课程设计---基本互补对称功率放大器OCL的设计.

课程设计---基本互补对称功率放大器OCL的设计.
课程设计---基本互补对称功率放大器OCL的设计.

\

课程设计任务书

题目:基本互补对称功率放大器OCL的设计

初始条件:

具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备低高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。

要求完成的主要任务:

1.采用6个以上的晶体管完成一个互补对称功率放大器OCL的设计;

2.设计的功率放大器输出功率达到10W以上;

3. 利用MULTISIM和PROTEL软件绘制该电路的原理图和PCB印制电路板图;

,

4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。

时间安排:

1.2011年6月10日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。

2.2011年6月10日至2011年6月23日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。

3. 2011年6月24日提交课程设计报告,进行课程设计验收和答辩。

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

摘要........................................................ 错误!未定义书签。

A BSTRACT..................................................... 错误!未定义书签。1功率放大器的特点及OCL各模块工作原理...................... 错误!未定义书签。

功率放大器的特点......................................... 错误!未定义书签。功率放大器的分类:........................................ 错误!未定义书签。功率放大器的个组成模块及原理.............................. 错误!未定义书签。

中级驱动的基本放大电路工作原理 ......................... 错误!未定义书签。

输入级差分放大器模块的工作原理 ......................... 错误!未定义书签。

输出级功率放大器模块的工作原理 ......................... 错误!未定义书签。2基本互补对称功率放大器的设计.............................. 错误!未定义书签。3电路的仿真及实物调试...................................... 错误!未定义书签。

M ULTISIM软件仿真电路...................................... 错误!未定义书签。实物的调试................................................ 错误!未定义书签。4通过P ROTEL制作PCB板...................................... 错误!未定义书签。5元件清单.................................................. 错误!未定义书签。6心得体会.................................................. 错误!未定义书签。参考文献.................................................... 错误!未定义书签。

摘要

功率放大器广泛应用于电子线路系统中,在很多情况下设备的额定输出功率比较小,这时就要在信号输出端和信号接收设备之间加上功率放大器来补充所需的功率,在电路中的核心部件是晶体管,其原理是利用三极管的放大作用,通过电流控制作用将直流电源的能量转换为输出信号的电流能量。由多级电路,经过不断的电流及电压放大,就完成了功率放大。

本课程设计采用基本互补对称型OCL电路,即省去输出端的大电容,优点是可以使系统的低频响应更加平滑。另外本课设采用protel和Multisim软件来画电路原理图和制作PCB板,进行分析和调试。掌握设计和调试电路的一些方法和技巧。

关键字:输出频率,晶体管,互补对称

Abstract

Power amplifiers are widely used in electronic circuit systems. In many cases, the rated output power of equipment is relatively small. Then we add the power amplifier between output the signal and the signal receiving device to supplement the power needed . The key components in the circuit is the transistor, the principle is the use of transistor amplification. The energy of the DC power was transformed into the current energy of the output signal by Current control action. By the multi-level circuit, through continuous current and voltage amplification, The power amplification of the circuit is completed.

This course is designed with the basic complementary symmetrical circuit OCL, which eliminates the need for large output capacitor. The advantage of it can make the low-frequency system more smooth. Another lesson design using protel and Multisim software to draw schematic and PCB board production,We should Control circuit design and debug some of the methods and techniques

Keywords: output frequency, transistor, complementary symmetry

1功率放大器的特点及OCL各模块工作原理

功率放大器的特点

晶体管是功率放大器的核心元件,其原理是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流能量。若将小信号注入晶体管的基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流是原先的β倍的大信号,这现象即三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。

在实际应用中放大电路并不是孤立的,在电路的输出端要接入放大对象,即待放大的的信号,同时放大电路必将经过放大或处理的信号送到负载,这就要求输出级除电压放大外,还要提供一定的功率。事实上,各种放大电路的本质都是对能量的转换和控制,无论哪种组态的放大电路,无论有无电压或电路流放大作用,均有功率放大作用。功率放大电路只不过是强调电路的侧重点不一样。区分并不是很严格。

但要注意的是功率放大器的负载都是低阻值的负载,在各种电压放大器组态中,共射极放大电路和共基极放大电路的负载能力差,无法驱动低阻值的负载,负载能力最强的电压放大电路是共集极放大电路,所以在各种功率放大器电路中的核心是共集电极放大电路。

在实际应用中,功率放大器有以下几个特点要重视:

(1)电路的输出功率是交变电流和交变电压的乘积,为得到需要的较大输出功率,驱动低阻值的负载,要求输出的电压幅值足够大,电流幅值足够大,所以电路中的晶体管处于大信号工作状态。

(2)功放电路中的晶体管处于大信号工作状态,要承受大的电压、电流,必然有相当大的管耗,当超过晶体管的额定管耗时就易烧毁。电路设计使用中首先要考虑怎样充分地发挥晶体管功能而又不损坏晶体管。由于电路中功放管工作状态常接近极限值,所以在功放电流调整和使用时要小心,不宜超限使用,同时注意电路的散热,另外尽量选择额定管耗大的晶体管。

(3)从能量转换的观点来看,功率放大电路提供给负载的交流功率是在输入交流信号的控制下将直流电源提供的能量转换成交流能量而来的。任何电路都只能将直流电能的一部分转换成交流能量输出,其余的部分主要是以热量的形式损耗在电路内部的晶体管和电阻上,并且主要是晶体管的损耗。对于同样功率的直流电能,转换成的交流输出能量越多,功率放大电路的效率就越高。因为功率大,所以效率的问题就变得十分重要,否则,就会带来能源的浪费。

(4)功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。功放管的工作点选择不当,输出会有严重失真。同时由于晶体管的非线性,功率放大电路又工作在大信号工作状态,必然导致工作过程中会产生较大的非线性失真。输出功率越大,电压和电流的幅度就越大,信号的非线性失真就越严重。因而如何减小非线性失真是功率放大电路的一个重要问题。

