金属锻造成形的基本知识

金属锻造成形的基本知识
金属锻造成形的基本知识

金属锻造成形的基本知识

锻造的根本目的:获得所需形状和尺寸的锻件,同时要求性能和组织符合一定的技术要求。锻造的特点是利用金属的塑性流动来成形的,(借助于外力的作用产生塑性变形,获得所需形状、尺寸)在成形过程中不仅坯料的重量基本是不变的,而且体积也是基本不变,只有组织和性能发生变化。优点是锻件内部致密且组织比较均匀,性能高于铸件和焊接件,缺点是需要较大的变形力。

锻造的分类:

按工具和模具安置情况分为自由锻和模锻;按温度分为热锻、温锻、冷锻。

钢的加热规范:

指钢料从装炉开始到出炉前(始锻温度)的整个过程,对炉温和料温随时间变化的关系所作的规定。

火焰加热是利用燃料(煤、油、气)燃烧所产生的热能直接加热金属的方法。优点:炉子修造容易,费用低,加热适应性强;缺点:劳动条件差,加热质量难控制。

电加热是利用电能转换为热能来加热金属的方法。优缺点与上相反,但铝合金由于熔点低必须电加热。

锻造温度范围的确定:

是指始锻温度和终锻温度间的一段温度间隔,在锻造温度范围内金属应具有良好的可锻性(足够的塑性,低的变形抗力)和合适的金相组织,为了减少火次,都力求扩大温度范围。

始锻温度:一般低于Fe-C液相图150~250℃,首先保证无过烧现象。

一般低碳1300℃,中碳1230℃,高碳1150℃。

终端温度:在结束锻造之前,金属还应有足够的塑性,以锻后能获得再结晶组织,没有加工硬化现象为原则。过高的终锻温度会使锻件晶粒在冷却过程中继续长大,从而降低机械性能;过低终锻温度,由于塑性极低造成加工硬化现象,甚至产生裂纹。

锻造比:是表示金属变形程度大小的指标,它关系着铸造粗大晶粒的破碎,内部缺陷的锻合,是保证锻件内部质量和满足性能要求的重要依据。

1、镦粗比的计算:镦粗的目的是为了增大横截面积,打碎金属内

部粗大晶粒结构,获得较好的内部质量。Y镦=(S后/S前截面积)(H

前/H后高度

2、拔长锻造比的计算:拔长目的在于减小截面尺寸,增大长度尺

寸。Y拔=(S前/S后)(L后/L前长度)

3、有镦粗和拔长,两者叠加。

锻造比的选择:由于标志金属变形程度的大小。

钢锭作为锻造坯料时:碳素钢Y≥3;合金钢Y≈3~4。

轧材或锻坯作坯料时:Y≥1.5。

镦粗前坯料的高度与直径之比,应控制2~2.5,最大不超过3。

工艺:

1、热锻:是目前应用最广的一种锻造工艺。经过热锻,内部组织发

生了巨大的变化:粗大柱状晶粒经塑性变形和再结晶后变成等轴晶粒的锻造组织,疏松,空隙,微裂纹经压紧和焊合后消失或减小。2、温锻(半热锻)

自由锻造的基本工序:

镦粗使毛坯高度减少、横断面积增大的锻造工序,作用:由横断面积较小的坯料得到横断面积较大而高度较小的锻件;冲孔前增大毛坯横断面积和平整毛坯端面;提高下一步拔长是锻造比;提高锻件的力学性能和减少力学性能的异向性。

拔长使横断面积减少而长度增加的工序。

冲孔在坯料中冲出透孔或不透孔的锻造工序。

扩孔减少空心毛坯壁厚而增加其内外径的工序。

弯曲,扭转,错移。

锻件的主要缺陷:

