结构 (14)

7.4 独特的机翼结构 (14)

A380飞机设计特点分析

1. 引言

空中客车A380是迄今世界上正在生产之中的尺寸最大、客/货容量最高的喷气客机。到2006年它投入使用时,将会对21世纪大型民用喷气客机市场产生一个不小的冲击波,进而改变几十年来在大型客机市场一直被波音747垄断的局面。

A380飞机由法、德、英和西班牙等国飞机制造商共同研制。其中法国制造驾驶舱、中机身、发动机挂架并负责总装;德国提供前中机身、后机身、垂直安定面和方向舵;英国制造机翼主壁板、前轮和刹车以及襟翼导轨梁;西班牙负责生产机翼/机身整流罩、机腹整流罩和固定水平尾翼、水平尾翼前后缘和翼肋以及机翼翼肋。该机采用了大量的新技术,主要包括:计算机流体力学优化设计、液压增压技术、双飞行控制系统以及双轴供气空调系统等等。该机机身、尾翼和机头采用先进的Glare(玻璃纤维增强复合材料)复合材料层板,不仅有利于改进疲劳性能,还可大大减少蜂窝结构用量。据称A380的运营成本比波音747飞机低20%。

2. 项目进度

1994.6 着手工程研究,取名A3XX

1996.3 设立A3XX管理局(大飞机分公司)

1997 在巴黎展示机身剖面全尺寸模型

1999.12 空客工业管理局批准项目出台

2000.12 确认A380名称并接受必须的50架订货

2004.4 对原型机的主要分装配件(前、中和后机身,尾锥,尾翼和机翼)进行总装

2005年初预定首飞

2006.3 取得适航合格证并交付使用

3. 设计特点

A380飞机采用达索公司CATIA软件进行设计;结构、材料、系统、起落架设计和气动特性都有新改进;驾驶舱与现役空客飞机保持一致,以使驾驶员转型A380时具有相关认证资格。

机身垂直排列成椭圆形三舱布局:该设计可使主层舱容纳一排10座旅客、上层舱一排8座旅客,使每位旅客比波音747有更大的空间;下层舱可设商店、酒吧、餐厅和/或38个LD3集装箱或13个货盘和18.4m3的散货。

按用户要求可改装发动机、短舱和改变气动特性,以大大降低噪音水平。

机翼的1/4弦线后掠角为33°30’。

3.1 操纵面

单缝襟翼结合机翼前缘下垂以改善爬升性能。机翼各侧有2块副翼和2个作动筒,外加带单个作动筒的8块扰流板。升降舵每侧有2块和2个作动筒,方向舵也有2块和2个作动筒。

3.2 结构

复合材料大量用于襟翼、扰流板、后承压框、中央翼翼盒、尾翼等部位。采用“glare”复合材料,明显减少了结构重量,防止疲劳/损坏。激光束焊接可

减少成本和重量,用于连接长桁和下机身壁板。机翼前缘由热塑性塑料制成。外翼金属是粘结的。

A380-800上部地板梁用复合材料制造,整个结构使用重量较轻的2524铝合金以代替传统使用的2024。

3.3 起落架

Goodrich主起落架,每个四轮翼下起落架重2310kg,每个六轮机身下起落架重4080kg。Messier-Dowty双轮前起落架。米其林AIR X NZG轮胎:A380-800主起落架为1400×530R23(40层)轮胎;前起落架为1270×455R (32层)轮胎。机身下起落架设置在翼下起落架稍后的位置。所有主轮均装有碳刹车。能在45m宽的跑道和23m宽的滑行道上进行机动。利用差动刹车或不对称推力可在60m宽的跑道上进行U转弯。

3.4 动力装置

A380选用联盟(GE/P W)GP7200或R-RTrent900系。Trent于2004年晚期首飞,原定2005年取得适航合格证,据称已推迟到2006年第一季度。Trent970最初额定推力311kN,后降为302kN。但最终定为374kN。联盟GP7200使用与波音747X和远程767动力装置相同的核心机。设计工作始于2001年8月,后推迟到2003年初,2004年4月首次运转,2005年7月获取适航合格证,额定推力363kN,拟于2006年初首飞。

两型动力装置标准燃油310,000L;远程型飞机在机翼中央翼盒内,安装额外的燃油箱。

3.5 座舱

两人制驾驶舱,设有机组人员休息区;机身各侧有5个主层舱应急出口和3个上层舱应急出口。三级布局标准载客555人(主层舱一级22人,经济级334人;上层舱商务级96人,经济级103人),座舱排距为一级173cm;商务级122cm;经济级81或84cm。短程高密度布局840人。双通道登机梯允许四过道登机和通过主层舱离机。用于上层舱的救生滑梯藏入机体而不是在舱门内。

3.6 系统

装有由Thales公司和Diel公司的航电系统组成的综合模块航电系统(IMA),Rockwell Collins公司的传输速率达100兆位/秒的具有全双工连网的以太网。装有变频交流发电系统。为便于滑行,垂直安定面顶部和机身下部配有照相机。安装了燃油管理系统。

