微电子器件公式

微电子器件公式
微电子器件公式

微电子器件公式: 部分物理常数:

19

14

12

S 10

3

1412G i S 13

3

14

G i O X 1.610

C,0.026V (300k ),(Si)11.88.85410

1.04510

F cm ,

(Si) 1.09eV ,(Si) 1.510cm

,(G e)168.85410

1.41710F cm ,(G e)0.66eV ,(G e)

2.410cm ,

3.98.85410

3.45q kT q T E n E n εεε--------=?===??=?==?=??=?==?=??=13

310

F cm

-?

第1章 半导体器件基本方程 1. 泊松方程

D A s

d ()d E q

p n N N x

ε=-+-

2. 电流密度方程

n n

n

p p

p

d d d d n

J q n E q D x p J q p E q D x

μ

μ

=+=-

3. 电荷控制方程

n n

n n p p

p p

d d d d Q Q I t Q Q I t

ττ?=-

-

?=-

-

第2章 PN 结 2.1 PN 结的平衡状态

1.平衡多子

p 0A i

n 0D i ()p N

n n N n =>>=>>P 区(N 区)

2.平衡少子

2

2

i

i

p 0i p 0A 2

2i

i

n 0i

n0

D

()

n n n n P p N n

n

p n n N =

=

<<=

=

<<区(N 区)

3.内建电势 A D

bi 2

i

ln

N N kT V q

n =

4.最大电场强度 1

2

0m

a

x

b i s 2qN E V ε??= ???

5.N 区耗尽区宽度 1

2s s A

n max

bi D

D A D 2()N x

E V qN q N N N εε??=

=???+??

6.P 区耗尽区宽度 1

2s s D p max

bi A

A A D 2()N x E V qN q N N N εε??=

=???+??

7.总耗尽区宽度 1

2b i

s d n p b i m

a x 022V x x x V E qN ε??=+==????

2.2 PN 结的直流电流电压方程

1.在N 型区与耗尽区的边界处(即n x 处)少子浓度 n n n

0()e x p qV p x p

kT ??

= ???

在P 型区与耗尽区的边界处(即 –p x 处)少子浓度 p p p 0()exp qV n x n kT ??

-= ???

2.PN 结总的扩散电流密度 d J

p p 2

n n d dp dn

n0p 0

i p n p D n A 0exp 1exp 1exp 1D D D D qV qV J J J q p n qn L L kT L N L N kT qV J kT ????????????

=+=+?-=+?- ? ? ? ????? ? ?????????????

????

=- ???

????

3.薄基区二极管小子分布关系:n n0B ()exp 11qV x p x p kT W ??????

?=-?-

? ????????

? 2.4 PN 结的击穿

1.雪崩倍增因子 d i 0

1

1d x M x

α=

-

?

2.雪崩击穿近似计算

1

2

0C B s 2qN E V ε??= ???

3.突变结果的临界电场 1

3

1

2

4

7

G 8

C 0s 1.110 1.1E q E N ε????=? ? ???

??

4.突变结外加反向电压时的最大电场强度

11

2

200m ax

bi s s 22||()qN qN E V V V εε????=-≈ ???????

5.突变结果的雪崩击穿电压 3

32

13

s

2

4

B C

G 0

5.2102V E E N qN ε-==?

2.5 PN 结的势垒电容 ()()11

2

23s 0s

T T bi bi ()...212qN aq C A C A V V V V εε????==????--????

均匀(缓变)

2.6 PN 结的交流小信号特性与扩散电容 1. PN 结的直流增量电导 F D qI g kT

= 2. PN 结的扩散电容 F D D 22

qI g C kT

ττ=

=

第3章 双极结型晶体管

3.1 双极结型晶体管基础 电流放大系数关系:C B

.........11I I α

β

βαα

β

==

=

-+

3.2 均匀基区晶体管的电流放大系数 1.基区输运系 2

pC B pE B 112J W J L β*

??=

=- ???b

B

1ττ=- 2.基区度越时间 2

B b

B 2W D τ=B B pE p

C Q Q J J =≈ 3.基区少子寿命 B B pr

Q J τ=

4.注入效率 B E

E B

1W W ργρ=-

1

1E B R R =-口口 5.共基极电流放大系数 2

2

E E B

B

2

2

B

B1B B1

111122R R W W L R L R αδ????=--≈--=- ? ?????口口口口

6.共发射极电流放大系数 1

21

E B 2

B B 112R W L R δ

βδ

δ

--??-=

≈=+ ???

口口

7.异质结双极晶体管(HBT ) E G B11exp R E R kT γ???=- ???

口异口

3.4 双极晶体管的直流电流电压方程

1.埃伯斯-莫尔方程

BC BE E ES R C S

BC BE C ES C S

exp 1exp 1exp 1exp 1qV qV I I I kT kT qV qV I I I kT kT αα??????

??

=--- ? ???

??????????????????

=--- ? ???

????????

??

2.共发射极电流方程

BC BE B ES R C S

BC BE C ES C S

(1)exp 1(1)exp 1exp 1exp 1qV qV I I I kT kT qV qV I I I kT kT ααα??????

??

=--+-- ? ???

??????????

??????

??

=--- ? ???

????????

??

3.厄尔利电压 B B B B 0

A d

B B B B B B

C B

C E d d d d ()

()d d W W N x

N x V x W N W N W V V ≡

=

??

- ?

??

?