1、裂纹

2、过烧:加热温锻过高或加热时间过长。

3、白点:钢中含氢量过高,锻后未及时去氢。

4、龟裂:钢中Cu、Sn、S含量过多。

5、折叠:砧板形状不适当,圆角过小,送进量小于压下量。

6、化学成分不合格,炼钢控制。

铸造成型工艺

名词解释 1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法 2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁) 4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢) 5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性 6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。 7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法 9.金属型铸造:以金属为铸型、在重力下的液态成形方法。 10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法 11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法 12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺 13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型 14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法 15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法 16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成 17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面 18.集渣包:横浇道上被局部加大加高的部分 19.浇口比:直浇道,横浇道,内浇道截面积之比 20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷 分型面:两半铸型相互接触的表面。分为平直和曲面。作用:便于造型、下芯和起模具。 21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块 22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头 23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 冒口=冒口区+轴线缩松区+末端区 24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块 26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法 27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。大而集中的称为锁孔,细小而分散的称为缩松 28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值 29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数 30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。它既保留原组分的主要特征,又获得了原组分不具备的优越性能 31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。 32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道 33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例 34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法 35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法

金属材料的熔炼和浇铸部分实验报告

金属材料的熔炼和浇铸部分实验报告 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

《材料的制备 技术 与实践课程-金属材料》 金属材料的熔炼和浇铸部分实验报告 一、实验目的 金属材料的熔炼和铸造作为金属材料使用最为广泛的成型方法之一, 在工业零件,尤其是大型零件的制备中具有不可替代的地位。本实验通过对有色合金进行熔炼浇注,了解铸造的整个流程,对金属的铸造有直观的认识。 二、实验方法 实验步骤: 1. 坩埚熔炼炉的使用 本实验使用电阻坩埚熔炼炉,主要包括两个部分:加热部分-电阻丝加热熔炼炉和控温部分-控温继电器。 打开总电源,在控温继电器的显示屏幕上显示有两个数字,红色的数字为当实验名称 金属材料的熔炼和浇铸部分 时间地点 2015年12月 23 日 材料学院325室 指导教师 王军、严彪 专业班级 无机 班 级 无机班 学生姓名 沈 杰 学 号 1531519

前熔炼炉炉内温度,绿色数字为设定的加热保温温度。待继电器示数稳定后,对加热温度进行设置。 点击按钮,设定数字变为4位数并闪动,点击按钮,选择要改变的位置,按进行调节,直到设定为想要的温度。点击按钮,确定加热保温温度。打开加热电源后,电流表显示有加热电流,说明已经开始加热。到达温度后保温一段时间,直至坩埚内金属熔化为液态。 2.金属浇注的方法 关闭加热电源,打开熔炼炉炉盖,用铁钳将坩埚从熔炼炉中取出,慢慢倾倒坩埚,使得里面的金属溶液慢慢流入模具中,充满整个形腔。将模具静置,待其冷却后卸模取样。 注意事项: 金属浇注是高温操作,必须注意安全,必须穿戴白帆布工作服和工作皮鞋。严格按照操作流程,预防危险。浇注前,必须清理浇注行进通道,防止摔倒。浇注时必须切断加热电源。在浇注前对模具进行预烘,防止模具中残留水分导致金属溶液飞溅。 三、思考题 1、铸造时温度的选择有什么要求 铸造过程中温度的选择至关重要:过高温度浇注易造成粘砂、铁夹砂、缩孔、缩松、热裂、跑火、局部氧化、尺寸不合格、反应性气孔偏多等缺陷;过低温度浇注易造成:浇不足、冷隔、过渡圆角偏大、夹渣、夹砂、析出性气孔偏多

金属材料的熔炼和浇铸部分实验报告 (1)

《材料的制备技术与实践课程-金属材料》 金属材料的熔炼和浇铸部分实验报告 一、实 验目的 金 属材料的熔炼 和铸造作为金 属材料使用最为广泛的成型方法之 一,在工业零件,尤其是大型零件的制备中具有不可替代的地位。本实验通过对有色合金进行熔炼浇注,了解铸造的整个流程,对金属的铸造有直观的认识。 二、实验方法 实验步骤: 1. 坩埚熔炼炉的使用 本实验使用电阻坩埚熔炼炉,主要包括两个部分:加热部分-电阻丝加热熔炼炉和控温部分-控温继电器。 打开总电源,在控温继电器的显示屏幕上显示有两个数字,红色的数字为当实验名称 金属材料的熔炼和浇铸部分 时间地点 2015年12月 23 日 材料学院325室 指导教师 王军、严彪 专业班级 无机 班 级 无机班 学生姓名 沈 杰 学 号 1531519