两个241×10 5帕的液压系统(黄色和绿色)和两个电器系统(红色和橙色)用于飞行操纵,后者每个采用至少两个不同的系统以防其中任何一个万一发生故障;每个系统都是完全独立的。液压系统所用的导管系统较其早期空客飞机所用的要轻且结构紧凑。机翼下起落架由绿色系统供压;机身下主起落架由黄色系统供压。发电系统采用180千伏安发电机。采用Eaton公司的8个发动机驱动液压泵和4个电动液压泵,工作压力345×105帕。

3.7 电子设备

装有带Thales/Diel显示器的Honeywell公司飞行管理系统。Rockwell Collins公司通讯/导航标准(包括VHF-920和HF-900数据无线电通讯、多模接收机、VOR-900全向指向接收机、DME-900和ADF-900)。双套Thales平

视显示器任选。驾驶舱布置方案可与其它空客飞机兼容。8台新一代15cm×20cm的液晶显示器取代了传统的11台15cm×15cm的显示器。装有机上信息系统(OIS)和机上维护系统(OMS)以及Honeywell地形导航和地面导航系统。

3.8 几何尺寸

外部尺寸

翼展79.80m 弦根16.60m 展弦比7.5

机长72.75m 机身最大宽度7.14m 机高24.08m 尾翼翼展30.38m 主轮轮距14.33m 前后轮距30.40m

内部尺寸

客舱长度50.68m 主舱最大宽度 6.58m 上舱最大宽度 5.92m 主舱地板宽度 6.20m 上舱地板宽度 5.33m 货舱总容积171.0m3

面积

机翼总面积845.0m2重量和载荷

使用空重277,000kg 最大商载84,000kg 最大起飞重量560,000kg 最大停机重量562,000kg 最大着陆重量386,000kg 最大零油重量361,000kg 最大机翼载荷662.7kg/m2

性能(估计,Trent发动机)

航程14,816km 最大使用速度M0.89

实用升限13,100m

4. 先进的气动技术

空客公司在A380飞机的设计过程中不仅解决了巨型结构尺寸所带来的一系列工程技术问题,而且在气动力设计技术方面也有所创新。

4.1 选择最佳机身截面

作为目前世界上最大的民用客机,A380既要充分满足用户获得最大机身容量的要求,又要满足适航机构提出的飞机外型尺寸不得超出80米见方的空间限制的机场停放要求。为此,空客为A380选择了竖卵形机身横截面形状,这是目前业内公认的,舱内容积截面最大,同时又能满足限定的条件。

A380机体上下两部分均采用宽体飞机机体结构组成。之所以选用这样的结构,是因为如果采用宽体飞机下机身与窄体上机身的组合形式,其机舱内部空间会受到较大的限制;如果采用进一步增加机身宽度的方式,虽然能满足乘客的登离机要求,但却降低了飞行经济性。

4.2 机体CFD优化设计

A380是空客有史以来首次先对机体采用先进计算流体动力学(CFD)方法进行结构设计和优化的产品。尽管从飞机整体设计角度来看,机翼对飞机的总气动性能影响最大,但空客用CFD技术先对A380机身进行结构设计和优化后,飞机的总体阻力减少了2%以上。

在对A380机身进行CFD优化设计中,机头部位的优化设计工作是最为关

键的。这其中有两个重要的考虑因素,一是因为A380作为第一种全机身长度都采用双层机身布局的飞机,其机头设计必须要满足双层客舱布局飞机钝形机头的设计特点;二是A380在整个设计过程中必须要满足FAA提出的80米见方的机场停放空间的限制。另外,飞机在总体设计中还需要综合考虑阻力、机身宽度、舱内声学特性等各种气动的、结构的和环境的要求。

最终机头设计结果使全部流经机头上部的亚音速气流流速控制在大约M0.85,并能够在速度高达M0.89时也不会产生激波。

前机身段相对机身其他部位而言利用价值更高,因此设计人员针对驾驶舱门窗周围的气流作了大量细致深入的CFD优化设计工作。仅为确定驾驶舱位置前后就花了4年时间,作了多次修改。目前A380的驾驶舱位于飞机机头的中部,机头的外形曲率也改得稍稍平缓了些,因为飞机头部曲率较小有利于增加抬头力矩和飞机配平。

包括驾驶舱和前部地板下货舱在内,A380的前机身段共分为四个独立的舱室,其余两个舱室为前起落架舱和雷达舱。一块带有曲度的密封增压隔板通过激光束焊接技术与驾驶舱门和前机身下部焊接到一起,将驾驶舱密封舱与前起落架和气象雷达舱分隔开来。

4.3 精心的机翼设计

A380巨大的机翼从翼根到翼尖足足有36.6米长,根部弦长为17.7米,比A320一侧机翼的翼展还要长。

面对这样的巨型升力面,设计人员在机翼设计过程中,除了要考虑上述FAA 提出的80米见方的机场空间限制之外,在机翼尺寸和外形设计中还要考虑很多其他限制条件造成的影响。