?

4.共发射极增量输出电阻 C E A o C

C

V V r I I ?≡=

? 5.均匀基区厄尔利电压 B bi

A dB

2,W V V x =

3.5 双极晶体管的反向特性 1.浮空电势 BE ln(1)0kT V q

α=

-< 2.基区穿通电压 2

B pt

C B B s C ()2N q V N N W N ε??=

+ ???

3.击穿电压 CBO B BV V = (共基极)

C EO BV =

(共发射极)

3.6 基极电阻 b e bb B 3B 2B1b

26212S S C d r R R R lS l

l

l

Ω'=

+

+

+

口口口

3.8 电流放大系数与频率的关系 1.特征频率 ()

T e

c

e b

b d c

11

22f πτπτ

τττ

=

=

+++0βf β=T

||,

()

f

f f f ωββ=<

<

2

dc B

ec T E cs T C T

E

B

m ax

1211222x W kT C r C f qI D v τπηη??

==

+

?

-++ ??? 3.10 功率增益和最高振荡频率 1.最大功率增益 o max T

p max 2

in

bb TC 8P f K P r C f

π'=

=

2.高频优值 2

T

p m ax bb T C

8f M K f

r C π'≡=

3.最高振荡频率 1

12T 2

M

bb T C 8f f M r C π'??== ???

第 5 章 绝缘栅场效应晶体管 5.2 MOSFET 的阈电压

1.P 型衬底的费米势 A FP i F i

1

ln

0N kT E E q q

n ?=-=

>() N 型衬底 D FN i

ln

0N kT q

n ?=-

<

2.阈值电压

()()()1

O X 2T M S FP FP

O X

1

2B FB FP S B FP S B 1

O X 2M S FP S B FP S

O X

222222Q V K C V V K V V V V Q K V V V C ????????=-

++=+++-++-=-

++-++ 5.3 MOSFET 的直流电流电压方程

1.电流电压方程 ()2D G S T D S D S p O X

D sat G S T

22D sat G S T D sat D sat G S T 1()()....211()22

Z I V V V V C L V V V I V V V V V V ββμββ?

?=--=????

=-?

?=--=-????非饱和区(饱和区)

5.5 MOSFET 的直流参数与温度特性 1.通导电阻 on R D S on D

G S T n O X G S T 1

()

()

V L

R I V V Z C V V βμ=

=

=

--

5.6 MOSFET 的小信号参数、高频等效电路及频率特性

1.跨导m

g m D S m s G S T D sat ()

()g V g V V V βββ==-=非饱和区(饱和区)

2.漏源电导ds g

d s G S

T D

S

D

s a t

d s s a t

D S

g V

V V I g V β=--?==?()()

3.跨导的截止角频率 m n G S T g 2g s g s

()1154V V R C

L

μω-=

=

? 4.本征最高工作频率 m

s

n G S T

T 2gs

()13222g V V f C L μππ-??=

=

?????

5.高频功率增益为 2

2

o max ms ds ms ds

p max 2

22

2i

gs

gs

gs

gs

44(2)P g r g r K P C R f C R ωπ=

=

=

6.最高振荡频率M f 1

1

22

m s ds ds

M T gs

gs gs 244g r

r

f f C R

R

π????=

= ? ? ? ????

?

微电子器件_刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢建立联系的,即 c h p h E ====υω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点 来看,半导体和绝缘体都存在着禁 带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流子 近乎为零,所以绝缘体室温下不能 导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件__刘刚前三章课后答案.

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 k n c h p h E ====υ ω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以 ()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体 积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不 能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子工艺习题总结(DOC)

1. What is a wafer? What is a substrate? What is a die? 什么是硅片,什么是衬底,什么是芯片 答:硅片是指由单晶硅切成的薄片;芯片也称为管芯(单数和复数芯片或集成电路);硅圆片通常称为衬底。 2. List the three major trends associated with improvement in microchip fabrication technology, and give a short description of each trend. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势 答:提高芯片性能:器件做得越小,在芯片上放置得越紧密,芯片的速度就会提高。 提高芯片可靠性:芯片可靠性致力于趋于芯片寿命的功能的能力。为提高器件的可靠性,不间断地分析制造工艺。 降低芯片成本:半导体微芯片的价格一直持续下降。 3. What is the chip critical dimension (CD)? Why is this dimension important? 什么是芯片的关键尺寸,这种尺寸为何重要 答:芯片的关键尺寸(CD)是指硅片上的最小特征尺寸; 因为我们将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易产生。 4. Describe scaling and its importance in chip design. 描述按比例缩小以及在芯片设计中的重要性 答:按比例缩小:芯片上的器件尺寸相应缩小是按比例进行的 重要性:为了优电学性能,多有尺寸必须同时减小或按比例缩小。 5. What is Moore's law and what does it predict? 什么是摩尔定律,它预测了什么 答:摩尔定律:当价格不变时,集成电路上可容纳的晶体管数,月每隔18个月便会增加1倍,性能也将提升1倍。 预言在一块芯片上的晶体管数大约每隔一年翻一番。 第二章 6. What is the advantage of gallium arsenide over silicon? 砷化镓相对于硅的优点是什么 答:优点:具有比硅更高的电子迁移率;减小寄生电容和信号损耗的特性;集成电路的速度比硅电路更快;材料的电阻率更大。 7. What is the primary disadvantage of gallium arsenide over silicon? 砷化镓相对于硅的主要缺点是什么 答:主要缺点:缺乏天然氧化物;材料的脆性;成本比硅高10倍;有剧毒性在设备,工艺和废物清除设施中特别控制。

