物理学分支发展简史

物理学分支发展简史
物理学分支发展简史

物理学分支发展简史

一、物理学分支发展简史(力学──磁流体力学)

磁流体力学是结合经典流体力学和电动力学的方法,研究导电流体和磁场相互作用的学科,它包括磁流体静力学和磁流体动力学两个分支。

磁流体静力学研究导电流体在磁场力作用于静平衡的问题;磁流体动力学研究导电流体与磁场相互作用的动力学或运动规律。磁流体力学通常指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。

导电流体有等离子体和液态金属等。等离子体是电中性电离气体,含有足够多的自由带电粒子,所以它的动力学行为受电磁力支配。宇宙中的物质几乎全都是等离子体,但对地球来说,除大气上层的电离层和辐射带是等离子体外,地球表面附近(除闪电和极光外)一般不存在自然等离子体,但可通过气体放电、燃烧、电磁激波管、相对论电子束和激光等方法产生人工等离子体。

能应用磁流体力学处理的等离子体温度范围颇宽,从磁流体发电的几千度到受控热核反应的几亿度量级(还没有包括固体等离子体)。因此,磁流体力学同物理学的许多分支以及核能、化学、冶金、航天等技术科学都有联系。

磁流体力学发展简史

1832年法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。

1940~1948年阿尔文提出带电单粒子在磁场中运动轨道的“引导中心”理论、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。

磁流体力学的内容

研究磁流体问题,首先是建立磁流体力学基本方程组,其次是用这个方程组来解决各种问题。磁流体力学主要用来研究解决的有:

理想导电流体运动对磁场影响的问题;或流体静止时,流体电阻对磁场影响的问题,其中包括磁冻结和磁扩散。通过磁场力来考察磁场对静止导电流体或理想导电流体的约束机制。这个问题是磁流体静力学的研究范畴,对受控热核反应十分重要。磁流体静力学在天体物理中,例如在研究太阳黑子的平衡、日珥的支撑、星际间无作用力场等问题的解决中也很重要。

研究磁场力对导电流体定常运动的影响。方程的非线性使磁流体动力学流动的数学分析复杂化,通常要用近似方法或数值法求解。它们虽然是简化情况的解,然而清晰地阐明了基本的流动规律,利用这些规律至少可以定性地讨论更复杂的磁流体动力学流动。

研究磁流体动力学波,包括小扰动波、有限振幅波和激波。了解等离子体中波的传播规律,可以探测

等离子体的某些性质。此外,激波理论在电磁激波管、天体物理和地球物理上都有重要的应用。

等离子体的密度范围很宽。对于极其稀薄的等离子体,粒子间的碰撞和集体效应可以忽略,可采用单粒子轨道理论研究等离子体在磁场中的运动。对于稠密等离子体,粒子间的碰撞起主要作用,研究这种等离子体在磁场中的运动有两种方法。一是统计力学方法,即所谓等离子体动力论,它从微观出发,用统计方法研究等离子体在磁场中的宏观运动;二是连续介质力学方法即磁流体力学,把等离子体当作连续介质来研究它在磁场中的运动。

磁流体力学是在非导电流体力学的基础上,研究导电流体中流场和磁场的相互作用。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基本方程组。

磁流体力学基本方程组具有非线性且包含方程个数又多,所以求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,即可得到有实用价值的解。

磁流体力学相似准数有雷诺数、磁雷诺数、哈特曼数、马赫数、磁马赫数、磁力数、相互作用数等。求解简化后的方程组不外是分析法和数值法。利用计算机技术和计算流体力学方法可以求解较复杂的问题。

磁流体力学的理论很难像普通流体力学理论那样得到充分的验证。由于在常温下可供选择的介质很少,同时需要很强的磁场才能观察到磁流体力学现象,故不易进行模拟。模拟天体大尺度的磁流体力学问题更不易在实验室中实现。所以磁流体力学的理论有的可以得到定量验证,有的只能得到定性或间接的验证。当前有关磁流体力学的实验是在各种等离子体发生器和受控热核反应装置中进行的。