功率放大器的分类:

1.以晶体管的静态工作点位置分类,即常见的功率放大器按晶体管静态工作点Q在交流负载线上的位置不同,可分为甲类、乙类和甲乙类3种。

(1)甲类功率放大器

工作在甲类工作状态的晶体管,静态工作点Q选在交流负载线的中点附近。在输入信号的整个周期内,晶体管都处于放大区内,输出的是没有削波失真的完整信号,所示它允许输入信号的动态范围较大,但是甲类功放在没有信号输入时也要消耗电源功率,这部分电源功率全部消耗在导通的晶体管和偏置电阻上,此时电路转换效率为零,当有用信号输入时,电源的功率也只有部分转换为有用信号,只有当信号越大,送给的负载的功率才越高,转换效率才增加。所以其静态电流大、损耗大、效率低。

(2)乙类功率放大器

工作在乙类工作状态的晶体管,静态工作点Q选在晶体管放大区和截止区的交界处,I=0的交点处。在输入信号的整个周期内,晶体管半个周期工作在放大即交流负载线和

B

区,半个周期工作在截止区,放大器只有半波输出。当不输入信号或输入信号在晶体管不导通的半个周期内,晶体管没有电流通过,此时晶体管的功率损耗为零,故与甲类功放相比

则可以达到最小失真时的信号。

(3)甲乙类功率放大器

工作在甲乙类工作状态的晶体管,静态工作点Q选在甲类和乙类之间。在输入信号的一个周期内,晶体管有时工作在放大区,有时工作在截止区,其输出为单边失真的信号。甲乙类工作状态的电流较小,效率也比较高,电路只要有信号输入,晶体管就开始工作,因静态偏置电流很小,在输出功率,功耗和转换效率方面与乙类十分接近,但比乙类的低。分析方法与乙类相同。

2.以功率放大器输出端特点分类:

(1) 有输出变压器功放电路

(2) 无输出变压器功放电路(又称OTL功放电路)

(3) 无输出电容器功放电路(又称OCL功放电路)

(4) 桥接无输出变压器功放电路(又称BTL功放电路)

在本课程设计中,我选择的甲乙类的无输出电容器功放电路OCL。

功率放大器的个组成模块及原理

功率放大器用来对输入信号进行功率放大,在不同的使用场合下由于对输出信号的功率等要求不同,所以采用不同类型的功放电路。

一般情况下,功率放大器是一个多级放大器电路,主要有最前面的前置放大器,中级的推动级和最后的功放输出级电路组成。如图1。

图1功率放大器电路组成框图

1.3.1 中级驱动的基本放大电路工作原理

放大电路的两个作用一是针对变化量即交流量进行放大;二是实现能量转换,把直流电源能量转变成的信号能量。日常中最基本、最常见的晶体管放大电路是共射级放大电路。

作为电压放大器,它能够把微弱的信号电压放大。将输入的交流小信号电压叠加在直 流电压上,使晶体管基极、发射极之间的正向电压发生变化,通过晶体管的控制作用,使集电极电流有更大的变化,它的变量在集电极电阻上产生大的电压变量,从而实现电压放大。

要想实现放大电压作用,有二个要求:第一,要有直流通路,即保证晶体管BJT 发射结处于正向偏置,集电结处于反向偏置,使晶体管工作在放大区,以实现电流的控制作用。 第二,要有交流通路,使输入的待放大信号能加到发射结上,以控制三极管的电流,而且放大了的信号能从电路中输出。

图2基本共射极放大器

放大电路有两种工作状态:直流工作状态和交流工作状态。

静态:输入信号为零Vi= 0时,放大电路中各处的电压电流都是不变的直流电的工作状态,称直流工作状态。静态时,晶体管的IB ,IC ,VCE 在特性曲线上确定为一点,称为静态工作点,常称为Q 点。在分析静态时,画直流通路的原则是大电容开路,大电感短路,直流电源不变,信号源短路,其直流通路如图3(a ),然后利用估算法求解静态工作点。其求解方法:

CC

BE

B 15

V V I R -=

C B I βI =?CE CC C 16

V V I R =-

一个放大电路的静态工作点必须由这三个参数共同决定,通常所说的求静态工作点,就是求出三个参数的数值。

静态工作点在模拟晶体管放大电路中是很重要的,其设置主要目的就是防止交流信号不失真,静态工作点没有设置好,重者会产生截止和饱和失真,轻者不利与信号的放大。静态工作点最好设置在负载上的中心,这样正弦信号的正半周和负正半幅值可以比较大,也不会失真。要是设置比较偏了,要想不失真的话,只能输入很小幅值的信号。

图3共射极放大电路的直流通路和交流通路

输入信号不为零时,放大电路的各处电压电流都处于变动的工作状态,称交流工作状态。在进行放大电路动态分析之前,必须先进行静态分析,当静态工作状态正确了,动态分析才有意义。在进行动态分析时,画交流通路的原则是大电容短路,大电感开路,直流电源交流短路,其交流通路如图3(b ),然后利用小信号模型分析法,小信号模型如图4,分别求解电压放大倍数Av ,输入电阻Ri ,输出电阻Ro ,其计算方法:

电压放大倍数: ()18v o i b L be A V V I R R r β==- 输入电阻: 17i i i be R V I R R == 输出电阻: 18o o o R V I R ==

图 4小信号模型

由动态工作分析法可用于电压放大倍数,特别是观察放大电路的最大不失真输出幅度,以及波形是否失真。

晶体管输出特性分为三个工作区域:放大区,饱和区,截止区。放大电路的目的是实现信号的不失真放大,即动态工作轨迹在输出特性的放大区。一旦动态工作轨迹进入截止区或饱和区,将造成非线性失真。