微电子器件原理总结

三种管子的工作原理、符号、结构、电流电压方程、电导、跨导、频率 然后还有集边效应,二次击穿 双极型晶体管: 发射极电流集边效应: (1)定义:由于p-n 结电流与结电压的指数关系,发射结偏压越高,发射极边缘处的电流较中间部位的电流越大 (2)原因:基区体电阻的存在引起横向压降所造成的 (3)影响:增大了发射结边缘处的电流密度,使之更容易产生大注入效应或有效基区扩展效应,同时使发射结面积不能充分利用 (4)限制:限制发射区宽度,定义发射极中心到边缘处的横向压降为kT /q 时所对应的发射极条宽为发射极有效宽度,记为2S eff 。S eff 称为有效半宽度。 发射极有效长度 : (1)定义:沿极条长度方向,电极端部至根部之间压降为kT/q 时所对应的发射极长度称为发射极有效长度 (2)作用:类似于基极电阻自偏压效应,但沿Z 方向,作用在结的发射区侧 二次击穿和安全工作区: (1)现象:当晶体管集电结反偏增加到一定值时,发生雪崩击穿,电流急剧上升。当集电结反偏继续升高,电流I c 增大到某—值后,cb 结上压降突然降低而I c 却继续上升,即出现负阻效应。 (2)分类: 基极正偏二次击穿(I b >0)、零偏二次击穿和(I b =0)、反偏二次击穿(I b <0)。 (3)过程:①在击穿或转折电压下产生电流不稳定性; ②从高电压区转至低电压区,即结上电压崩落,该击穿点的电阻急剧下降; ③低压大电流范围:此时半导体处于高温下,击穿点附近的半导体是本征型的; ④电流继续增大,击穿点熔化,造成永久性损坏。 (4)指标:在二次击穿触发时间t d 时间内,消耗在晶体管中的能量 ?=d t SB IVdt E 0 称为二次击穿触发能量(二次击 穿耐量)。晶体管的E SB (二次击穿触发功率P SB )越大,其抗二次击穿能力越强。 (5)改善措施: 1、电流集中二次击穿 ①由于晶体管内部出现电流局部集中,形成“过热点”,导致该处发生局部热击穿。

微电子器件基础题13页word文档

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163 A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。内建电场的方向是从(N )区指向(P )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(短),内建电场的最大值就越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小),势垒 电容C T 就越( ),雪崩击穿电压就越(低)。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为 (0.8)伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒 高度会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(变宽),势垒区的势垒 高度会(增高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关 系可表示为( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(高);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(低)。 10、PN 结的正向电流由(空穴扩散Jdp )电流、(电子扩散电流Jdn )电流和(势垒区复合电流Jr )电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。 13、PN 结扩散电流的表达式为( )。这个表达式在正 向电压下可简化为( ),在反向电压下可简化为( )。 14、在PN 结的正向电流中,当电压较低时,以(复合)电流为主;当电 压较高时,以(扩散)电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(少子扩 散长度)。在薄基区二极管中,少子浓度的分布近似为(线性)。

清华大学半导体器件张莉期末考题

发信人: smallsheep (final examination), 信区: Pretest 标题: 微电子器件 发信站: 自由空间 (Mon Jun 20 10:27:10 2005), 站内 填空: 一,已知af,aR,和IES,求Ics=____(互易关系) 二.bjtA和bjtB。一个集电极是N-,一个集电极是N+ 问: 哪个饱和压降大___, 那个early电压大___ 那个容易电流集边___. 哪个容易穿通电压大_____ 哪个容易击穿BVCBO.____, 三.发射结扩散电容应该包括那几个时间常数的影响 简答: 1.β和ft对Ic的特性有很大的相似之处,比如在小电流段都随Ic的减小而减小,在大电流段都随Ic的增大而减小。请解释原因 2.总结一下NN+结的作用。 大题: 1.对于杂质浓度分布为NAB(x)=NAB(0)exp(-λx/WB)的分布,用moll-rose方法推出基区少子分布和渡越时间。 2.给了WB,WE,和其它一堆参数,求β,a,hef.... 求IB,Ic, 求π模型参数,gm,go,gu.. 3.画图,上升时间t0,t1’,t2’三点处的能带图,和少子分布图 总体来说很简单。好像很多人都很得意,ft! 发信人: willow (我要我的自由), 信区: Pretest 标题: 半导体器件-张莉 发信站: 自由空间 (Wed Jun 23 21:38:40 2004), 站内 A卷 1。以下那些是由热载流子效应引起的。。。 。。。6个选项,待补充。。。 2。何谓准静态近似 3。为了加快电路开关时间参数应如何选取 。。。参数,电容,fT,beita,待补充 4。CE律的参数变化, Vt,xSiO2,N,结深 按照参数的变化规律下列效应将如何变化 (1)掺杂浓度N引起:...5种效应,待补充。。。//sigh,我把N弄反了,5个空全错

微电子器件 课程基本要求

微电子器件 钟智勇 办公室:<微电子楼>217室 电话:83201440 E mail: zzy@https://www.360docs.net/doc/9a4898287.html, -mail:zzy@uestc edu cn 8:00--10:00 周二晚上8:00 答疑时间:周二晚上 答疑时间:

教材与参考书 1、教材与参考书 教材: 教材 微电子器件(第3版),陈星弼,张庆中,2011年 参考书 参考书: 1.半导体器件基础,B.L.Anderson, R.L.Anderson, 清华大学出版社,2008年 2.半导体器件基础,Robert F. Pierret, 电子工业出版社,2004年 2半导体器件基础Robert F Pierret电子工业出版社 3.集成电路器件电子学(第三版),Richard S. Muller,电子工业出版社, 2004年 4.半导体器件物理与工艺(第二版),施敏,苏州大学出版社,2002年 5.半导体物理与器件(第三版),Donald A. Neamen, 清华大学出版社, 2003年 6. Physics of Semiconductor Devices( 3th Edition), S M Sze, Wiley- Interscience, 2007

2、学时、成绩构成与考核 总学时数:72学时 其中课堂讲授:60学时,实验:12 学时 成绩构成: 70分期中考试:分平时:10分实验:10 期末考试:70 分、期中考试:10分、平时:10 分、实验:10 分考试形式:闭卷考试

3、课程要求 1、网上只公布教材的标准课件与参阅资料,请做好笔记! 网址:网络学堂:http://222.197.183.243/wlxt/course.aspx?courseid=0311下载密码i 下载密码:micro 2、请带计算器与作业本上课! 请带计算器与作业本上课! 3、鼓励学生学习,以下情况加分(最高加分为5分): 鼓励学生学习以下情况加分(最高加分为 3.1 完成调研作业并在期末做presentation(ppt)者 3.2 在黑板上完成课堂练习者 3.3 指出教材错误及对教学/教材提出建设性意见者

微电子器件公式表

微电子器件公式 部分物理常数: 191412S 1031412G i S 13314G i OX 1.610C,0.026V (300k),(Si)11.88.85410 1.04510F cm,(Si) 1.09eV,(Si) 1.510cm ,(Ge)168.85410 1.41710F cm,(Ge)0.66eV,(Ge) 2.410cm , 3.98.85410 3.45q kT q T E n E n εεε--------=?===??=?==?=??=?==?=??=13310F cm -? 第1章 半导体器件基本方程 1. 泊松方程 D A s d ()d E q p n N N x ε=-+- 2. 电流密度方程 n n n p p p d d d d n J q n E q D x p J q p E q D x μμ=+=- 3. 电荷控制方程 n n n n p p p p d d d d Q Q I t Q Q I t ττ?=--?=-- 第2章 PN 结 2.1 PN 结的平衡状态 1.平衡多子 p0A i n0D i () p N n n N n =>>=>>P 区(N 区) 2.平衡少子 22 i i p0i p0A 22i i n0i n0D () n n n n P p N n n p n n N ==<<= =<<区(N 区) 3.内建电势 A D bi 2 i ln N N kT V q n = 4.最大电场强度 12 0m a x b i s 2qN E V ε??= ??? 5.N 区耗尽区宽度 1 2 s s A n max bi D D A D 2()N x E V qN q N N N εε??= =???+?? 6.P 区耗尽区宽度 12 s s D p max bi A A A D 2()N x E V qN q N N N εε??= =???+?? 7.总耗尽区宽度 12 b i s d n p b i m a x 022V x x x V E qN ε?? =+==???? 2.2 PN 结的直流电流电压方程 1.在N 型区与耗尽区的边界处,即 n x 处 n n n 0()e x p qV p x p kT ??= ??? 在P 型区与耗尽区的边界处,即 –p x 处 p p p0()exp qV n x n kT ??-= ??? 2.PN 结总的扩散电流密度 d J