前熔炼炉炉内温度,绿色数字为设定的加热保温温度。待继电器示数稳定后,对加热温度进行设置。 点击按钮,设定数字变为4位数并闪动,点击按钮,选择要改变的位置,按进行调节,直到设定为想要的温度。点击按钮,确定加热保温温度。打开加热电源后,电流表显示有加热电流,说明已经开始加热。到达温度后保温一段时间,直至坩埚内金属熔化为液态。 2.金属浇注的方法 关闭加热电源,打开熔炼炉炉盖,用铁钳将坩埚从熔炼炉中取出,慢慢倾倒坩埚,使得里面的金属溶液慢慢流入模具中,充满整个形腔。将模具静置,待其冷却后卸模取样。 注意事项: 金属浇注是高温操作,必须注意安全,必须穿戴白帆布工作服和工作皮鞋。严格按照操作流程,预防危险。浇注前,必须清理浇注行进通道,防止摔倒。浇注时必须切断加热电源。在浇注前对模具进行预烘,防止模具中残留水分导致金属溶液飞溅。 三、思考题 1、铸造时温度的选择有什么要求? 铸造过程中温度的选择至关重要:过高温度浇注易造成粘砂、铁夹砂、缩孔、缩松、热裂、跑火、局部氧化、尺寸不合格、反应性气孔偏多等缺陷;过低温度浇注易造成:浇不足、冷隔、过渡圆角偏大、夹渣、夹砂、析出性气孔

金属锻造工艺优缺点

金属锻造工艺优缺点 ?锻造是最古老的金属成型工艺。它通过金属变形过程生产零件。 ?用于生产简单零件,例如螺栓头,压力容器和轴。 ?增加了材料的强度,韧性和疲劳寿命。这是由于晶粒结构的重新排列。 ?非常适合用于大批量零件,但必须进行后处理,并且该过程的零件几何形状能力受到限制。 锻造曲轴 金属锻造是最古老的金属成型工艺,它通过金属变形过程生产零件。 根据变形机理,锻造过程分为两种:冲击锻造和压缩锻造。 在冲击锻造中,使用锤子将冲击力施加到工件上。在压缩锻造中,向工件施加恒定压力。锻造过程还可以根据工件的温度分为两种类型:热锻在材料的重结晶温度下进行,冷锻在室温下进行。

无论使用哪种处理类型,处理都非常简单。将工件放在底部模具上,而顶部模具则施加冲击或压缩载荷,以将工件变形为所需的形状。 锻造连杆 应用领域 ?用于生产简单零件,例如螺栓头,压力容器和轴。 ?它也可以用于生产敏感部件,例如连杆,齿轮和凸轮轴。 ?在航空航天工业中用于涡轮盘和大型旋转部件。 金属锻造材料 材料必须具有韧性,才能通过锻造进行加工。可以锻造低合金钢,高合金钢,不锈钢,碳钢,镁合金,铝,镍合金,铜和钛合金等材料。 设计注意事项 ?由于模具设计的限制,零件的复杂性受到限制。 ?不能使用插入件和内部腔之类的功能。 ?根据零件的尺寸,必须增加加工余量,该余量可以为0.8至6 mm。 ?锻造的最小截面尺寸为3mm。 工艺变化 有六种不同类型的锻造操作: 1. 自由锻造使用扁平模具来使工件变形。 2. 压模锻造使用带有型腔的模具,并施加压缩力以使工件具有型腔 的形状。 3. 闭式模锻使用固定量的材料并将其压缩在封闭的模具中。