例如,机翼的根梢比要受到机翼面积和翼根弦长两方面的约束限制。而后者本身又需要满足FAA提出的飞机两个舱门之间的最大间距不得超过18.3米的规定。这样一来,A380的应急出口需设在上层舱的前门,应急逃离滑梯必须位于机翼前、后缘的上面。

在这些限制条件下,机翼最终的面积为845平方米,比目前的波音747的524平方米大了很多。

A380机翼的尺寸主要是受到机场现有基础设施要求的限定,不然设计人员大概更愿意采取加长翼展而不是增加翼面积的做法。此外,由于A380属于一种高高客容量飞机,最终确定机翼面积时,还要综合考虑采用结构尽可能简单的增升系统。包括单缝后缘襟翼、前缘缝翼和两段前缘下偏装置等。

A380机翼的襟翼和缝翼设计,要达到使A380能以低于140节速度进场的性能目标。同时,最终确定的机翼尺寸要使之具有能够承受1.3g以上的抖振发生裕度。

根据空客的设计目标,A380应该能实现以最大重量起飞时,直接爬升到10500米高度的爬升性能目标。

前缘襟翼两段前缘下偏装置是在设计的后期才增加的,是为满足2002年的QC2要求所作的改进的一部分。

前缘襟翼下偏的角度位置是由翼根的位置确定,为了有助于改善飞机的起飞性能,设计人员试图通过使翼根根部率先失速,给飞机一个正的机头下偏力矩,以减小飞机迎角,使之快速恢复到正常状态。目前这种新的前缘襟翼装置已经取代了空客最初设计的3.6米长的内侧机翼边条。

基于CFD设计技术,A380机翼沿翼展方向不断改变机翼弯度和扭转角度,

从而进一步减少2%的阻力,并减少了发动机吊舱对机翼干扰阻力。

在A380的设计过程中,空客共为之研究了17种不同的机翼平面设计方案,并对11种高速翼型进行了25次风洞试验。A380机翼的跨音速风洞试验工作将于今年年底完成。试验表明,A380机翼的升阻比提高了8%;马赫数灵活性提高了33%。机翼位于飞机35%到40%之间的中心范围处,比以前客机的位置都靠后。

机翼1/4弦长后掠角为34.46°,在每侧的两台发动机之间段变为35.73°,在机翼外缘段为33.5°。这符合空客在A380设计中提出的尽可能增加翼根的后掠角,减少外翼的后掠角的设计思想。把后掠角定在30°~35°之间,比747略小,比777略大。

A380机翼设计中一个重要的技术创新是增加了主动载荷管理系统。该系统通过机翼两侧油箱转换系统实现机翼载荷的合理内部分布,补偿长期内载分布问题对结构造成的影响。

5. 新材料的应用

空中客车的A380是一款前所未有的超大型民用运输机。为使其在性能水平、商业水平和环境水平上有突破性的整体改善,空客公司采用了大量先进的综合技术。而飞机性能水平的改善,首先要解决尽可能减轻结构重量的问题,这需要慎重地选择各种先进的新型结构材料。而且材料的选择绝不仅仅局限于满足结构性能要求的设计准则,还需要考虑成本,以及采购活动的需要等因素。

5.1 先进新型金属材料仍占主导地位

飞机结构的选材,主要以提高结构强度/损坏容限,增强结构稳定性和抗腐

蚀性为指导准则。在A380的结构选材中,先进铝材仍占有很高的比例,大约占整个机体结构重量的61%,特别是机翼结构,铝材的用量占机翼结构重量的80%。此外,A380大型结构部件的尺寸要求也面临极大的设计挑战。

A380-800先进铝合金选材特点包括:

●机身壁板选用尺寸非常宽的铝合金钣材,以尽可能减少连接部件,减轻结构重量;

●飞机主舱横梁采用了铝锂合金锻压件。新一代合金材料的出现使铝锂合金可能具有与碳纤维增强塑料(CFRP)在这类部件上应用的竞争潜力。

●翼梁和翼肋选择全新的7085型合金。与制造超厚钣材和大型锻件用的传统合金材料相比,7085型合金材料强度更高。

●更多选用钛合金材料。钛合金材料由于强度高、重量轻、损伤容限高和抗腐蚀性好等特点,一直是代替飞机结构中钢材的理想金属材料。但其高昂的价格在某种程度上限制了它的大量应用。

在A380上,钛合金的用量已经从原来占空客飞机结构重量的5%~7%增加到10%,仅发动机吊挂架和起落架的钛含量就增加了2%,这对未来飞机结构选材提出了独特的挑战。

空客首次在A380发动机吊挂架主要结构上使用全钛合金材料。采用的普通Ti-6A1-4V合金也经过了B退火条件处理,以使之达到最大断裂韧性和最小裂纹扩展速度。

A380也是空客首次采用与俄罗斯生产商合作开发的VST55531牌号新型钛合金材料的飞机。这种新型的钛合金材料具有异乎寻常的断裂韧性和高强度的组合特性,比较适用于机翼和发动机挂架之间连接装置的制造,其进一步的应用