磁流体力学的应用

磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。

宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。

磁流体力学在受控核反应方面的应用,有可能使人类从海水中的氘获取巨大能源。对氘、氚混合气来说,要求温度达到5000万到1亿度,并对粒子密度和约束时间有较高的要求。而使用环形磁约束装置在受控热核反应的研究中显出较好的适用性和优越性。

磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15~20%,甚至更高,既可节省能源,又能减轻污染。

飞行器再入大气层时,激波、空气对飞行器的摩擦,使飞行器的表面空气受热而电离成为等未能实现。此外,电磁流量计、电磁制动、电磁轴承理论、电磁激波管等也是磁流体力学在工业应用上所取得的成就。

二、理学分支发展简史(力学──天体力学)

天体力学

天体力学是天文学和力学之间的交叉学科,是天文学中较早形成的一个分支学科,它主要应用力学规律来研究天体的运动和形状。

天体力学以往所涉及的天体主要是太阳系内的天体,20世纪50年代以后也开始研究人造天体和一些成员不多(几个到几百个)的恒星系统。天体的力学运动是指天体质量中心在空间轨道的移动和绕质量中心的转动(自转)。对日月和行星则是要确定它们的轨道,编制星历表,计算质量并根据它们的自传确定天体的形状等等。

天体力学以数学为主要研究手段,至于天体的形状,主要是根据流体或弹性体在内部引力和自转离心力作用下的平衡形状及其变化规律进行研究。天体内部和天体相互之间的万有引力是决定天体运动和形状的主要因素,天体力学目前仍以万有引力定律为基础。

虽然已发现万有引力定律与某些观测事实有矛盾(如水星近日点进动问题),而用爱因斯坦的广义相对论却能对这些事实作出更好的解释,但对天体力学的绝大多数课题来说,相对论效应并不明显。因此,在天体力学中只是对于某些特殊问题才需要应用广义相对论和其他引力理论。

天体力学的发展历史

远在公元前一、二千年,中国和其他文明古国就开始用太阳、月亮和大行星等天体的视运动来确定年、月和季节,为农业服务。随着观测精度的不断提高,观测资料的不断积累,人们开始研究这些天体的真运动,从而预报它们未来的位置和天象,更好地为农业、航海事业等服务。

历史上出现过各种太阳、月球和大行星运动的假说,但直到1543年哥白尼提出日心体系后,才有反映太阳系的真运动的模型。

开普勒根据第谷多年的行星观测资料,于1609~1619年间,提出了著名的行星运动三大定律,深刻地描述了行星运动,至今仍有重要作用。开普勒还提出著名的开普勒方程,对行星轨道要素下了定义。由此人们就可以预报行星(以及月球)更准确的位置,从而形成了理论天文学,这是天体力学的前身。到这时,人们对天体(指太阳、月球和大行星)的真运动还仅处于描述阶段,还未能深究行星运动的力学原因。

早在中世纪末期,达·芬奇就提出了不少力学概念,人们开始认识到力的作用。伽利略在力学方面作出了巨大的贡献,使动力学初具雏形,为牛顿三定律的发现奠定了基础。

牛顿根据前人在力学、数学和天文学方面的成就,以及他自己二十多年的反复研究,在1687年出版的《自然哲学的数学原理》中提出了万有引力定律。他在书中还提出了著名的牛顿三大运动定律,把人们带进了动力学范畴。对天体的运动和形状的研究从此进入新的历史阶段,天体力学正式诞生。虽然牛顿未提出这个名称,仍用理论天文学表示这个领域,但牛顿实际上是天体力学的创始人。

天体力学诞生以来的近三百年历史中,按研究对象和基本研究方法的发展过程,大致可划分为三个时期:

1、奠基时期:自天体力学创立到十九世纪后期,是天体力学的奠基过程。天体力学在这个过程中逐

步形成了自己的学科体系,称为经典天体力学。它的研究对象主要是大行星和月球,研究方法主要是经典分析方法,也就是摄动理论。牛顿和莱布尼茨既是天体力学的奠基者,同时也是近代数学和力学的奠基者,他们共同创立的微积分学,成为天体力学的数学基础。

十八世纪,由于航海事业的发展,需要更精确的月球和亮行星的位置表,于是数学家们致力于天体运动的研究,从而创立了分析力学,这就是天体力学的力学基础。这方面的主要奠基者有欧拉、达朗贝尔和拉格朗日等。其中,欧拉是第一个较完整的月球运动理论的创立者,拉格朗日是大行星运动理论的创始人。后来由拉普拉斯集其大成,他的五卷十六册巨著《天体力学》成为经典天体力学的代表作。他在1799年出版的第一卷中,首先提出了天体力学的学科名称,并描述了这个学科的研究领域。

在这部著作中,拉普拉斯对大行星和月球的运动都提出了较完整的理论,而且对周期彗星和木星的卫星也提出了相应的运动理论。同时,他还对天体形状的理论基础——流体自转时的平衡形状理论作了详细论述。

后来,勒让德、泊松、雅可比和汉密尔顿等人又进一步发展了有关的理论。1846年,根据勒威耶和亚当斯的计算,发现了海王星,这是经典天体力学的伟大成果,也是自然科学理论预见性的重要验证。此后,大行星和月球运动理论益臻完善,成为编算天文年历中各天体历表的根据。

2、发展时期

自十九世纪后期到二十世纪五十年代,是天体力学的发展时期。在研究对象方面,增加了太阳系内大量的小天体(小行星、彗星和卫星等);在研究方法方面,除了继续改进分析方法外,增加了定性方法和数值方法,但它们只作为分析方法的补充。这段时期可以称为近代天体力学时期。彭加莱在1892~1899年出版的三卷本《天体力学的新方法》是这个时期的代表作。

虽然早在1801年就发现了第一号小行星(谷神星),填补了火星和木星轨道之间的空隙。但小行星的大量发现,是在十九世纪后半叶照相方法被广泛应用到天文观测以后的事情。与此同时,彗星和卫星也被大量发现。这些小天体的轨道偏心率和倾角都较大,用行星或月球的运动理论不能得到较好结果。天体力学家们探索了一些不同于经典天体力学的方法,其中德洛内、希尔和汉森等人的分析方法,对以后的发展影响较大。

定性方法是由彭加莱和李亚普诺夫创立的,他们同时还建立了微分方程定性理论。但到二十世纪五十年代为止,这方面进展不快。

数值方法最早可追溯到高斯的工作方法。十九世纪末形成的科威耳方法和亚当斯方法,至今仍为天体力学的基本数值方法,但在电子计算机出现以前,应用不广。

3、新时期二十世纪五十年代以后,由于人造天体的出现和电子计算机的广泛应用,天体力学进入一个新时期。研究对象又增加了各种类型的人造天体,以及成员不多的恒星系统。

在研究方法中,数值方法有迅速的发展,不仅用于解决实际问题,而且还同定性方法和分析方法结合起来,进行各种理论问题的研究。定性方法和分析方法也有相应发展,以适应观测精度日益提高的要求。

天体力学的研究内容

当前天体力学可分为六个次级学科:

摄动理论

这是经典天体力学的主要内容,它是用分析方法研究各类天体的受摄运动,求出它们的坐标或轨道要素的近似摄动值。

近年,由于无线电、激光等新观测技术的应用,观测精度日益提高,观测资料数量陡增。因此,原有各类天体的运动理论急需更新。其课题有两类:一类是具体天体的摄动理论,如月球的运动理论、大行星的运动理论等;另一类是共同性的问题,即各类天体的摄动理论都要解决的关键性问题或共同性的研究方法,如摄动函数的展开问题、中间轨道和变换理论等。