一般的,当放大电路产生失真的原因有二个:(1)Q点选择不当(过高或过低):(2)输入信号幅值过大。

Q点过高时,电路输出易饱和失真。

Q点过低时,电路输出易截止失真。

所以在电路中电阻值的选择很重要,关系到波形的失真与否。

1.3.2 输入级差分放大器模块的工作原理

无输入信号时,输出仍有缓慢变化的电压产生,这种现象叫零点漂移。其产生的原理VCC波动、温度变化引起管子参数变化,元器件参数老化等引起的Q点漂移,其中,温度变化引起的漂移是主要的,又称温漂。

温漂的存在是有害的,当漂移电压的大小可以同有效信号相比拟时,输出电压产生很大误差,甚至无法分辨。可以等效的将温漂看作是一种干扰。对于RC耦合放大电路,由于级间有耦合电容,各级Q点是彼此独立的,前级的零点漂移不会传递到后级,所以,其零漂不必考虑。而对于直耦式放大电路,零漂却会逐级放大传递,第一级漂移的影响最大,而级数越多,增益越高,漂移越严重。所以必须采取措施控制零点漂移。

本课程设计中,在输入级采用差分放大器作为输入端,可以达到较好的效果。双端输入型电路如图5(a )。

图5 差分放大器

如图所示,其中管Q1,Q2特性完全相同,并且每个晶体管都构成了共射极电路,其他电阻等参数也完全一样,一般的差分放大器可以分为双端输入,单端输入,双端输出,单端输出等4种类型。输出为晶体管集电极电位之差。电路可以采用双电源供电。负电源保证晶体管发射结的正向导通,是晶体管能够正常的放大,Re 电阻接在晶体管的发射结,具有负反馈的作用,能够稳定Q 点,因此具有减少每一边电路的零点漂移的作用。 其主要参数: 差模信号:

共模信号:

其中当输入信号为差模信号时有:122i i id v v V =-=; 当输入信号为共模信号时有: 12i i ic v v V ==

差模电压增益:

输入差模信号时,电路的输出电压为电路的两个晶体管的集电极的电位变化的2 倍,

id i1i2

=V v v -i1i21

V =()

2

ic v v +d =

22

2od od id

L c be id v v v R A R r

v β?????=- ? ? ???????

v

差模信号是电路的有效输入信号,差分电路对差模信号具有放大功能,其差模放大倍数等于单边电路的电压放大倍数,多使用一个晶体管并没有提高电压的放大倍数。

共模电压增益:

由于共模信号的大小相同,方向相同,一端增加多少,电路的参数也相同,另一端同样增加多少,所以输入共模信号时,理想状态下,T 变化或电源的波动,将使两管的IC 、 VC 产生相同的变化,双端输出电压基本不变,电路输出为零,电路完全抑制共模信号,同理,零点漂移引起的电压变化,也可以看成共模信号,所以利用差分放大器可以有效遏制温漂。

总输出电压:

共模抑制比: ()()21122be e

e

CMR vd vc be

be

r R R K A A r r ββ+++==

由共模抑制比可以检验电路抑制共模信号的能力和放大差模信号的能力,有公式可以

看出,Acd 越大,Avc 越小,CMR K

越大,电路的性能越好,是用来反映抑制零漂能力的指标。

另一方面,由公式我们可以看出,Re 越大,共模抑制比越高,电路的性能越好。但在实际的电路板中最好不出现大电阻,产生大损耗,发出热量多。

因此,在集成电路中常常采用用恒流源代替Re ,如图5(b ),恒流源的等效交流电阻很大并且利于集成电路制作,理想的恒流源的等效内阻为无穷大,此时甚至可以认为单端输出时的共模电压放大倍数也为0。同时恒流源可以使发射结电流为恒定,从而保证了Q 点的稳定。

1.3.3 输出级功率放大器模块的工作原理

之前讲到过,工作在乙类方式下的放大电路,虽然晶体管的管功耗比较小,有利于提高效率,这对于输出大功率的功放十分重要,但存在严重的非线性失真,当功放用于音频系统中,会造成严重的声音失真,使得音频设备效果很差。所以在此介绍乙类互补对称功率放大器,如图6(a ),电路采用两个参数相同的互补对称晶体管,并且让他们都工作在oc

c 1ic

=

020i v A v v ==v o d d c c

=v od oc v v A v A v +=+v v

法让正负半周期的信号都能加载在负载上,就可以在负载上得到一个非线性失真有很大改 善的完整波形。

如图,可以看出互补功放是由两个共集极放大器组成,两个射级跟随器的特点是输出电阻小,带负载的能力强,适合作为功率输出级,各个管静态时不去电流,减少静态功耗。而在有输入信号时,两个晶体管轮流导通,互补了对方的不足。

其参数计算:

当输入为正弦波,则在负载电阻上的输出平均功率为:

2

2

2

2om om om

o o o L

V P V I R ==

=

式中,Vo 为输出电压的有效值,Vom 为输出电压幅值,Io 为输出电流的有效值,Iom 为输出电流的幅值。当输出信号的幅值越大,电路输出的有用平均功率越大。

图6互补对称功率放大器

电源供给的直流功率Pv :

22o cc om

v cc

L L V V V P V R R π== 转换效率: 4o om

v cc

P V p V πη=

=

但在实际中,晶体管的管压降为左右,在小信号输入时,输入信号很小时,达 不到晶体管的开启电压,而使两个三极管均不导通,输出电压为零,只有当输入信号稍大时,晶体管才可以为导通,但输出波形仍有一定程度的失真。这种输入信号在正负半周期交替时过零点时,产生的失真称为交越失真。

消除交越失真的方法可以使用二极管和三极管做偏置电路,使之工作在近似乙类的甲乙类工作方式。如图6(b )。本次我做的课程设计中即使用的二极管和BE V 扩大电路的甲乙类互补功率放大器。