尚在研究之中。

5.2 复合材料用于大型结构件的技术突破

在A380结构设计中,复合材料的用量排在第二位,占飞机结构总重的22%。

空客是最早将复合材料广泛用于大型商业运输飞机的飞机制造商。A310是首架采用复合材料尾翼翼盒的飞机;A320率先在商用飞机上采用了全复合材料尾翼;A340飞机机翼结构复合材料重量占结构重量的13%,以及A340-500/600成功采用了碳纤维增强塑料(CFRP)龙骨横梁。今天,空客凭借丰富的复合材料选材经验和日臻成熟的应用技术,在A380飞机上又开创了复合材料应用的新篇章。

A380将是第一种采用CFRP复合材料中央翼盒的大型商业飞机。与采用铝合金材料相比,这种中央翼盒的重量将减轻1.5吨。

A380的中央翼盒重约8.8吨,其中复合材料用量占5.3吨。采用CFRP复合材料制造中央翼盒的关键技术挑战是解决复杂的翼根结合处的制造难题和解决部件厚度较大的问题,因为该部件的最大厚度甚至达到45毫米。

A380的上舱地板横梁和后压力隔框也将由CRFP制成。前者采用挤拉工艺制造,即将碳纤维增强塑料通过一套工具连续拉出。后者则因为形状原因,试验了不同的制造方法,例如树脂薄膜渗透(RFI)和自动化纤维铺放(AFP)方法,并最终选择了RFI方法。

对A380后机身非增压部分的复合材料蒙皮,是双曲面的蒙皮面板,选用AFP方法制造。但高承力隔框则采用高强度铝合金经机加工成型。通常,复合材料的树脂转移成型法(RTM)更适用于生产承力小的结构部件。

A380的固定式机翼前缘(J形机翼前缘)采用曾经在A340-600项目中开发的热塑性玻璃纤维材料。它具有减轻结构重量、制造简单、能改善损伤容限的优点。而且与采用金属部件相比提高了可检性。其可操纵的机翼后缘选择CFRP 材料,也被认为具有当代先进技术水平。该机的一些操纵面的铰接部件和翼肋,将选择RTM制造技术。

在A380悬臂式机翼翼盒设计中,空客大胆进行了用CFRP翼肋代替铝合金翼肋的尝试。此外,A380的中间和外侧襟翼、襟翼滑轨整流罩,以及扰流板和副翼,也都采用了CFRP材料。

在A380的夹层结构设计中,采用轻型蜂窝结构代替常规的芳族聚酰胺(agamid)纸蜂窝结构是空客的技术创新之一。这种情况适于大型结构,如机腹整流罩(超过300平方米)和客舱地板。在A380设计过程中,尽可能使用单体设计代替夹层结构,如它的机身下起落架和机翼下起落架已经采用了单体设计方案。

5.3 充分利用GLARE材料的性能优势

A380-800结构采用的GLARE材料占飞机总重约3%,该材料占大约500m2的蒙皮,主要是上机身壁板。

GLARE是一种混合材料,由铝箔和单向性玻璃纤维层交叠,通过浸渍环氧粘合剂叠接而成。与采用铝钣材制造壁板相比,GLARE材料适用于制造宽度更大的机身壁板,从而可以减少机身蒙皮壁板纵向连接点。

机身壁板应用GLARE材料的动机是因为其出色的抗裂纹能力。与铝合金相比,GLARE材料的另一个重要优点是还能显著提高防腐蚀和防火能力。目前,空客正在准备进行大量的试验,包括一些部件的局部和全尺寸试验,以验证他们

为A380选择的结构设计方案和新材料的特性。例如,试验利用GLARE制造的机翼前缘的防鸟撞能力,对用GLARE替代铝材料后的尾翼前缘进行的性能测试等。

6 先进制造技术对A380的贡献

6.1 先进复合材料制造技术

A380飞机上自动纤维填注、自动铺带、树脂薄膜渗透和树脂转移成形等先进复合材料制造手段的应用,有助于减小复合材料部件的生产成本,并使超大型A380飞机上超大尺寸的复合材料部件加工成为可能,从而减小了装配成本。A380使空客在机体复合材料的应用研究方面又迈上了一个新的台阶。

6.2 激光焊接

A380开始用激光束焊接(LBW)技术取代下机身壁板桁条的铆接工艺。LBW 技术的应用将使机身壁板结构从过去的“装配式结构”概念改变成“整体式结构”概念。从机械的观点来看,二者主要的差别在于蒙皮损坏后能减少裂纹的增长。空客还准备将LBW技术扩展到铝合金6056和6013的焊接领域。

试验结果表明,LBW是适用于单曲度和双曲度壁板的焊接工艺,能显著降低生产成本,提高防腐性能和减轻重量。空客还将进一步将LBW技术用在蒙皮和支架接头,以及起落架舱区域压力隔框的制造上。

7 减轻结构重量的种种努力

在A380的设计和生产过程中,减重是一个十分重要而艰巨的任务。设计人员为此付出了巨大的努力。

7.1 中央翼盒

对机翼中央翼盒所做的大量减重措施包括:翼盒上、下蒙皮壁板,前、中、后梁等都采用复合材料制造;上梁、地板支柱和机体的主框支撑结构使用铝材。A380中央翼盒段中所用的大部分复合材料都是碳纤维增强材料,所用的铝合金材料种类多达7000多种。