√增强载流子迁移率是新一代微电子器件和电路发展的重要方向

增强载流子迁移率是新一代微电子器件和电路发展的重要方向 (作者:Xie Meng-xian,电子科技大学微固学院) (1)集成电路发展状况: 作为微电子技术的主体——集成电路,它的发展已经经历了若干个重要阶段,从小规模、中规模,到大规模、乃至超大规模、特大规模等。微电子技术的这种长足的进步,在很大程度上就是在不断努力地缩短场效应器件的沟道长度,这主要是通过改善微电子工艺技术、提高加工水平来实现的。尽管现在沟道长度已经可以缩短到深亚微米、乃至于纳米尺寸了,但是要想再继续不断缩短沟道长度的话,将会受到若干因素的限制,这一方面是由于加工工艺能力的问题,另一方面是由于器件物理效应(例如短沟道效应、DIBL效应、热电子等)的问题。因此,在进一步发展微电子技术过程中,再单只依靠缩短沟道长度就很不现实、甚至也可能了,则必须采用新的材料、开发新的工艺和构建新的器件结构,才能突破因缩短沟道所带来的这些限制。 实际上,从集成电路的发展趋势来看,大体上可以划分为三大阶段: ①K时代(Kbit,KHz):微细加工的时代(不断缩短有效尺寸)~“微米时代”; ②M时代(Mbit,MHz):结构革命的时代(不断改进器件和电路结构)~“亚微米时代”; ③G时代(Gbit,GHz):材料革命的时代(不断开发新材料、新技术)~“10纳米时代”。 现在已经开始进入G时代,因此,在不断开发新技术的同时,特别值得注意的是新材料的开发;不仅要开发新型的半导体材料(例如宽禁带半导体、窄禁带半导体、大极性半导体等),而且也要开发各种新型的辅助材料(例如高K、低K介质材料,Cu电极材料,新型表面钝化材料等)。器件和电路研究者应该多加注意新材料的开发应用;而新材料研究者应该多加注意往器件和电路的应用上下功夫。 在新的材料和工艺技术方面现在比较受到重视的是高介电常数(高K)材料和Cu互连技术。当沟道长度缩短到一定水平时,为了保持栅极的控制能力,就必须减小栅极氧化层厚度(一般,选取栅氧化层厚度约为沟道长度的1/50),而这在工艺实施上会遇到很大的困难(例如过薄的氧化层会出现针孔等缺陷);因此就采用了高介电常数的介质材料(高K材料)来代替栅极氧化物,以减轻制作极薄氧化层技术上的难度。另外,沟道长度缩短带来芯片面积的减小,这相应限制了金属连线的尺寸,将产生一定的引线电阻,这就会影响到器件和电路的频率、速度;因此就采用了电导率较高一些的Cu来代替Al作为连线材料,以进一步改善器件和电路的信号延迟性能。可见,实际上所有这些高K材料和Cu互连等新技术的采用都是不得已而为之的,并不是从半导体材料和器件结构本身来考虑的。 显然,为了适应器件和电路性能的提高,最好的办法是另辟途径,应该考虑如何进一步发挥半导体材料和器件结构的潜力,并从而采用其他更有效的技术措施来推动集成电路的发展。现在已经充分认识到的一种有效的技术措施就是着眼于半导体载流子迁移率的提高(迁移率增强技术)。 (2)迁移率增强技术: 迁移率(μ)是标志载流子在电场作用下运动快慢的一个重要物理量,它的大小直接影响到半导体器件和电路的工作频率与速度。 对于双极型晶体管而言,高的载流子迁移率可以缩短载流子渡越基区的时间,使特征频率(f T)提高,能够很好的改善器件的频率、速度和噪音等性能。 对于场效应晶体管而言,提高载流子迁移率则具有更加重要的意义。因为MOSFET的最大输出电流——饱和漏极电流I DS可表示为:

微电子器件公式表

微电子器件公式: 部分物理常数: 191412S 1031412G i S 13314G i OX 1.610C,0.026V (300k),(Si)11.88.85410 1.04510F cm,(Si) 1.09eV,(Si) 1.510cm ,(Ge)168.85410 1.41710F cm,(Ge)0.66eV,(Ge) 2.410cm , 3.98.85410 3.45q kT q T E n E n εεε--------=?===??=?==?=??=?==?=??=13310F cm -? 第1章 半导体器件基本方程 1. 泊松方程 D A s d ()d E q p n N N x ε=-+- 2. 电流密度方程 n n n p p p d d d d n J q nE qD x p J q pE qD x μμ=+=- 3. 电荷控制方程 n n n n p p p p d d d d Q Q I t Q Q I t ττ?=-- ?=- - 第2章 PN 结 2.1 PN 结的平衡状态 1.平衡多子 p0A i n0D i ()p N n n N n =>>=>>P 区(N 区) 2.平衡少子 22 i i p0i p0A 22i i n0i n0D () n n n n P p N n n p n n N ==<<= =<<区(N 区) 3.内建电势 A D bi 2i ln N N kT V q n = 4.最大电场强度 1 2 0max bi s 2qN E V ε??= ??? 5.N 区耗尽区宽度 12 s s A n max bi D D A D 2()N x E V qN q N N N εε??= =???+?? 6.P 区耗尽区宽度 1 2 s s D p max bi A A A D 2()N x E V qN q N N N εε??= =???+?? 7.总耗尽区宽度 12 bi s d n p bi max 022V x x x V E qN ε??=+==???? 2.2 PN 结的直流电流电压方程 1.在N 型区与耗尽区的边界处,即 n x 处 n n n0()exp qV p x p kT ??= ???

微电子技术前沿复习(带答案的哦)

微电子前沿复习提纲 看一些微电子技术发展的知识 1.请给出下列英文缩写的英文全文,并译出中文: CPLD: Complex Programmable Logic Device复杂可编程逻辑器件 FPGA: Field-Programmable Gate Array 现场可编程门阵列 GAL:generic array logic 通用阵列逻辑 LUT: Look-Up-Table 显示查找表 IP: Intellectual Property 知识产权 SoC: System on Chip 片上系统 2.试述AGC BJT器件实现AGC特性的工作原理; 试说明为什么 AGC BJT的工作频率范围受限? AGC 即自动增益控制(Automatic Gain Control) ? AGC BJT器件实现AGC特性的工作原理:当输入增加时,输出会同时增加,我们 可利用双极型晶体管的大注入效应和大电流下的基区扩展--kirk效应,衰减增益, 使放大系数降低,则达到了稳定输出的目的。 ?工作频率范围受限原因: 1) 、自动增益控制特性与频率特性是相矛盾,实现AGC需要基区展宽,而器件 的工作频率与基区宽度的平方成反比,要实现大范围的自动增益控制,要求 宽基区,使得工作频率范围受限。 2) 、实现AGC要求基区大注入,基区掺杂浓度低时,易于发生大注入效应,而基 区掺杂浓度动愈低,器件高频噪声愈差,使得工作频率范围受限。 3.为什么双栅MOSFET具有良好的超高频(UHF)特性? 双栅MOSFET结构如图: 1) 、双栅MOS的端口 Gl靠近源极,对应的基区宽度短,加高频信号,称信号栅,可以实现超高频。 G2靠近漏极,对应的基区宽度较宽,有良好的AGC性能,加固定偏置或AGC电压,作增益控制栅。 2) 、它通过第二个栅极G2交流接地, 可在第一个栅极G1和漏极D之间起到有效的 静电屏蔽作用, 从而使得栅极与漏极之间的反馈电容(是Miller电容)大大减小,则 提高了频率。 4.为什么硅栅、耐熔金属栅能实现源漏自对准,而铝栅不行?实现