数值方法

这是研究天体力学中运动方程的数值解法。主要课题是研究和改进现有的各种计算方法,研究误差的积累和传播,方法的收敛性、稳定性和计算的程序系统等。近年来,电子计算技术的迅速发展为数值方法开辟了广阔的前景。六十年代末期出现的机器推导公式,是数值方法和分析方法的结合,现已被广泛使用。

以上两个次级学科都属于定量方法,由于存在展开式收敛性以及误差累计的问题,现有各种方法还只能用来研究天体在短时间内的运动状况。

定性理论也叫作定性方法,它并不具体求出天体的轨道,而是探讨这些轨道应有的性质,这对那些用定量方法还不能解决的天体运动和形状问题尤为重要。其中课题大致可分为三类:一类是研究天体的特殊轨道的存在性和稳定性,如周期解理论、卡姆理论等;一类是研究运动方程奇点附近的运动特性,如碰撞问题、俘获理论等;另一类是研究运动的全局图像,如运动区域、太阳系稳定性问题等。近年来,在定性理论中应用拓扑学较多,有些文献中把它叫作拓扑方法。

天文动力学又叫作星际航行动力学,这是天体力学和星际航行学之间的边缘学科,研究星际航行中的动力学问题。在天体力学中的课题主要是人造地球卫星,月球火箭以及各种行星际探测器的运动理论等。

历史天文学是利用摄动理论和数值方法建立各种天体历表,研究天文常数系统以及计算各种天象。天体形状和自转理论是牛顿开创的次级学科,主要研究各种物态的天体在自转时的平衡形状、稳定性以及自转轴的变化规律。近年来,利用空间探测技术得到了地球、月球和几个大行星的形状以及引力场方面大量数据,为进一步建立这些天体的形状和自转理论提供了丰富资料。

天体力学的发展同数学、力学、地学、星际航行学,以及天文学的其他分支学科都有相互联系。如天体力学定性理论与拓扑学、微分方程定性理论紧密联系;多体问题也是一般力学问题;天文动力学也是星际航行学的分支;引力理论、小恒星系的运动等是与天体物理学的共同问题;动力演化是与天体演化学的共同问题,以及地球自转理论是与天体测量学的共同问题等等。

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

原子物理学简史和大事年表

原子物理学简史 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或及其他物质的碰撞过程和相互作用。 经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。 1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。 1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。 1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,及整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的

核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。 绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。 但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。 1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。 玻尔的假设能够说明氢原子光谱等某些原子现象,初次成功地建立了一种氢原子结构理论。建立玻尔理论是原子结构和原子

学物理学史的体会

学物理学史的体会 院系:物理与信息技术学院 班级:2011级物理学班 学号:201105110134 姓名:牛亮亮 摘要:物理学史,顾名思义,万物之理。他是研究我们周围世界的一切现象,并努力的对其作出合理的科学解释,他承载的是人类对未知的好奇,用自己的行动去探索,去实践。从而揭示出世界的本质,使人们可以尽最大限度的了解我们生活的环境,了解我们的物理。 关键词:物理学史德育的火花教学的催化剂 科学史现在已是世界公认的一门独立学科。其中物理学史是科学史的重要组成之一,它是研究物理学辩证发展过程规律的一门学科。作为人类对自然界各种物理现象的认识史,它将揭示物理学作为一个整体的发展进程,特别是揭示物理学思想的发展和沿革的历史,研究物理学发生和发展的基本规律。 在《科学史与新人文主义》一书中萨顿曾说:“在旧人文主义者同科学家之间只有一座桥梁,那就是科学史,建造这座桥梁是我们这个时代的主要文化需要。”萨顿去世已近半个世纪了,但他70年前的话同样是适用于今天的时代的,对我们仍有启发:物理学史的教育价值不容忽视。记得有人曾说过:物理学是一门科学,是一门智慧,是一门文化。物理学是以物质基本结构、相互作用和基本运动规律为研究对象的自然科学,是人们认识物质世界的本质,揭示物质世界的规律,具有基础性和应用性的重要学科。物理学的知识和方法促进了许多相关学科和生产技术的发展,有力地推动了人类社会文明的进步。 关于物理学史,歌德曾说过:“一门科学的历史,就是这门科学本身。”而美国科学史家萨顿将科学史定义为“如果把科学定义为系统的实证知识或看作是在不同时期、不同地点所系统化了的这样一种知识,那么科学史就是这种知识发展的描述和说明”,从这一意义上讲物理学史就是:人类在长期的社会实践活动中对自然的物理知识系统的历史的描述,是物理学家征服世界、改造自然、创造发明的奋斗史,记述了物理知识的累积过程,以及物理科学的发展演变规律的发展史。