7.2 巨型机腹整流罩

A380的机腹部被一个巨型的机腹整流罩罩住。机腹整流罩由大约100个复合材料蜂窝夹层结构蒙皮壁板构成,从而大大减轻了结构重量。

7.3 客舱地板结构

A380货舱地板梁采用的是常规AL7175铝合金,但主舱地板梁最终将采用重量更轻的Al-Li-C460/2196铝锂合金制造。这种材料目前技术已趋成熟,价格也适中。

在A380的设计中,采用凯夫拉复合材料作为上层客舱的地板梁是空客在结构设计上的一个技术创新。目前空客还正在研究采用钛合金制造A380的座椅滑轨。因为调查表明,很多民航用户比较喜欢目前在波音777飞机上用的这种抗腐蚀性能比较好的座椅滑轨。但显然采用这种高密度材料将要付出一定增加重量的代价。

7.4 独特的机翼结构

在A380机翼设计过程中,设计人员也采取了很多减轻结构重量的技术措施。A380飞机与早期空客飞机在机翼设计上的不同之处,还在于工程技术上的突破,例如能很快获得制造中所需的设计数据,加快生产进度。

机翼的前缘由热塑性材料制成,机翼的三段副翼、八块挠流片和外侧襟翼则由凯夫拉材料制成,内侧襟翼由常规铝制蒙皮和桁条组成,并作为两段机头下偏装置。

A380机翼与早期空客飞机的设计上有所不同,A380的大部分翼肋都与机翼的后梁垂直连接,几乎一直到翼根处也是如此。在辅助梁之后,翼肋开始出现沿纵向朝翼根偏斜,靠近翼根处的翼肋的长度大约为2.5m。

机翼改进还包括全新的结构设计、新材料的广泛应用以及新的制造工艺和结构。例如,A380襟翼导轨是由复合材料与铝混合材料构成的。通常情况下,襟翼滑轨是一个密闭的盒式梁结构,是飞机结构中单纯的一个铝合金结构部件,但在A380飞机设计中它是一个重要部件,因为一旦飞机上的这个部件的尺寸被改变,会对飞机其他部件的改变带来连锁反应。

空客对A380机翼前缘部位的构架和翼肋进行了创新设计,专门设计的翼肋可以充当翼根处空间较大的前缘结构的支撑部件。

空客采用了一种内蒙皮打磨机,它可以取代目前用的打磨工序,降低每块机翼板条的重量,并提高桁条与蒙皮的连接质量。为达到减重的目的,A380机翼有25%的翼肋由凯夫拉复合材料制成,在超大型飞机的机翼上用如此大比例的复合材料翼肋,在空客的飞机制造史上还是史无前例的。

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

飞机总体设计课程设计解析

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX

设计要求 一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度:M 0.78 –飞行高度:35000英尺 –航程:2800(nm) –备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于250 (km/h)

飞机总体布局 一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部

波音和空客各飞机型 完美版 图

欧洲的空中客车(Airbus)系列: 一、空客A310: 主要外形特征: 1、机身短而粗。 2、舱门为三个。 3、主起落架是两排轮子。 4、驾驶舱最边上的那个窗是一个五边形(除了A380外,空中客车的所有飞机驾驶舱最边上的这个窗口都是这个形状)。 5、机尾部分,上部轮廓线较为水平(这也是AB 6、A310与B762的重要区别之一),垂直尾翼的圆弧半径较大(较接近直线)。 二、空客A300-600,俗称AB6: 主要外形特征: 1、样子和A310差不多,但比A310长。 2、舱门为四个。 3、带有小翼(小翼尺寸比所有客机的小翼都要小很多),注意其特别的形状。 4、和A310的外形特征3、4、5相同。

三、空客A318,是A320系列机身最短的一种型号: 主要外形特征: 1、机身短而细。 2、舱门为三个。 3、主起落架为一排轮子。 4、驾驶舱最边上的窗为五边形。 5、翼尖有小翼(和310的小翼一样,320系列的都有这种形状的小翼)。 6、第一、二门之间的窗口为6+4+1形式。 四、空客A319: 主要外形特征: 1、机身短而细,但比A318稍长。 2、第一、二门之间的窗口为12+1形式。 3、与A318的外形特征2、3、 4、5相同。 也就是说,A318和A319外形基本一致,唯一的区别就是机身长度及随之而变化的窗口分布。 五、空客A330-200,简称A332:

主要外形特征: 1、机身长而粗。 2、舱门为四个。 3、主起落架为两排轮子。 4、驾驶舱最边上的窗为五边形。 5、机翼很修长,翼尖有小翼。基本上是一个梯形,330及340系列的飞机都有这种形状的小翼,这也是A330与AB6的重要区别之一。 6、机翼与机身连接处有很大一块的机翼盒,这个机翼盒在320系列及340系列均存在,这也是A330与AB6的重要区别之一。 7、机尾部分,上部轮廓线较为水平。其实空客系列的机型均有此特点,这也是与B757、B767甚至B777的重要区别之一。 8、第一、二门之间最多有12个窗口。 六、空客A330-300,简称A333: 主要外形特征: 1、第一、二门之间最多有17个窗口。 2、与A330-200的外形特征1、2、 3、 4、 5、 6、7相同。 也就是说,A332和A333的区别就只是长度和随之而变化的窗口分布。 七、空客A320:

飞行器设计与工程专业(卓越工程师)培养方案

飞行器设计与工程专业(卓越工程师)2017级本科培养方案一、专业简介 飞行器设计与工程专业依托航空宇航科学与技术学科及力学学科,将无人机、通用航空飞机、民用航空飞机、战斗机等飞行器作为重点对象,具有突出的专业特色。现具有专职教师9名,其中副教授2名,讲师7名,硕士生导师5名。近年来,完成多项省、市、国家级科研课题,完成航天科技集团、航天科工集团、中国商用飞机有限公司等重点专项课题,建立航空航天工程学部“创新飞行器设计实践基地,学生在实践基地完成创新型飞行器设计、制造和控制仿真等实践工作。 本专业注重工程教育与工程训练相结合,注重对学生创新精神和实践能力的培养,特别是在加强学生工程实践能力和综合能力培养方面取得了很好的实效,得到有关用人单位的高度评价。多年来招生和就业情况良好。 二、培养目标及服务面向 培养适应社会主义现代化建设和国家战略性航空航天产业迅猛发展需要的德、智、体、美等全面发展,具备较好的数学、力学基础知识和航空航天工程基本理论,具有较强的工程实践能力、技术创新意识、工程管理能力和综合素质的高级工程技术人员和研究人员。 毕业生应掌握空气动力、飞行器总体设计、强度分析、结构设计和飞行力学等方面的专业知识,熟悉间飞行器设计与制造相关领域的新技术,能够在航空航天企业、民航部门、科研院所、通用航空及相关领域中从事科研、设计、制造和开发等高级工程技术和管理方面的工作。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识; 3、系统地掌握本专业领域宽广的基础知识,掌握飞行器设计基础、力学基础、机械设计、自动控制原理、电工与电子技术等方面的基础理论。 4、掌握本专业领域内所需的飞行器设计的空气动力、强度分析、结构设计和

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

中国民航大学2017年硕士研究生《飞机结构与强度》考试大纲

中国民航大学2017年硕士研究生《飞机结构与强度》考试大纲(原科目名称为《飞机结构力学》代码821) 科目代码:821 适用专业:见当年招生专业目录 一、课程简介 “飞机结构与强度”课程旨在重点培养学生的综合分析问题、解决问题的能力和工程应用能力,使学生为专业课学习做好扎实宽厚的理论准备,同时也为毕业生从事民航领域飞机结构维护和深度维修等工作或继续深造提供必要的理论基础。 “飞机结构与强度”课程包括飞机结构力学和飞机结构强度两方面的教学内容。 飞机结构力学从力学的角度来讲授飞机结构的组成规律,飞机结构在载荷作用下的强度、刚度、稳定性的计算方法,并为飞机结构的受力分析和强度计算提供必要的基础理论知识。要求学生能够正确运用所学知识进行飞机结构强度、刚度、稳定性分析计算。 飞机结构强度通过学生对飞机结构在使用中承受的载荷、载荷传递路线及飞机结构在载荷作用下的强度、刚度、稳定性等力学性能的系统学习,使学生掌握有关飞机结构强度计算的基本概念、飞机结构的传力分析、飞机结构在载荷作用下、内力计算的基本原理和基本方法、以及飞机构件的破坏形式和强度校核方法。 二、课程内容 第1章绪论 1.1飞机结构与强度的任务 1.2飞机结构形式的发展 1.3飞机结构力学的研究对象 1.4飞机结构力学研究的基本原则和基本假设重点:典型飞机结构元件的功用难点:飞机结构的计算模型 第2章能量原理基础 2.1弹性力学问题及基本方程 2.2功和能的概念 2.3广义力和广义位移 2.4虚功原理 2.5余虚功原理 2.6叠加原理和位移互等定理重点:广义力和广义位移难点:余虚功原理,功和能的计算 第3章结构组成分析 3.1结构组成分析的任务 3.2结构组成分析方法 3.3桁架结构的组成 3.4刚架结构的组成 3.5薄壁结构的组成重点:常见飞机结构系统的几何组成分析 第4章静定结构内力与变形 4.1静定结构的特性 4.2静定杆系结构内力 4.3静定薄壁结构内力 4.4计算结构变形的意义 4.5单位载荷法重点:静定结构内力计算的基本原理和基本方法,静定结构变形计算的单位载荷法

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

150座客机总体设计毕业设计论文

南京航空航天大学课程作业题目150座客机总体设计负责人杨天鹏 负责人学号011110715 学院航空宇航学院 专业飞行器设计与工程 班级0111107 指导教师罗东明讲师 二〇一四年十一月

150座客机总体设计 摘要 本课程作业根据设计要求与适航条例进行了150座客机的总体设计,完成了包括全机布局设计,机身外形初步设计,确定主要参数,发动机选择等工作。实践了飞机总体设计的课程相关内容,为进一步进行飞机总体设计课程设计打下基础。 关键词:150座,客机,总体设计