铸造工艺中液态金属凝固成形的关键问题

铸造工艺中液态金属凝固成形的关键问题 液态金属通过冷却凝固最终获得合格的、满足各种使用要求的铸件。山东伊莱特重工跟您一起探讨:以下的关键问题是在生产过程中应予以妥善解决的。 (一)结晶及凝固组织的形成与控制液体金属的结构,晶核的形成与长大,晶粒的大小、方向和形态等与铸件的凝固组织密切相关,它们以铸件的物理性能和力学性能有着重大的影响。控制铸件的凝固组织的目的就是为了获得所希望的组织,欲控制凝固组织,就必须对其形成机理、形成过程和影响因素有全面的了解和深入研究。目前山东伊莱特重工有限公司已建立的有效控制组织的方法有变质、孕育、动态结晶、顺序凝固、快速凝固等。 (二)铸件尺寸精度和表面粗糙度控制现代制造的许多领域,对铸件尺寸精度和外观质量的要求愈来愈高,技术改变着铸造只能提供毛坯的传统观念,其目的在于降低物耗、能耗、工耗,并且改善产品的内外质量,争取市场和高效益。然而,铸件尺寸精度和表面粗糙度由于受到诸多因素(如铸型表面的作用、凝固热应力、凝固收缩等)的影响和制约,控制难度很大。铸件是液态成形的,实现净形化具有独特的优越性,在结构方面铸件的内腔和外形用铸造方法一次成形,使其接近零件的最终形状,使加工和组装工序减至最少;在尺寸精度和表面质量方面,使铸件能接近产品的最终要求,做到无余量或小余量;另一方面,被保留的铸造原始表面有益于保持铸件的耐蚀和耐疲劳等优越性能,从而提高产品寿命。努力提高铸件的尺寸精度和降

低表面粗糙度,推进铸件近净形技术的发展是未来的方向。 (三)铸造缺陷的防止与控制铸造缺陷是造成废品的主要原因,是对铸件质量的严重威胁。由于方方面面的原因,存在于铸件的缺陷五花八门,由于凝固成形时条件的差异,缺陷的种类表现为形态和表现部位不尺相同。如液态金属的凝固收缩会形成缩孔、缩松;凝固期间元素在固相和液相中的再分配会赞成偏析;冷却过程中热应力的集中会造成铸件裂纹和变形。应根据产生的原因和出现的程度不同,采取相应措施加以控制,使之消除或降至最低程度。此外,还有许多缺陷,如有夹杂物、气孔、冷隔等,出现在充填过程中,它们不仅与合金种类有关,而且还与具体成形工艺有关。总之,防止、消除和控制各类。更多问题请百度咨询山东伊莱特重工有限公司。

锻造对金属组织的影响

锻造对金属组织、性能的影响与锻件缺陷 锻造对金属组织、性能的影响与锻件缺陷 -------------------------------------------------------------------------------- 锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。 (一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变——相变强化等。由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。 (二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。如原材

压铸成形实验

实验一压铸成形实验 一.实验目的 1.掌握压力铸造的原理,了解压力铸造的特点及应用。 2.了解压铸机的结构及压铸机的工作过程。 二.实验原理 1.压力铸造的原理、特点及应用 压力铸造简称压铸,是通过压铸机将熔融金属以高速压入金属铸型,并使金属在压力下快速凝固的铸造方法。常用压力为5~150MPa,充型速度为0.5~50m/s, 充型时间为0.01~0.2S。 压力铸造的特点:压铸的生产效率极高、最高可达每小时压铸500件,铸件精度和表面质量均比其他铸造方法高,铸件力学性能高,可铸出形状复杂的薄壁件,便于铸出镶嵌件。但是压铸工艺也存在不足:压铸设备投资高,压铸模制造复杂、周期长、费用高,一般不宜用于小批量生产。普通压铸法压铸的铸件易产生气孔,不能进行热处理。压铸某些内凹件、高熔点合金铸件还比较困难。 目前压铸工艺主要用于大批量生产的低熔点有色金属铸件,其中铝合金占总量的30%~60%。其次为锌合金及铜合金。汽车、拖拉机制造业应用压铸件最多,在仪表、电器和农业、国防、计算机、医疗等机器制造业也广泛应用。压铸生产的零件主要有发动机气缸体、气缸盖、变速箱体、发动机罩、仪表和照像机壳体、支架、管接头及齿轮等。 2.压铸机及压铸工艺过程 压铸机可分为热压室式和冷压室式两大类。 热压室式压铸机压室与合金熔化炉成一体或压室浸入熔化的液态金属中,用顶杆或压缩空气产生压力进行压铸。热压室式压铸机压力较小,压室易被腐蚀,一般只用于铅、锌等低熔点合金的压铸,生产中应用较少。冷压室式压铸机压室和熔化金属的坩埚是分开的。根据压室与铸型的相对位置不同,可分为立式和卧式两种。卧式冷室压铸机工作过程如图1所示,图2为工程上应用较广的J1113G型卧式冷室压铸机示意图。 压铸零件的基本工艺过程分为: 1)合型与浇注先闭合压型,然后用手工将定量勺内金属液体通过压射室上的注液孔向压射室内注入。 2)压射将压射冲头向前推进,将金属液压入到压型中。 3)开型及顶出铸件待铸件凝固后,抽芯机构将型腔两侧芯同时抽出,动型左移开型,铸件借冲头的前伸动作被顶离压室。 (2)J1113G型卧式冷室压铸机规格和参数 表1-2 J1113G型卧式冷室压铸机规格和参数