电子科技大学《微电子器件》课程重点与难点

重点与难点 第1章半导体器件基本方程 一般来说要从原始形式的半导体器件基本方程出发来求解析解是极其困难的,通常需要先对方程在一定的具体条件下采用某些假设来加以简化,然后再来求其近似解。随着半导体器件的尺寸不断缩小,建立新解析模型的工作也越来越困难,一些假设受到了更大的限制并变得更为复杂。简化的原则是既要使计算变得容易,又要能保证达到足够的精确度。如果把计算的容易度与精确度的乘积作为优值的话,那么从某种意义上来说,对半导体器件的分析问题,就是不断地寻找具有更高优值的简化方法。要向学生反复解释,任何方法都是近似的,关键是看其精确程度和难易程度。此外,有些近似方法在某些条件下能够采用,但在另外的条件下就不能采用,这会在后面的内容中具体体现出来。 第2章PN结 第2.1节PN结的平衡状态 本节的重点是PN结空间电荷区的形成、内建电势的推导与计算、耗尽区宽度的推导与计算。 本节的难点是对耗尽近似的理解。要向学生强调多子浓度与少子浓度相差极其巨大,从而有助于理解耗尽近似的概念,即所谓耗尽,是指“耗尽区”中的载流子浓度与平衡多子浓度或掺杂浓度相比可以忽略。

第2.2节PN结的直流电流电压方程 本节的重点是对PN结扩散电流的推导。讲课时应该先作定性介绍,让学生先在大脑中建立起物理图象,然后再作定量的数学推导。当PN结上无外加电压时,多子的扩散趋势正好被高度为qV bi的势垒所阻挡,电流为零。外加正向电压时,降低了的势垒无法阻止载流子的扩散,于是构成了流过PN结的正向电流。正向电流的电荷来源是P区空穴和N区电子,它们都是多子,所以正向电流很大。外加反向电压时,由于势垒增高,多子的扩散变得更困难。应当注意,“势垒增高”是对多子而言的,对各区的少子来说,情况恰好相反,它们遇到了更深的势阱,因此反而更容易被拉到对方区域去,从而构成流过PN结的反向电流。反向电流的电荷来源是少子,所以反向电流很小。 本节的难点是对有外加电压时势垒区两旁载流子的运动方式的理解、以及电子(空穴)电流向空穴(电子)电流的转化。 第2.3节准费米能级与大注入效应 本节的重点是PN结在外加正向电压和反向电压时的能带图、大注入条件及大注入条件下的PN结电流公式。 本节的难点是大注入条件下自建场的形成原因。要向学生说明,大注入自建场的推导与前面进行过的非均匀掺杂内建场的推导在本质上是相同的,都是令多子电流密度方程为零而解出电场,这也是分析微电子器件时的一种常用方法。 第2.4节PN结的击穿 本节的重点是利用雪崩击穿临界电场和通过查曲线来求得雪崩击穿电压的方法,以及PN结的实际结构(高阻区的厚度和结深)对击穿电压的影响,这些都是实际工程中的常见问题。

新人教版四年级语文上册-单元期中期末专项练习-第八组达标检测B卷及答案

第八组达标测试卷 一、基础达标。(共43分) 1.在加点字的正确读音下画“——”。(6分) 潜.入深海(qián qiǎn) 筛.选(shān shāi) 烹. 调(pēng hēng) 例.如(lì liè) 盐碱.(jiǎn xián) 储. 存(cǔ chǔ) 崭.新(zhǎn zhàn) 船舶.(bō bó) 凌. 空(lín líng) 提供.(gōng gòng) 奇迹.(jī jì) 楷模. (mú mó) 2.比一比,再组词。(4分) ?????赖( )懒( ) ?????辐( )副( ) ?????舶( )泊( ) ?????综( )棕( ) 3.正确书写词语。(8分) 4.连一连。(8分) 5.还原下面广告中的成语,找出改动的字画圈,把正确的字写在括

号里。(3分) 服装广告:百衣百顺()蚊香广告:默默无蚊() 磁化杯广告:有杯无患() 摩托车广告:骑乐无穷() 淋浴器广告:湿出有名() 软件广告:无网不胜() 6.用正确的关联词填空。(4分) (1)科学家们提出,鸟类()和恐龙有亲缘关系,()很可能 就是一种小型恐龙的后裔。 (2)()食用,太空归来的这些特殊乘客()有很多用武之地 呢! (3)电脑根据这些气象资料,为主人提供一个()节能()舒 适的家居环境。 (4)()太空蔬菜走进了千家万户,()我们餐桌上的菜肴更 丰富了。 7.句子训练。(10分) (1)我国科学家在辽宁西部首次发现了保存有羽毛印痕的恐龙化石。 (缩句) ________________________________________________________ (2)靠什么呼风唤雨呢?靠的是现代科学技术。(仿写) ________________________________________________________ (3)满天的星星在夜空中闪烁着光芒。(改为比喻句) ________________________________________________________ (4)我走上阳台。我去看爸爸养的金鱼。(合成一句话)