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

物理学发展史上的里程碑式的人

物理学发展史上的里程碑式的人

物理无处不在。它在遥远的宇宙边缘,它在星系中央的超大质量黑洞,它在构成万物的基本粒子,它甚至存在于看起来是空的空间内。物理学家的目的就是要去研究在这个物质世界中所发生的一切:掉落的苹果,行星和恒星的运动,以及微观世界中亚原子粒子的行为等等。 我们对我们所身处的这个宇宙已经有了越来越多的了解。而这一切都离不开下面这些物理学家的深刻洞察力,他们的理论、想法及发现彻底地改变了我们对宇宙的认知。 △伽利略(Galileo Galilei, 1564 - 1642)在物理学上最著名的贡献之一是他对物体运动的研究。在1630年代,他证明了所有在做自由落体运动的物体都有相同的加速度。换句话说,在没有空气阻力的情况下,羽毛和铅球将同时落地。霍金说:“自然科学的诞生要归功于伽利略。 △基于伽利略在物体运动的研究,牛顿(Isaac Newton, 1643 - 1727)在1687年发表了《自然哲学的数学原理》,阐述了三大运动定律和万有引力。他通过论证开普勒定律与他的引力理论间的一致性,证明了地球上的物体与天体的运动都遵循着相同的物理定律。

△对电和磁的研究是法拉第(Michael Faraday, 1791 - 1867)最著名的工作。在1831年,他发现了电磁感应现象;1839年,他提出了电学和磁学之间存在着基本关系。 △1864年,麦克斯韦(James Clerk Maxwell, 1831 - 1879)发表了他的电磁学理论,他提出了将电、磁和光统归为电磁场中的现象。麦克斯韦指出电场和磁场以波的形式在空间中以光速传播,同时从理论上预测了电磁波的存在。

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

经典物理学发展史

经典物理学发展史 古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问:你把上帝放在什么地位?无神论者拉普拉斯则直率地回答:我不需要这个假设。 拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世

生物物理学发展史与分支

生物物理学的发展史17世纪A.考伯提到发光生物荧火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。 H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。 1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起的。 19世纪显微镜的应用导致细胞学说的创立。以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。电子显微镜的发展则提供了生物超微结构的更多信息。 早在1920年 X射线衍射技术就已列入蛋白质结构研究。W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学的概念和方法进行微观和宏观的系统分析。 生物物理学的分支生物物理学研究的内容十分广泛,涉及的问题则几乎包括生物学的所有基本问题。由于生物物理学是一门正在成长着的边缘学科,其具体内容和发展方向也在不断变化和完善,它和一些关系特别密切的学科(生化、生理等)的界限也不是很明确。现阶段,生物物理的研究领域主要有以下几个方面: 1、分子生物物理。分子生物物理是本学科中最基本、最重要的一个分支。它运用物理学的基本理论与技术研究生物大分子、小分子及分子聚集体的结构、动力学,相互作用和其生物学性质在功能过程中的变化,目的在于从分子水平阐述生命的基本过程,进而通过修饰、重建和改造生物分子,为实践服务。 生物大分子及其复合物的空间结构与功能的关系是分子生物物理的核心问题。自从50