铸造成形工艺理论基础

第一篇金属的铸造成形工艺 第一章铸造成形工艺理论基础 §1-1 概述 金属液态成形工艺——铸造、液态冲压、液态模锻等 铸造(最广泛)——将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。 一、特点 1.能制成形状复杂、特别是具有复杂内腔的毛坯: 如:阀体、泵体、叶轮、螺旋浆等 2.铸件的大小几乎不受限制,重量从几克到几百吨 3.常用的原材料来源广泛,价格低廉,成本较低,其应用及其广泛 (如:机床、内燃机中铸件70~80%,农业机械40~70%) 但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。 二、分类 铸造 砂型铸造——90%以上,成本低 特种铸造——熔模、金属型、压力、低压、离心 质量、生产率高,成本也高 §1-2 铸造的工艺性能 工艺性能——符合某种生产工艺要求所需要的性能 铸造性能——合金的流动性、收缩性、吸气性、偏析等 一、合金的流动性 1.概念 指液态合金本身的流动能力,它是合金主要的铸造性能,流动性愈强,愈便于浇铸出轮廓清晰、薄而复杂的铸件。 同时,有利于非金属夹杂物和气体的上浮与排除,还有利于对合金冷凝过程所产生的收缩进行补缩。 流动性不好——浇不足、冷隔 [注]:流动性的测定——“螺旋形试样”(图1-1)

流动性愈好,浇出的试样愈长 灰铸铁、硅黄铜最好,铝合金次之,铸钢最差 2.影响合金流动性的因素 ①化学成分 共晶成分合金的结晶是在恒温下进行的,此时,液态合金从表层逐层向中心凝固,由于已结晶的固体层内表面比较光滑(图1-3a)对金属液的阻力较小。同时,共晶成分合金的凝固温度最低(铁碳合金状态图)。 相对说来,合金的过热度(浇注温度与合金熔点之温差)大,推迟了合金的凝固,故共晶成分合金的流动性最好。 除纯金属外,其它成分合金是在一定温度范围的逐步凝固,即经过液、固并存的两相区。此时,结晶是在截面上的一定宽度的凝固区内同时进行的,由于初生的“树枝状”晶体,使已结晶固体层的表面粗糙(图1-3b)所以,合金的流动性变差。 共晶生铁,流动性好。 [注]:降低金属液粘度——提高流动性 如加P—铸铁凝固温度、粘度↓→流动性好 但引起冷脆性(性能要求不高的小件) S→MnS→内摩擦(粘度↑)→流动性↓ ②浇注条件 浇注温度——温度↑→粘度↓过热度↑,保持液态时间长→流动性好,但过高→收缩增大,吸气增多,氧化严重→缩孔、缩松、气孔、粘砂等 控制浇注温度:灰铸铁:1200~1380℃ 铸铜:1520~1620℃ 铝合金:680~780℃ 浇注压力——压力愈大,流动性愈好 增加直浇口高度或采用压力铸造、离心铸造 ③铸型充填条件 铸型的蓄热能力——铸型材料的导热系数和比热愈大,对液态合金的“激冷” 能力愈强,流动性差。如:金属型比砂型铸造更容易产生浇不足等缺陷。 铸型中气体——在金属液的热作用下,型腔中气体膨胀,腔中气体压力增大——流动性差(阻力大) 改善措施:使型砂具有良好的透气性,远离浇口最高部位开设气口。 二、合金的收缩性