目录 摘要 (ⅰ) 第一章设计要求 (1) 第二章全机布局设计 (2) 2.1 设计要求 (2) 2.2 飞机布局形式设计 (2) 2.3 飞机平尾设计 (3) 2.4 飞机机翼设计 (3) 2.5 机翼位置设计 (4) 2.6 发动机设计 (4) 2.7 起落架设计 (6) 2.8 小结 (6) 第三章机身外形初步设计 (7) 3.1 机身设计要求 (7) 3.2 中机身设计 (7) 3.3 前机身设计 (9) 3.4 后机身设计 (12) 3.5 小结 (12) 第四章飞机主要参数的确定 (13) 4.1飞机重量的估算 (13) 4.2 翼载荷与推重比设计 (15) 4.3 小结 (16) 第五章发动机设计 (18) 5.1 发动机设计要求 (18) 5.2 发动机类型的选择 (18) 5.3 发动机型号选择 (20) 组内分工 (21)

参考文献 (22) 致谢 (23)

第一章设计要求 要求设计150座民用客机,指标如下: (1)有效载荷:每人重75kg,每人行李总重20kg,机组7人,每人重85kg (2)巡航速度:Ma0.8 (3)飞行高度:35000英尺-41000英尺(10.668 km-12.4968km) (4)航程:5500km (5)备用油规则:5%任务飞行用油+ 1500英尺待机30分钟用油+ 200海里备降用油 (6)起飞场长:小于2200m (7)着陆场长:小于1700m (8)进场速度:70m/s 要求经济性高,安全性高,符合客户需求。

飞机结构与强度课程设计报告

飞机结构与强度课程设计报告

《飞机结构与强度》 课程设计报告 简单刚架结构受力分析 专业: 学号: 学生姓名: 所属学院:航空工程学院 指导教师: 二〇一四年12月 一、目的与意义

本课题旨在探究限元法在分析飞机结构力学有关问题时的作用,使我们对有限元法有个基本的了解,并锻炼我们的自主分析能力和对有限元分析软件的实际操作能力。 二、有限元分析原理与软件介绍 有限元分析原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就能够用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不但计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十

年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛而且实用高效的数值分析方法。ANSYS简介 本文采用ANSYS有限元软件对荷载作用下的结构进行分析。ANSYS是一个具有高度可靠性的结构有限元分析软件,有着四十多年的开发和改进历史,作为世界CAE工业标准及最流行的大型通用结构有限元分析软件,ANSYS的分析功能覆盖了绝大多数工程应用领域,并为用户提供了方便的模块化功能选项。 ANSYS的主要功能模块有:结构分析模块、热分析分析模块、磁场分析模块、流体分析模块、声学分析模块等。它的前后处理系统非常强大,能很好地模拟和分析各种工况条件下的物体受力状态。 ANSYS分析的一般流程能够分为以下几个步骤: (1)进入前处理,设定材料属性; (2)建立构建模型,主要包括: ①建立几何模型; ②分配属性; ③有限元模型网格化分; ④施加约束条件及荷载。 (3)进入后处理

空客波音民机简介及主要性能数据

目录 空客系列 ..................................................................................................................................... - 2 - 空客系列飞机简明表.......................................................................................................... - 2 - A-300 ................................................................................................................................... - 3 - A-310 ................................................................................................................................... - 5 - A-320 ................................................................................................................................... - 8 - A-330 ................................................................................................................................. - 10 - A-340 ................................................................................................................................. - 12 - A-350 ................................................................................................................................. - 14 - A-380 ................................................................................................................................. - 16 - 波音系列 ................................................................................................................................... - 18 - 波音系列飞机简明表........................................................................................................ - 18 - B-707.................................................................................................................................. - 19 - B-717.................................................................................................................................. - 21 - B-727.................................................................................................................................. - 23 - B-737.................................................................................................................................. - 24 - B-747.................................................................................................................................. - 27 - B-757.................................................................................................................................. - 29 - B-767.................................................................................................................................. - 31 - B-777.................................................................................................................................. - 33 - B-787.................................................................................................................................. - 35 -

飞机总体设计大作业

— 飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速: 最大飞行高度:10000m " 航程: 2300km 待机时间:45分钟 爬升率: 0~10000m<25分钟 起飞距离: 1600m \ 接地速度 <220km/h 一、相近飞机资料收集: 二、飞机构型设计 ^

正常式布局:技术成熟,所积累资料丰富 T 型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 【 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 < 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a==296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) ¥ –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ;