该电路采用二极管加电压倍增电路,构成BE V 扩大电路。其中

()44122CE BE V V R R R =+

晶体管Q4的发射结的外加电压4BE V 基本不变,只要调整电阻R1,R2的阻值使得4

CE V 按Q2,Q3偏置电压的需要倍增就可以使电路的交越失真大为改善。

2基本互补对称功率放大器的设计

本次我做的课程设计是互补对称功率放大器OCL,即没有输出耦合电容的功率放大器,其主要特点是:采用正负电源供电方式,输出端直流电位为零;由于没有输出电容,低频效果很好;输出端的电压比较恒定;在较低的供电电压的情况下,可以获得较大的功率输出;所以常用于一些输出功率要求较大的功率放大器中。

根据前面的模块基本原理,然后通过数值计算,来找到合适的元件参数,达到我所需要的课设电路要求。

差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同,如果是单管输出,则它的差模电压放大倍数是单极管基本电压放大倍数的一半,输入电阻则都一样。我设计的前级差动放大器如图7。

图7带恒流源的差动放大器

R,电阻值近似无穷大,不但可以提高电路电压放大倍数,我用了恒流源来代替电阻

e

I,稳定Q点。

还可以提供

E

设计了由晶体管Q2构成的电路输出恒定的电流,可以用来等效恒流源。利用稳压二极管D2的稳压特性,其额定的稳压值有12V,进而达到输出恒定电流的目的,其计算方

2

229

120.7

2.265

Z BEQ CQ EQ U U I I mA mA R --≈=

=

≈ 其中Uz 为稳压管的稳压值,2BEQ U 为三极管基射级的饱和压降。 估算Q 点,两个对称晶体管的发射级电流:2

13 1.132

CQ EQ EQ I I I mA ==

=

()

130.011E

B B I I I mA β==

≈+

()

261001 2.7be E

mV

r I β=++≈Ω 差模电压放大倍数: 2

1290L VD be

R R A R r β??

- ???=

≈-+ 除此之外,由于在实际电路中,电路参数不可能完全一样,为了保证输入为零,就在要在差分电路中加上调零电阻R14,通过调节可以是电路更加稳定。

最终设计的总电路图如下,如图8

图8总电路图

3电路的仿真及实物调试

Multisim软件仿真电路

在本课程设计中采用Multisim10对电路进行仿真,Multisim软件适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。通过Multisim和虚拟仪器技术,我可以完成从基本原理设计到原理图的设计与仿真

这其中Multisim为用户提供了丰富的虚拟仪器,可以从Design工具栏选用这些仪表,在选用后,各种虚拟仪表都以面板的方式显示在电路中。

电路原理图在Multisim中画好后,本课设的主要要求是在低频小信号输入的情况下,通过电路进行功率放大,输出波形低失真的12W左右的功率信号。

首先我选择200Hz,50mV的正弦波作为输入信号,利用软件提供的虚拟仪器函数信号发生器作为激励源,如下图9。

图9输入信号为50Hz

信号由输入端进入,经过我设计的互补对称OCL电路后,由Multisim10进行仿真,

波形和相应的输出功率。主要操作是在负载的两端加上示波器,通过Simulation 工具栏启动电路仿真,再双击示波器,查看仿真输出波形结果。

在开始的仿真中,我调节电位器R14,使其的阻值偏离中间值。此时输出信号如图10。

图10电位器R14偏离很大时的输出信号

如图可看出,当电位器R14严重偏离时,产生的信号有很严重的失真,这是因为R14的调节影响到两个晶体管的Q值大小,此时Q值要么过高,要么过低,差分放大器两边的Q也不在相等。即此时差分放大器抑制零点漂移及其共模信号的功能消失,等效成了普通的射级放大器,所以才会出现上述结果。

当我重新调节电位器时,调节到合适的位置,使得差分放大器的两边Q值基本一样,两边对称,同时保持输入信号不变。在仿真观察效果。如图11。

图11 选择合适电位器时的输出信号

如图所示,当电位器选的合适时,输出信号为完整的正弦波,基本无失真,达到比较好的效果。并且最终的仿真输出功率达到12W,满足课程设计的要求。基本成功。

由以上分析可见,在晶体管交流工作时,必须要先新确定静态工作点Q,只有Q点合适时,输出才会有好的效果。

实物的调试

在实际制作电路板时,由于我没有买到对应确定参数的元器件,只能选择在理论设计参数附近的元器件。所以不可避免的出现误差,最终的输出功率结果与理论值不同。

同时所设计的电路板也有些问题,由于输出的功率为12W左右,输出电流也比较高,必须在电路板中采取相应的散热措施,并且选择大功率的三极管。但我在实际的调试中,由于多次在正负双直流电源下工作,最终导致我的两个TIP41中功率的晶体管烧掉。

经过分析,我发现由于我的疏忽,竟然将两个晶体管TIP41直接连在了直流电源两端,没有加入限流电阻,导致输出功率和电流过大,烧掉晶体管。而在电路的仿真中并没有发现不妥,看来仿真和真正的实物调试还是有相当差别的。

4 通过Protel制作PCB板

在本次课程设计中,采用protel软件制作PCB,protel软件包含了电路原理图绘制,检查原理图电性能可靠性,多层印制电路板设计,电子表格生成等功能,使用起来非常方便。

在软件的使用中,首先画电路原理图,注意要将使用的元器件所在的元件库加载到页面文件中,同时编辑元件的属性,注意要加上元件的封装号,这是非常重要的,否则无法生成PCB板。绘制原理图后,先测试用户设计的电路原理图的正确性,通过检验电气规则测试。如图12。

图12电气规则检查

选择要测试的参数,然后点击确定,就可以查看检验的结果,此时根据结果可以进行修改。接着就可以创建网络表了,如图13。在protel软件中网络表是最重要的,它是连接原理图和PCB板的桥梁,必须重视。