金属成形方法大全.docx

金属成形方法大全 铸造 液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。 工艺流程:液体金属→充型→凝固收缩→铸件 工艺特点: 1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。 2、适应性强,合金种类不受限制,铸件大小几乎不受限制。 3、材料来源广,废品可重熔,设备投资低。 4、废品率高、表面质量较低、劳动条件差。 铸造分类: (1)砂型铸造(sand casting) 在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。 工艺流程: 技术特点: 1、适合于制成形状复杂,特别是具有复杂内腔的毛坯; 2、适应性广,成本低; 3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。 应用:汽车的发动机气缸体、气缸盖、曲轴等铸件 (2)熔模铸造(investmentcasting) 通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。常称为“失蜡铸造”。

工艺流程: 优点: 1、尺寸精度和几何精度高; 2、表面粗糙度高; 3、能够铸造外型复杂的铸件,且铸造的合金不受限制。 缺点:工序繁杂,费用较高 应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。 (3)压力铸造(die casting) 利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 工艺流程: 优点: 1、压铸时金属液体承受压力高,流速快 2、产品质量好,尺寸稳定,互换性好; 3、生产效率高,压铸模使用次数多; 4、适合大批大量生产,经济效益好。 缺点: 1、铸件容易产生细小的气孔和缩松。 2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作; 3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。 应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。 (4)低压铸造(low pressure casting) 指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法。

金属铸造工艺过程、及实际应用

材料科学基础课程论文金属铸造工艺过程及实际应用 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:赵明 学号:3110706049 指导教师:张振亚 2014 年6 月

一、简介 金属铸造(metal casting)是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一。 二、分类 金属铸造种类造型方法习惯上分为: ①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。 ②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。金属铸造工艺通常包括: ①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素; ②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 三、工艺过程

铸造生产时,首先要根据铸件的结构特征、技术要求、生产批量、生产条件等因素,确定铸造工艺方案。其主要内容包括浇注位置、分型面、铸造工艺参数(机械加工余量、起模斜度、铸造圆角、收缩率、芯头等)的确定,然后用规定的工艺符号或文字绘制成铸造工艺图。铸造工艺图是指导铸造生产的技术文件,也是验收铸件的主要依据。 一、浇注位置的确定 浇注时铸件在铸型中所处的位置称为浇注位置。铸件的浇注位置对铸件的质量、尺寸精度、造型工艺的难易程度都有很大的影响。通常按下列基本原则确定浇注位置。 (1) 铸件的重要工作面或主要加工面朝下或位于侧面。浇注时金属液中的气体、熔渣及铸型中的砂粒会上浮,有可能使铸件的上部出现气孔、夹渣、砂眼等缺陷,而铸件下部出现缺陷的可能性小,组织较致密。如图所示机床床身的浇注位置,应将导轨面朝下,以保证该重要工作面的质量。如图所示的卷扬筒,其圆周面的质量要求较高,采用立浇方案,可使圆周面 处于侧面,保证质量均匀一致。

文献翻译—铸造及其他成形工艺

附录 英文: Casting and Other Forming Processes DeGarmo, E. Paul et al. Materials and Processes in Manufacturintg. John Wiley & Song, 1998. P205-211 Casting Casting is the introduction of molten metal into a cavity or mold where, upon solidification, it becomes an object whose shape is determined by mold configuration. Casting offers several advantages over other method of metal forming: it is adaptable to intricate shapes, to extremely large pieces, and to mass production; it can provide parts with uniform physical and mechanical properties through out and, depending on the particular material being cast, the design of the part, and the quantity being produced, its economic advantages can surpass other processes. Categories Two broad categories of metal-casting processes exist: ingot casting (which includes continuous casting) and casting to shape. Ingot castings are produced by pouring molten metal into a permanent or reusable mold. Following solidification these ingots (or bars, slabs, or billets, as the case may be) are then further processed mechanically into many new shapes. Casting to shape involves pouring molten metal into molds in which the cavity provides the final useful shape, followed only by machining or welding for the specific application. Ingot casting Ingot castings make up the majority of all metal castings and are separated into three categories: static cast ingots, semi-continuous or direct-chill cast ingots, and continuous cast ingots. Static cast ingots Static ingot casting simply involves pouring molten metal into a permanent mold. After solidification, the ingot is withdrawn from the mold and the mold can be reused. This method is used to produce millions of tons steel annually. Semi-continuous cast ingots A semi continuous casting process is employed in