专业课程设计-大客飞机后缘襟翼运动机构设计

飞机总体设计 专业课程设计 计算说明书 设计题目大客飞机后缘襟翼运动机构设计分析航空科学与工程学院学院班设计者 指导教师 2012年9月20日

目录 第一章前言 (1) 第二章设计任务书及背景分析 (2) 2.1 课题题目与设计要求 (2) 2.1.1 课题题目 (2) 2.1.2 设计要求 (2) 2.1.3 原始技术资料 (2) 2.2 课题背景分析 (2) 第三章设计方案机构分析 (3) 3.1常见后缘襟翼运动机构类型及特点分析 (3) 3.1.1 常见后缘襟翼运动机构类型 (3) 3.1.2 常见后缘襟翼运动机构特点分析 (3) 3.2设计方案机构特点及尺寸分析 (4) 3.2.1 设计方案特点分析 (4) 3.2.2 设计方案尺寸设计及机构简图 (4) 第四章设计方案载荷及传力分析 (5) 4.1大客飞机后缘襟翼运动机构的载荷分析 (5) 4.1.1 大客飞机后缘襟翼及其运动机构基本参数设计 (5) 4.1.2 大客飞机后缘襟翼气动载荷分析 (5) 4.2大客飞机后缘襟翼运动机构的传力分析 (6) 第五章轴的设计计算 (8) 5.1驱动轴(O轴)设计 (8) 5.1.1驱动轴的材料和热处理的选择 (8) 5.1.2驱动驱动轴的设计计算与强度校核 (8) 5.1.3驱动轴的受力图及弯矩图 (9) 5.2连杆传动轴(A、B、C轴)设计 (9) 5.2.1连杆传动轴的材料和热处理的选择 (9) 5.2.2连杆传动轴的设计计算与强度校核 (9) 5.2.3连杆传动轴的受力图及弯矩图 (9) 第六章螺纹连接件的设计与校核 (11) 6.1 机翼后梁与O轴铰支座的连接设计及校核 (11)

飞机总体设计-课程设计讲课稿

飞机总体设计-课程设 计

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX 设计要求

一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度: M 0.78 –飞行高度:35000英尺 –航程: 2800(nm) –备用油规则:5%任务飞行用油 + 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于 250 (km/h) 飞机总体布局

一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式 ( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部 数目 单垂尾:多数飞机采用单垂尾,高速飞机加装背鳍和腹鳍 双垂尾:1.压力中心的高度显著降低,可以减小由侧力所造成的机身扭矩。

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2. 3.1 零升阻力的估算.......................................12

2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章J-22飞机部件设计...........................................20 3.1 机翼设计..................................................21 3.1.1机翼安装形式的选择.....................................22 3.1.2机翼具体参数的计算.....................................24 3.2 机身设计..................................................28

A380飞机设计特点分析

A380飞机设计特点分析 情报组 科技信息档案室 2005.9.21

目录 1. 引言 (1) 2. 项目进度 (1) 3. 设计特点 (2) 3.1 操纵面 (2) 3.2 结构 (2) 3.3 起落架 (2) 3.4 动力装置 (3) 3.5 座舱 (3) 3.6 系统 (3) 3.7 电子设备 (4) 3.8 几何尺寸 (4) 4. 先进的气动技术 (5) 4.1 选择最佳机身截面 (5) 4.2 机体CFD优化设计 (5) 4.3 精心的机翼设计 (6) 5. 新材料的应用 (7) 5.1 先进新型金属材料仍占主导地位 (8) 5.2 复合材料用于大型结构件的技术突破 (8) 5.3 充分利用GLARE材料的性能优势 (10) 6 先进制造技术对A380的贡献 (10) 6.1 先进复合材料制造技术 (10) 6.2 激光焊接 (10) 7 减轻结构重量的种种努力 (11) 7.1 中央翼盒 (11) 7.2 巨型机腹整流罩 (11) 7.3 客舱地板结构 (11) 7.4 独特的机翼结构 (11)

A380飞机设计特点分析 1. 引言 空中客车A380是迄今世界上正在生产之中的尺寸最大、客/货容量最高的喷气客机。到2006年它投入使用时,将会对21世纪大型民用喷气客机市场产生一个不小的冲击波,进而改变几十年来在大型客机市场一直被波音747垄断的局面。 A380飞机由法、德、英和西班牙等国飞机制造商共同研制。其中法国制造驾驶舱、中机身、发动机挂架并负责总装;德国提供前中机身、后机身、垂直安定面和方向舵;英国制造机翼主壁板、前轮和刹车以及襟翼导轨梁;西班牙负责生产机翼/机身整流罩、机腹整流罩和固定水平尾翼、水平尾翼前后缘和翼肋以及机翼翼肋。该机采用了大量的新技术,主要包括:计算机流体力学优化设计、液压增压技术、双飞行控制系统以及双轴供气空调系统等等。该机机身、尾翼和机头采用先进的Glare(玻璃纤维增强复合材料)复合材料层板,不仅有利于改进疲劳性能,还可大大减少蜂窝结构用量。据称A380的运营成本比波音747飞机低20%。 2. 项目进度 1994.6 着手工程研究,取名A3XX 1996.3 设立A3XX管理局(大飞机分公司) 1997 在巴黎展示机身剖面全尺寸模型 1999.12 空客工业管理局批准项目出台 2000.12 确认A380名称并接受必须的50架订货 2004.4 对原型机的主要分装配件(前、中和后机身,尾锥,尾翼和机翼)进行总装 2005年初预定首飞 2006.3 取得适航合格证并交付使用

相关文档
最新文档