模电课程设计-OTL音频功率放大器

模拟电子技术课程设计报告设计课题:OTL音频功率放大器 专业班级:电子信息工程专业0701班学生姓名: 指导教师: 设计时间:2009-6-25

目录 引言 (3) 一.设计任务与要求 (3) 1.1 设计任务 (3) 1.2 设计要求 (3) 二. OTL音频功放满足的具体性能指标 (3) 三.方案设计与论证 (3) 四.原理图元器件清单及原理简述 (4) 4.1 总原理图 (4) 4.2 元器件清单 (4) 4.3 电路原理简述 (4) 五.安装与调试 (5) 5.1 元件的安装 (5) 5.2 元件的调试 (5) 六.性能测试与分析 (6) 6.1 波形测试 (6) 6.2 主要参数的测试与计算 (6) 七. 个人心得体会 (7) 八.参考文献 (7)

题目OTL音频功率放大器 设计者蔡白洁张振山 指导教师李艳萍 引言 OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。 它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1 设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2 OTL音频功放满足的具体性能指标 1.设音频信号为vi=10mV, 频率f=1KHz。 2.额定输出功率Po≥2W。 3.负载阻抗RL=8Ω。 4.失真度γ≤3%。 3 方案设计与论证 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功率放大器。其中,二极管T1构成前置放大级,对输入信号进行倒相放大,二极管T2,T3的参数一致,互补对称,且均为共集电极接法,保证了输出电阻低,负载能力强的优点,作用是对输入的信号进行功率放大。 在明确了电路接线的基础上,在电路板上进行仿真模拟,并按照课本上相关的知识对该功放的主要参数计算。电路在12V的直流电压下工作,在负载为8Ω

模电实验报告互补对称功率放大器

实验四互补对称功率放大器 一、实验电路 图20-1互补对称功率放大器 二、预习要求 1、分析图20-1电路中各三极管工作状态及交越失真情况。 电路中采用NPN、PNP两支晶体管,其特性一致。利用NPN、PNP管轮流导通,交替工作,在负载RL上得到一个完整的被放大的交流信号。 静态时,电源通过V2向C充电,调整参数使得三极管发射极电位: 动态时,Ui>0,V2导通V3截止,i L=i c2,R L上得到上正下负的电压。Ui<0,V2截止V3导通,C两端的电压为V3、R L提供电源, i L=i c2,R L上得到上负下正的电压。 输入信号很小时,达不到三极管的开启电压,三极管不导电。因此在正、负半周交替过零处会出现一些非线性失真,这个失真称为交越失真。 电路中二极管D1、D2即可消除交越失真。 2、电路中若不加输入信号,V2、V3管的功耗是多少。 静态时,Vin = 0V , V2、V3均不工作 ,此时其功耗为0。 3、电阻R 4、R5的作用是什么? 电阻R4、R5与三极管V1构成放大电路,为后级电路提供电压。 4、根据实验内容自拟实验步骤及记录表格。 三、实验仪器及材料 1、信号发生器 2、示波器 四、实验内容 1、调整直流工作点,使M点电压为0.5V CC。 2、测量最大不失真输出功率与效率。 3、改变电源电压 (例如由+12V变为+6V),测量并比较输出功率和效率。 4、比较放大器在带5K1和8Ω负载 (扬声器)时的功耗和效率。

电源电压加12V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 219mV 输出电压U o(有效)= 1.2V 电流I=81.2mA 输出功率P o = U o2/ R L= 0.18W P V=VCC*I/2=0.487W 转换效率η= P o/ P v= 36.96% 电源电压加6V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 104mV 输出电压U o(有效)= 488mV 电流I=34.2mA 输出功率P o = U o2/ R L= 0.0298W P v = V cc·I/2=0.2052W 转换效率η= P o/ P v= 14.5% 电源电压加12V,负载接入5.1kΩ电阻: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 179mV 输出电压U o(有效)= 3.28V 电流I=7.95mA 输出功率P o = U o2/ R L= 0.00211W P v = V cc·I/2=0.0477W

音频功率放大器课程设计

本电路设计采用前置放大电路和音频功率放大电路相结合的放大模式,前者采用TL072对电压进行放大,后者采用性能优良的TDA2616对电压和电流放大,给音响放大器的负载(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能的小,效率尽可能的高。在前置放大和功放之间加上一个滑动变阻,就保证了音量可调,在滑动变阻器之前再加上一足够大电阻,这样保证了信号不失真。除此之外,加上相应的旁路电容又使得电路具有杂音小,有电源退偶,无自激等优点。根据实例电路图和已经给定的原件参数,使用multisim11软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 关键词: TL072 TDA2616 性能优良音量可调杂音小 目录 1 设计任务和要求 (2) 1.1设计任务 (2) 1.2设计要求 (2) 2 系统设计 (3) 2.1系统要求 (3) 2.2方案设计 (3) 2.3系统工作原理 (4) 3 单元电路设计 (6) 3.1前置放大电路 (6) 3.1.1电路结构及工作原理 (6) 3.1.2元器件的选择及参数确定 (9) 3.1.3 前级放大电路仿真 (10) 3.2后级放大部分 (10) 3.2.1电路结构及工作原理 (12) 3.2.2电路仿真 (13) 3.2.3元器件的选择及参数确定 (15) 3.3音源选择电路 (15) 3.3.1电路结构及工作原理 (15) 3.3.2电路仿真 (16) 3.3.3元器件的选择及参数确定 (16) 3.4电源 (17) 4系统仿真 (20) 5 电路安装、调试与测试 (21) 5.1电路安装 (21) 5.2电路调试 (23) 5.3系统功能及性能测试 (23)

实验6:互补对称功率放大器

实验六互补对称功率放大器 201408080127 潘松 201408080130 张崇琪 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理