铸造成型原理名词解释

1、液态金属成型技术是将融融的金属或合金在重力场或其他外力场的作用下注入铸型型腔中,待其凝固 后获得与型腔形状相似逐渐的一种方法,这种成型方法叫做铸造。 2、液态成型(铸造)是将融化成型的液态金属浇入住铸型后一次制成所需形状和性能的零件 3、金属塑性成形又称塑性加工,是利用金属的塑形,通过外力获得所需形状,尺寸与内部性能制品的一 种加工方法。 4、表面张力:是表面上存在的一个平行于表面且各个方向大小相等的力。 5、表面自由能;是产生新的单位面积表面时自由能的增量。 6、液态金属充填铸型的能力:液态金属充满铸型型腔,获得完整、轮廓清晰的铸件的能力。 7、流动性;液态金属本身的流动性。与金属的成分、温度、杂质含量、铸件结构有关。 8、强迫对流:在凝固过程中可以外在激励使液相产生的流动 9、液态金属结晶:液态金属转变成晶体的过程称为液态金属结晶或金属一次结晶。 10、相变驱动力:只有当TGs时,结晶才可能自发进行,此时液固两自由能只差称为相变驱动力。 11、过冷度:t=t-t0称之为过冷度 12:、热力学能障:由界面原子所产生,能直接影响体系自由能的大小。 13、动力学能障:由原子穿越界面的过程中所引起的,其大小与相变驱动力无关,而决定于界面的结构和性质,前者对形核有影响,后者则在晶体生长过程中起关键作用。 14、均质形核:是在没有任何外来界面的均匀熔体中的形核过程。也成自发形核。 15、非均质形核:指在不均匀的熔体中依靠外来杂质或型壁界面的衬底进行形核的过程,也称非自发形核,异质形核G非=G均f(o),当0C。正偏析否则为逆偏析。Cs各部分的浓度C。原始浓度。按其表现形式分为:正常偏析,逆偏析,密度偏析等。31、晶内偏析:晶内先结晶的部分溶质含量低,后结晶部分溶质含量高。这种成分的不均匀性就称为晶内偏析。 32、枝晶偏析:合金以枝晶形式生长,先结晶的枝干与后续生长的分支也同样存在着成分差异,称为枝晶

金属铸造工艺

金属铸造工艺 铸造是人类最早知道的金属成型方法之一。它一般是将熔融金属倒入耐火模具型腔中,并将其凝固。凝固后,所需的成品是从难冶塑的的模具中要么用打破模具要么用分开模具的方法取出的。这个凝固的成品称为铸造产品。这个过程也称为铸造过程。 1.1 铸造的历史 最早的铸造国家是美索不达米亚,最早铸件大约在公元前3500年左右。在世界许多地区的这个时期,铜器和其他平面物体是用石头或烘烤的粘土为模具来铸造的。这些模具基本上都是单件。但在后期,要求铸造圆形铸件时,为了方便铸件的取出,模具必须分成两部分甚至多个部分。 青铜器时代(公元前2000年)的铸造工艺更加精细。也许是最早的时期,空心铸件诞生了。这些铸件内部用的是烤粘土。蜡模铸造法这种工艺被广泛应于加工精细的首饰上。 铸造技术曾在公元前1500年左右在中国得到极大的提高。在此之前,中国还未发现铸造工艺的痕迹。它既不像失蜡法铸模工艺也不广泛使用,而是特殊的使用在多件模具铸造上来制造出高难度的工作。他们花了很多时间在完善产品上甚至到每个细节,因此每一件产品都花费了大量的时间。他们可能用30个甚至更多的精细的模具来制造产品。事实上,在中国各地考古中都曾发现过这些模具。