(完整版)物理学发展简史

欢迎共阅 一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以 微观的角度研究物理,量子力学与相对论为近代物理的两大基石。 理

1 2 3 4 1 )和化 (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳 上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集 成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并 放射同频率之光子,藉以将光加以增强。

(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用: (1)工业上:测量、切割、精密加工…… (2)医学上:切割手术(肿瘤、近视)…… (3)军事上:定位、导引…… (4)生活、娱乐上:激光视盘、光纤通讯…… 3、光纤: (一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包 层)两层。 (二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而 传递至另一端。 (三)特性: (核 2。 (1)向量:兼具大小及方向性者,如:速度、力…… (2)纯量:仅具大小无方向性者,如:体积、时间、功…… (二)依定义方式而分: (1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强 度(光度)、物质的量(物量)七种。 (2)导出量:由基本量所定义出之物理量,如:体积、面积、速度等。 (3)物理学(力学)上最常用的三个基本量:时间、长度、质量。 二、测量: 1、定义:将待测物理量与一标准量做比较的过程。

物理学分支发展简史(电学)

物理学分支发展简史(电学) “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。 电学的发展简史 有关电的记载可追溯到公元前6世纪。早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。 在中国,西汉末年已有“碡瑁(玳瑁)吸偌(细小物体之意)”的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载“今人梳头,解著衣时,有随梳解结有光者,亦有咤声”。 1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为“电的”。吉伯在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。 大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。 18世纪电的研究迅速发展起来。1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。格雷的实验引起法国迪费的注意。1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。他把玻璃上产生的电叫做“玻璃的”,琥珀上产生的电与树脂产生的相同,叫做“树脂的”。他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。 1745年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。 差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。1747年他根据实验提出:在正常条件下电是以一定的量存在于所有物质中的一种元素;电跟流体一样,摩擦的作用可以使它从一物体转移到另一物体,但不能创造;任何孤立物体的电总量是不变的,这就是通常所说的电荷守恒定律。他把摩擦时物体获得的电的多余部分叫做带正电,物体失去电而不足的部分叫做带负电。 严格地说,这种关于电的一元流体理论在今天看来并不正确,但他所使用的正电和负电的术语至今仍被采用,他还观察到导体的尖端更易于放电等。早在1749年,他就注意到雷闪与放电有许多相同之处,1752年他通过在雷雨天气将风筝放入云层,来进行雷击实验,证明了雷闪就是放电现象。在这个实验中最幸运

物理学发展简史

物理学发展简史 Document number:BGCG-0857-BTDO-0089-2022

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的 角度研究物理,可分为力学、热学、光学、电磁学等主 要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理 学称为近代物理学,以微观的角度研究物理,量子力学 与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半 导体(如:硅、锗等)和化合物半导体(如:砷化镓等)两 种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功 能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等 方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电 感、电容等电子组件之技术,而此电路即称为集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生 产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二 次工业革命。 2、雷射:

物理学发展史

物理学发展史 物理学是伴随着人类的生存、生产活动发展起来的一门学科,它研究物质及其行为和运动的科学,也早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。 16世纪以前,封建制度和欧洲宗教神学的统治,使得人们对物理学知识的积累只是零碎的。物理学未能形成一门独立的学科。进入16世纪,随着思想的解放和生产力水平的提高,物理学的发展有了新的手段:实验。而数学的迅速进步,使物理学发展成为一门独立的学科。以下,我将具体介绍力学,热学,电磁学,光学,量子力学的发展。 1、力学发展史 力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理大发现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力学运动的绝佳领域。1609和1619年,开普勒总结了老师第谷毕生的观测数据,先后发现了开普勒运动三大定律。 在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。 1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲

相关文档
最新文档