图6-1 互补对称功率放大器实验电路 图6-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η

模电课程设计-功率放大器设计

《电子技术Ⅱ课程设计》 报告 姓名雷锋 学号 52305105121520 院系自动控制与机械工程学院 班级核电一班 指导教师王老师黄老师 2014年 6月

目录 一、设计的目的 (1) 二、设计任务和要求 (1) 三、课程设计内容 (1) 1. Multisim仿真软件的学习 (1) 四、基础性电路的Multisim仿真 (2) 1.题目一:半导体器件的Multisim仿真 (2) 2.题目二:单管放大电路的Multisim仿真 (7) 3.题目三:差分放大电路的Multisim仿真 (11) 4.题目四:两级反馈放大电路的Multisim仿真 (14) 5.题目五:集成运算放大电路的Multisim仿真 (21) 6.题目六:波形发生电路的Multisim仿真 (23) 五.综合性能电路的设计和仿真 (26) 1.题目二:功率放大器的设计 (26) 六、总结 (29) 七、参考文献 (29)

一、设计的目的 该课程设计是在完成《电子技术2》的理论教学实践,掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养综合知识应用能力和实践能力,为今后从事本专业相关工程技术打下基础。 二、设计任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成基础性的电路设计和仿真及综合性电路设计和仿真。 要求: 1、巩固和加深对《电子课程2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真 结果。 三、课程设计内容 1. Multisim仿真软件的学习 Multisim7是一个优秀的电工技术仿真软件,既可以完成电路设计和版图绘制,也可以创建工作平台进行仿真实验。Multisim7软件功能完善,操作界面友好,分析数据准确,易学易用,灵活简便,因此,在教学、科研和工程技术等领域得到广泛地应用。

互补对称式功率放大电路

中山大学模拟电路实验报告 SUN YAT-SEN UNIVERSITY 实验题目:实验6 互补对称式功率放大电路 一、实验目的 在这个实验中,我们将讨论互补对称式功率放大电路的工作原理和性能测试方法。首先,我们对功放电路进行静态调整;其次,对调整好的电路进行电路功率和效率的测量。然后,我们将探讨自举电路的作用和观察“交越失真”现象。 通过这次实验,你能够 1)熟悉互补对称式功率放大器的性能测试方法。 2)了解自举电路的原理及其对改善互补对称式功率放大器的性能所起的作用。 二、实验仪器 (1)二踪示波器 1台 (2)函数发生器 1台 (3)交流毫伏表 1台 (4)直流稳压电源 1台 三、实验原理图 V CC v o R L v s 实验电路图3.1互补对称式功率放大电路 注意: 1)实验前应该先调好限流保护,电流控制在200mA。 2)电路调整时,应先调好电压、再调电流。

四、实验内容 1. 静态测试 合上开关K 、K1、K2,用万用表先测量直流稳压电源使输出V V CC 6=,调节1W R 使B 点的直流电位约为3V 。断开K 、K2,调节2W R 使23C I 约为mA 52- , (23C I 的测量可用万用表电流档串接测量,但要注意万用表笔的正负极性)测完后取走万用表合上K 。 检查电路中各个管是否工作正常。 注意:在接入稳压电源之前,2W R 应先调到最小值,电源接入后,在调节2W R 的过程中,应不时用手触摸2Q 、3Q 两管,若发现两管发热严重,则应马上断开电源,检查原因(如 2W R 开路,电路自激,或输出管性能不好等),以防烧毁管子。如无异常现象,可开始调试, 如无特殊情况,不得再随意旋动2W R 的位置。 调试数据如下表4.1.1 V cc V B I 23 6.0V 2.99V 3.5V 2. 测量放大器的质量指标 (1)最大不失真电压、最大不失真功率: 把示波器和交流毫伏表的输入端同时接入放大器的输出端(此时可同时测量输出幅度的大小和观察输出波形),然后将音频信号发生器的输出调节旋钮放到最小,并将它的输出端接入放大器的输入端,而音频信号发生器的频率放在Z KH 1上,以后逐渐增大输入信号幅度并同时观察输出波形,输入增大、输出亦增大,当输出波形增大到刚好出现失真时,就停止增大输入信号,以后减小输入信号,使输出信号刚好不失真。记下这时放大器的输出电压即为最大不失真电压,并计算最大不失真功率。 (2)电源供给的实际功率和效率: 在最大不失真输出时,用万用电表测量此时电源供给的直流平均电流C I (用万用表电流档串入CC V 的总线处测量,注意是在有输入信号下测量)记录C I 计算电源供给的功率和效率。 有自举情况下的测量数据 4.2.1

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

互补对称功率放大电路原理

互补对称功率放大电路原理

————————————————————————————————作者:————————————————————————————————日期:

3.4 互补对称功率放大电路 教学要求 掌握甲类、乙类和甲乙类三类功率放大电路的工作原理; 理解交越失真形成机理; 了解复合管结构及其特性。 一、概述 对功率放大电路的基本要求 1.不失真情况下输出尽可能大的功率:I与U都大,管子工作在尽限状态。 2.提高效率: = P omax / P DC 要高 3.集电极最大功耗: P 0=P v -P C (管耗),另一部分消耗在管子上,功放管尽限应用,选管要 保 证安全。 二、放大电路的工作状态 放大电路按三极管在一个信号周期内导通时间的不同,可分为甲类、乙类以及甲乙类放大。在整个输 入信号周期内,管子都有电流流通的,称为甲类放大,如下表所示,此时三极管的静态工作点电流I CQ比较大;在一个周期内,管子只有半周期有电流流通的,称乙类放大;若一周期内有半个多周期有电流流通,则称为甲乙类放大。 状态一个信号周期 内导通时间 工作特点图示 甲类整个周期内导 通 失真小,静态电流大,管耗大,效率 低。 乙类半个周期内导 通 失真大,静态电流为零,管耗小,效 率高。 甲乙类半个多周期内 导通 失真大,静态电流小,管耗小,效 率较高。 三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless)