最新微电子器件基础题

微电子器件基础题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电 荷。内建电场的方向是从(N )区指向(P )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(短),内建电场的最大值就 越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小),势垒电容C T 就越( ),雪崩击穿电压就越(低)。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为(0.8)伏 特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度 会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(变宽),势垒区的势垒高度 会(增高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可 表示为( )。若P 型区的掺杂浓度173 A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平 衡少子浓度(高);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(低)。 10、PN 结的正向电流由(空穴扩散Jdp )电流、(电子扩散电流Jdn )电流和 (势垒区复合电流Jr )电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的 反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。 13、PN 结扩散电流的表达式为( )。这个表达式在正向电压下可简 化为( ),在反向电压下可简化为( )。 14、在PN 结的正向电流中,当电压较低时,以(复合)电流为主;当电压较 高时,以(扩散)电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(少子扩散长 度)。在薄基区二极管中,少子浓度的分布近似为(线性)。 16、小注入条件是指注入某区边界附近的(非平衡少子)浓度远小于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(非平衡)多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的(非平衡少子)浓度远大于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(平衡)多子浓度可以忽略。

微电子器件工艺

《微电子器件工艺》课程设计报告 班级:电子09-2 学号: 0906040206 姓名:高春旭 指导教师:白立春

N阱硅栅结构的CMOS集成电工艺设计 一.基本要求 设计如下电路的工艺流程 (1)设计上图所示电路的生产工艺流程: (2)每一具体步骤需要画出剖面图; (3)每一个步骤都要求说明,例如进行掺杂时,是采用扩散还是离子注入,需要 解释原因,又如刻蚀,采用的是干法刻蚀,还是湿法刻蚀,这类问题都须详细说明. (4)在设计时,要考虑隔离,衬底选择等问题. (5)要求不少于5页,字迹工整,画图清楚. 二、设计的具体实现 2.1 工艺概述 n阱工艺为了实现与LSI的主流工艺增强型/耗层型(E/D)的完全兼容,n 阱CMOS工艺得到了重视和发展。它采用E/D NMOS的相同的p型衬底材料制备NMOS器件,采用离子注入形成的n阱制备PMOS器件,采用沟道离子注入调整两种沟遭器件的阈值电压。 n阱CMOS工艺与p阱CMOS工艺相比有许多明显的优点。首先是与E/D NMOS工艺完全兼容,因此,可以直接利用已经高度发展的NMOS 工艺技术;其次是制备在轻掺杂衬底上的NMOS的性能得到了最佳化--保持了高的电子迁移率,低的体效应系数,低的n+结的寄生电容,降低了漏结势垒区的电场强度,从而降低了电子碰撞电离所产生的电流等。这个优点对动态CMOS电路,如时钟CMOS电路,多米诺电路等的性能改进尤其明显。

这是因为在这些动态电路中仅采用很少数目的PMOS器件,大多数器件是NMOS 型。另外由于电子迁移率较高,因而n阱的寄生电阻较低;碰撞电离的主要来源—电子碰撞电离所产生的衬底电流,在n阱CMOS中通过较低寄生电阻的衬底流走。而在p阱CMOS中通过p阱较高的横向电阻泄放,故产生的寄生衬底电压在n阱CMOS中比p阱要小。在n阱CMOS中寄生的纵向双极型晶体管是PNP型,其发射极电流增益较低,n阱CMOS结构中产生可控硅锁定效应的几率较p阱为低。由于n阱 CMOS的结构的工艺步骤较p阱CMOS简化,也有利于提高集成密度.例如由于磷在场氧化时,在n阱表面的分凝效应,就可以取消对PMOS的场注入和隔离环。杂质分凝的概念:杂质在固体-液体界面上的分凝作用 ~ 再结晶层中杂质的含量决定于固溶度→ 制造合金结(突变结);杂质在固体-固体界面上也存在分凝作用 ~ 例如,对Si/SiO2界面:硼的分凝系数约为3/10,磷的分凝系数约为10/1;这就是说,掺硼的Si经过热氧化以后, Si表面的硼浓度将减小,而掺磷的Si 经过热氧化以后, Si表面的磷浓度将增高)。 n阱CMOS基本结构中含有许多性能良好的功能器件,对于实现系统集成及接口电路也非常有利。图A (a)和(b)是p阱和n阱CMOS结构的示意图。 N阱硅栅CMOS IC的剖面图 N离子注入 2.2 现在COMS工艺多采用的双阱工艺制作步骤主要表现为以下几个步骤:

微电子工程学复习题

第一章: 1、电子器件微型化和大规模集成的含义是什么?其具有怎样的实际意义。 答:电子器件微型化主要是指器件的最小尺寸,也就是特征尺寸变小了。大规模集成是指在单个芯片上所继承的电子器件数量越来越多。 电子器件微型化和大规模集成的意义: 1)提高速度和降低功耗只有提高集成度,才能减少电子系统内部的连线和最大限度地减少封装管壳对速度的影响。提高速度和提高集成度是统一的,前者必须通过后者来实现。同时采用低功耗、高速度的电路结构(器件结构) 2)提高成品率与可靠性大规模集成电路内部包含的大量元件都已彼此极其紧密地集成在一块小晶片上,因此不像中、小规模集成电路组成的电子系统那样,由于元件与元件,或电路与电路之间装配不紧密,互连线长且暴露在外,易受外界各种杂散信号的干扰,所以说大规模集成电路提高了系统可靠性。 为了提高为电子器件的成品率,需要在少增加电路芯片面积的前提下尽可能容纳更多的电子元件,也就是采取提高元件密度的集成方法。 3)低成本大规模集成电路制造成本和价格比中、小规模集成电路大幅度下降是因为集成度和劳动生产率的不断提高。 综上所述,大规模和超大规模集成电路的微型化、低成本、高可靠和高频高速四大特点,正是电子设备长期追求的技术指标和经济指标,而这四大特点中后三个特点皆源于微型化的特点。因此这四大特点是统一的、不可分割的。 2、超大规模集成电路面临哪些挑战? 答:首先是大直径的硅材料, 随着集成电路技术的发展,硅单晶直拉生产技术,在单晶尺寸、金属杂质含量、掺杂元素和氧分布的均匀性及结晶缺陷等方面得到了不断的改进。目前,通常使用的硅单晶抛光片的直径已达到300mm,400mm硅单晶片的制造也已经开始。如何控制400mm晶体中点缺陷将是面临的重大挑战。 其次是光刻技术:在微电子制造技术中,最为关键的是用于电路图形生成和复制的光刻技术。更短波长光源、新的透镜材料和更高数字孔径光学系统的加工技术,成为首先需要解决的问题;同时,由于光刻尺寸要小于光源波长,使得移相和光学邻近效应矫正等波前工程技术成为光学光刻的另一项关键技术。 最后是器件工艺。当器件的沟道长度缩小到0.1um时,已开始逼近传统的半导体物理的极限。随之而来的是栅氧化层不断减薄,SiO2作为传统的栅氧化层已经难以保证器件的性能。同时随着半导体器件工艺的特征尺寸不断地缩小,芯片内部的多层内连线工艺也逐渐成为半导体工艺发展的挑战。 3、阐述微电子学概念及其重要性。 答:微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、子系统及系统的电子学分支。 微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。 微电子学是以实现电路和系统的集成为目的的,故实用性极强。微电子学中所实现的电路和系统又称为集成电路和集成系统。 微电子学是信息领域的重要基础学科,在信息领域中,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息载体的科学,构成了信息科学的基石。其发展水平直接影响着整个信息技术的发展。 微电子科学技术是信息技术中的关键之所在,其发展水平和产业规模是一个国家经济实力的重要标志。

半导体物理与器件公式以及参数

半导体物理与器件公式以及参数 SI材料的禁带宽度为:1.12ev. 硅材料的 Ge材料的 GaAs材料的 介电弛豫时间函数:瞬间给半导体某一表面增加某种载流子,最终达到电中性的时间, ,其中 ,最终通过证明这个时间与普通载流子的寿命时间相比十分的短暂,由此就可以证明准电中性的条件。 热平衡状态下半导体的费米能级,本征半导体的费米能级,重新定义的是存在过剩载流子时的准费米能级。 准费米能级:半导体中存在过剩载流子,则半导体就不会处于热平衡状态,费米能级就会发生变化,定义准费米能级。 用这两组公式求解问题。 通过计算可知,电子的准费米能级高于,空穴的准费米能级低于,对于多子来讲,由于载流子浓度变化不大,所以准费米能级基本靠近热平衡态下的费米能级,但是对于少子来讲,少子浓度发生了很大的变化,所以费米能级有相对比较大的变化,由于注入过剩载流子,所以导致各自的准费米能级都靠近各自的价带。

过剩载流子的寿命: 半导体材料:半导体材料多是单晶材料,单晶材料的电学特性不仅和化学组成相关而且还与原子排列有关系。半导体基本分为两类,元素半导体材料和化合物半导体材料。 GaAs主要用于光学器件或者是高速器件。 固体的类型:无定型(个别原子或分子尺度内有序)、单晶(许多原子或分子的尺度上有序)、多晶(整个范围内都有很好的周期性),单晶的区域成为晶粒,晶界将各个晶粒分开,并且晶界会导致半导体材料的电学特性衰退。 空间晶格:晶格是指晶体中这种原子的周期性排列,晶胞就是可以复制出整个晶体的一小部分晶体,晶胞的结构可能会有很多种。原胞就是可以通过重复排列形成晶体的最小晶胞。三维晶体中每一个等效的格点都可以采用矢量表示为,其中矢量,,称为晶格常数。晶体中三种结构,简立方、体心立方、面心立方。 原子体密度每晶胞的原子数每晶胞的体积 米勒指数,对所在平面的截距取倒数在进行通分,所有平行平面的米

电子科技大学微电子器件习题教学文稿

电子科技大学微电子 器件习题

第二章 PN结 填空题 1、若某突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为()和()。 2、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。内建电场的方向是从()区指向()区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。 4、PN结的掺杂浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。 5、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。 6、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会 ()。 7、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会 ()。 8、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。若P型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为()。 9、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。 10、PN结的正向电流由()电流、()电流和()电流三部分所组成。 11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。 15、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄基区二极管中,少子浓度的分布近似为()。 16、小注入条件是指注入某区边界附近的()浓度远小于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的()浓度远大于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 18、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN结的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 19、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。

相关文档
最新文档