(一)电路组成及工作原理 采用正、负电源构成的乙类互补对称功率放大电路如下动画所示,V1和V2分别为NPN型管和PNP型管, 两管的基极和发射极分别连接在一起,信号从基极输入,从发射极输出,R L为负载。要求两管特性相同,且V CC=V EE。 特点:去掉C,双电源,T1与T2交替工作,正负电源交替供电,输入与输出之间双向跟随。 原理:静态即u i = 0 时,V 1 、V 2 均零偏置,两管的I BQ、I CQ均为零,u o=0,电路不消耗功率。 u i > 0时,V 1 正偏导通,V2反偏截止,i o= i E1= i C1, u O= i C1R L; u i< 0 时,V 1 反偏截止,V2正偏导通,i o= i E2= i C2, u O= i C2R L; 问题:两管交替导电时刻,输入电压小于死区电压时,三极管截止,在输入信号的一个周期内,V1、 V2轮流导通时,基极电流波形在过零点附近一个区域内出现失真,称为交越失真。且输入信号幅度越小失真越明显。 产生交越失真的原因:静态时,U B E Q =0,u i 尚小时,电流增长缓慢。 (二)功率和效率 1.输出功率:输出电流和输出电压有效值的乘积,就是功率放大电路的输出功率。 最大输出功率 2.电源功率:两个管子轮流工作半个周期,每个电源只提供半周期的电流。 最大输出功率时P DC = 2V2 CC / R L 3.效率:效率是负载获得的信号功率P o与直流电源供给功率P DC之比。实用中,放大电路很难达到最 大效率,由于饱和压降及元件损耗等因素,乙类推挽放大电路的效率仅能达到60%左右。 4.管耗 直流电源提供的功率除了负载获得的功率外便为V 1、V 2 管消耗的功率,即管耗。V 1 、V 2两管消耗的 功

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

音响放大器课程设计与制作模电课程设计

课程设计任务书学生姓名:专业班级: 指导教师:工作单位:信息工程学院 题目: 音响放大器设计与制作 初始条件:集成芯片LM324三块,LM386一块,瓷片电容,电解电容,电位器若干,4Ω/扬声器一个。 要求完成的主要任务: (1)技术指标如下: a.输出功率:; b.负载阻抗:4欧姆; c.频率响应:fL~fH=50Hz~20KHz; d.输入阻抗:>20K欧姆; e.整机电压增益: >50dB; (2)电路要求有独立的前置放大级(放大话筒信号)。 (3)电路要求有独立的功率放大级。 时间安排: 2016年1月10日查资料 2016年1月11,12日设计电路 2016年1月13日仿真 2016年1月14日,15日实物调试 2016年1月16日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要......................................................... ABSTRACT ...................................................... 1电路方案的比较与论证........................................ 音响放大器的总设计........................................... 放大电路的比较与论证........................................ 音频功率放大电路的比较与论证................................ 2核心元器件介绍............................................... LM324的介绍................................................. LM386的介绍................................................. 3电路设计 .................................................... 直流稳压电源电路的设计...................................... 话音放大器.................................................. 混合前置放大器.............................................. 音调控制器.................................................. 功率放大电路的设计.......................................... 总电路图 (18) 4用MULTISIM进行仿真.......................................... 话放与混放性能测试.......................................... 单独功放性能测试 (20)

模电课程设计-功率放大器设计

模电课程设计-功率放大器设计

《电子技术Ⅱ课程设计》 报告 姓名 学号 院系自动控制与机械工程学院 班级核电一班 指导教师 2014年 6月

目录 一、设计的目的 (1) 二、设计任务和要求 (1) 三、课程设计内容 (1) 1. Multisim仿真软件的学习 (1) 四、基础性电路的Multisim仿真 (2) 1.题目一:半导体器件的Multisim仿真 ·· 2 2.题目二:单管放大电路的Multisim仿真7 3.题目三:差分放大电路的Multisim仿真 (11) 4.题目四:两级反馈放大电路的Multisim仿 真 (14) 5.题目五:集成运算放大电路的Multisim仿 真 (21) 6.题目六:波形发生电路的Multisim仿真 (23) 五.综合性能电路的设计和仿真 (26) 1.题目二:功率放大器的设计 (26) 六、总结 (29) 七、参考文献 (29)

一、设计的目的 该课程设计是在完成《电子技术2》的理论教学实践,掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养综合知识应用能力和实践能力,为今后从事本专业相关工程技术打下基础。 二、设计任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成基础性的电路设计和仿真及综合性电路设计和仿真。 要求: 1、巩固和加深对《电子课程2》课程知识的理 解; 2、会根据课题需要选学参考书籍、查阅手册和 文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报 告,课程设计报告能正确反映设计和仿真结

实验报告(互补对称功率放大电路)

实验报告 实验二十互补对称功率放大电路 一、实验仪器及材料 l.信号发生器 2.示波器 二、实验电路 三、实验内容及结果分析 1、V CC=12v,V M=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.18 R L=+∞R L=5.1KΩR L=8Ω V1 0.93 5.29 0.25 V O(V) 3.25 3.24 1.05 12.5 12.9 67.8 V2 6.69 11.98 6.03 总电流I (ma) V3 5.28 0 5.94 A V18.06 18 5.83 2、V CC=9V,V M=4.5V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.126v R L=+∞R L=5.1KΩR L=8Ω V1 0.85 3.80 0.18 V O(V) 2.19 2.18 0.82 9.1 9.1 41.9 V2 5.16 8.99 4.51 总电流I (ma) V3 3.80 0 4.45 A V17.38 17.30 6.51 3、V CC=6V,V M=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.08V R L=+∞R L=5.1KΩR L=8Ω V1 0.76 2.36 0.11 V O(V) 1.30 1.29 0.38

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路 1 甲乙类互补对称功率放大电路 乙类放大电路的失真: 前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。这种现象称为交越失真。 图1 交越失真的产生原因 2 甲乙类双电源互补对称电路 一、电路的结构与原理 利用图2所示的偏置电路是克服交越失真的一种方法。 图2 由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。由于电路对称,静态时i C1= i C2,I L= 0, v o =0。有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。 上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。 二、VBE扩展电路

图3 利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。 在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出 V CE4=V BE4(R1+R2)/R2 因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。这种方法,在集成电路中经常用到。 3 单电源互补对称电路 图4 一、电路结构与原理 图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。 当加入信号v i时,在信号的负半周,T1导电,有电流通过负载RL,同时向C充电;在信号的正半周,T2导电,则已充电的电容C起着双电源互补对称电路中电源-V CC的作用,通过负载RL放电。只要选择时间常数RLC足够大(比信号的最长周期还大得多),就可以认为用电容C和一个电源V CC可代替原来的+V CC和-V CC两个电源的作用。 值得指出的是,采用一个电源的互补对称电路,由于每个管子的工作电压不是原来的V CC,而是V CC/2,即输出电压幅值V om最大也只能达到约V CC/2,所以前面导出的计算Po、P T、和P V的最大值公式,必须加以修正才能使用。修正的方法也很简单,只要以V CC/2代

丙类高频功率放大器课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 、系统方案论证 丙类谐振功率放大器电路 、模块电路设计 丙类谐振功率放大器输入端采用自给偏置电路 丙类谐振功率放大器输出端采用直流馈电电路 匹配网络 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 电路设计与分析 .仿真与模拟 Multisim 简介 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 晶体管的选择 判别三极管类型和三个电极的方法 电容的选择 六、课程设计体会与建议 (17) 、设计体会 、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C≈βi B知,i C也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线(i C~V BE)上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半个周期。

实验七:互补对称功率放大器

实验七互补对称功率放大器 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理 图7-1 互补对称功率放大器实验电路

图7-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η (7-2) PE —直流电源供给的平均功率 理想情况下ηmax =78.5%。在实验中,可测量电源供给的平均电流Idc (多测几次I 取其平均值),从而求得 E CC dc P U I =? (7-3) 负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、频率响应 详见实验四有关部分内容 4、输入灵敏度

OLC功率放大器课程设计

农业电气化与自动化专业 电力电子课程设计报告 题目:0LC5W功率放大电路设计 班级: 学号: 姓名: 设计时间:__ 2011.11.12--11.30 指导老师: 机电工程学院 2011年12月29日

前言 摘要: 功率放大器的主要要求是获得不失真或较小失真的输出功率,讨论的主要指标是输出功率、电源提供的功率。本课题主要设计一个OCL 功率放大器,来满足设计要求。OCL 是英文Output Capacitor Less 的缩写,意为无输出电容,所以功率放大器即为无输出电容功率放大器。它采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。使放大器低频特性得到扩展。 OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽,保真度高,动态特性好及易于集成化等特点。OCL 功放电路也是定压式输出电路,电路由于性能比较好,所以广泛地应用在高保真扩音设备中。性能优良的集成功率放大器给电子电路功放级的调试带来了极大地方便。 关 键 字:电源电路,OCL 功放 一 课程设计任务及要求 1.1设计指标 ①额定输出功率W P 5 0=; ②负载阻抗Ω=8L R ; ③设放大器所需的V 12±直流稳压电源。 1.2设计要求 1.2.1采用甲乙类双电源互补对称电路设计OCL5W 功率放大电路。

1.2.2画出工作电路原理图(图中应有输出级,简单的前置级)。 1.2.3写出本课程设计的说明书,其中包括: ①工作原理分析 ②计算 ③功率管的选择。 二 OCL系统的设计 2.1工作电路原理 2.1.1 OCL互补对称电路特点 1)双电源供电; 2)输出端不加电容C。 C的作用:隔直通交;储存电能,代替一个电源。 2.1.2 工作电路原理图 图 (a)

高频功率放大器课程设计

目录 一、课程设计目的 (2) 二、课程设计题目描述和要求 (2) 三、课程设计报告内容 (2) 四、结论 (13) 五、结束语 (13) 六、参考书目: (14)

一、课程设计目的 由于高频振动器所产生的高频振动信号的功率很小,不能满足发射机天线对发射机的功率要求,所以在发射之前需要经过功率放大后才能获得足够的功率输出。 本次课程设计使通过已学的电路基础知识,模拟高频振动功率放大器,使发射机内部各级电路之间信号功率能有效传输,这就要求放大器输入端和输出端都能实现阻抗匹配。即放大器输入端阻抗和信号阻抗匹配,放大器输出端阻抗和负载阻抗匹配。我们知道能量是不能放大的,高频信号的功率放大,其实质在输入高频信号的控制下将电源直流功率转换为高频功率,因此除要求高频功率放大器产生符合要求的高频功率外,还应要求有尽可能高的转换率。主要是根据已知数据设计一个丙类高频功率放大器。 二、课程设计题目描述和要求 设计一高频功率放大电路; 1.要求三极管工作在丙类状态; 2. 主要技术指标:输入已调波的峰值为100mV;载波频率为6.5MHz,输出功率≧1w,负载50Ω,效率≧80%; 3.用相关仿真软件画出电路并对电路进行分析与测试。 三、课程设计报告内容 3.1 设计方案的论证 高频功率放大器的主要功用是放大高频信号,并且以高效输出大功率为目的,它主要应用于各种无线电发射机中。发射机中的振荡器产生的信号功率很小,需要经多级高频功率放大器才能获得足够的功率,送到天线辐射出去。 高频功率放大器输出功率范围,可以小到便捷式发射机的毫瓦级,大到无线电广播电台的几十千瓦,甚至兆瓦级。目前,功率为几百瓦以上的高频功率放大

相关文档
最新文档