印度河流域也文明于他们的铜铸件,在装饰,武器,工具和铜铸件上。但是并没有技术上的改进。从各种不同的出土的铜铸件和陶俑来看,印度和中国似乎有着相同的铸造技术,如片模,开模和蜡模具。 尽管印度可能会在坩埚钢的发明上闻名,但是在印度还没有发现铁制品的证据。证据表明,铁的发现是在公元前1000左右在叙利亚和波斯。印度的铁铸造技术是在公元前300左右由亚历山大王朝时代传入的。 在奎塔布的新德里附近的著名的铁柱是印度古冶铁技术的时代标志。这个长约7.2米的铁柱是由纯可锻铸铁铸成的。这铁柱被认为是在古谱塔王朝查德古谱踏二世(公元前375-413年)时期建造的。这根铁柱露在外面的的部分锈蚀率基本为零,甚至埋在地下的部分的也是在以很缓慢的速度在锈蚀。这一定是先铸造然后再捶打到现在的模样。 1.2优点和局限性 铸造在制造过程中被广泛应用是因为它有很多优点。由于熔融金属可以流入模具的任何一个小的地方,因此无论是内部形状复杂的还是外部形状复杂的都可以用铸造来造成。无论是有色金属还是无色金属都可以用铸造来完成。另外,铸造所需的模具的工具非常的简单和便宜。因此试生产和小批量生产,铸造是一种理想的生产方法。只有在铸造工艺过程中才能计算出所需的材料的准

金属的铸造成形工艺

第二篇金属的塑性成形工艺 金属塑性成形——在外力作用下,金属产生了塑性变形,以此获得具有一定形状、尺寸和机械性能的原材料、毛坯或零件。 此生产方法称金属塑性成形(也称压力加工) 外力冲击力——锤类设备 压力——轧机、压力机 有一定塑性的金属——压力加工(热态、冷态) 基本生产方法: 1.轧制——钢板、型材、无缝管材(图6-1)(图6-2) 2.挤压——低碳钢、非铁金属及其合金(图6-3)(图6-4) 3.拉拔——各种细线材,薄壁管、特殊几何形状的型材(图6-5)(图6-6)4.自由锻——坯料在上、下砥铁间受冲击力或压力而变形(图6-7a) 5.模锻——坯料在锻模模腔内受冲击力或压力而变形(图6-7b) 6.板料冲压——金属板料在冲模之间受压产生分离或变形的加工方法(图6-7c) 金属的原材料,大部通过轧制、挤压、拉拔等制成。 第六章金属塑性成形的工艺理论基础 压力加工——对金属施加外力→塑性变形 金属在外力作用下,使其内部产生应力——发生弹性变形外力>屈服应力塑性变形 塑性变形过程中一定有弹性变形存在,外力去除后,弹性变形将恢复→“弹复”现象,它对有些压力加工件的变形和工件质量有很大影响,须采取工艺措施的保证产品质量。 §6-1 塑性变形理论及假设 一、最小阻力定律 金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂(定量很困难)。应用最小阻力定律——定性分析(质点流动方向) 最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。 利用此定律,调整某个方向流动阻力,改变金属在某些方向的流动量→成形

金属锻造成形的基本知识

金属锻造成形的基本知识 锻造的根本目的:获得所需形状和尺寸的锻件,同时要求性能和组织符合一定的技术要求。锻造的特点是利用金属的塑性流动来成形的,(借助于外力的作用产生塑性变形,获得所需形状、尺寸)在成形过程中不仅坯料的重量基本是不变的,而且体积也是基本不变,只有组织和性能发生变化。优点是锻件内部致密且组织比较均匀,性能高于铸件和焊接件,缺点是需要较大的变形力。 锻造的分类: 按工具和模具安置情况分为自由锻和模锻;按温度分为热锻、温锻、冷锻。 钢的加热规范: 指钢料从装炉开始到出炉前(始锻温度)的整个过程,对炉温和料温随时间变化的关系所作的规定。 火焰加热是利用燃料(煤、油、气)燃烧所产生的热能直接加热金属的方法。优点:炉子修造容易,费用低,加热适应性强;缺点:劳动条件差,加热质量难控制。 电加热是利用电能转换为热能来加热金属的方法。优缺点与上相反,但铝合金由于熔点低必须电加热。 锻造温度范围的确定: 是指始锻温度和终锻温度间的一段温度间隔,在锻造温度范围内金属应具有良好的可锻性(足够的塑性,低的变形抗力)和合适的金相组织,为了减少火次,都力求扩大温度范围。

始锻温度:一般低于Fe-C液相图150~250℃,首先保证无过烧现象。 一般低碳1300℃,中碳1230℃,高碳1150℃。 终端温度:在结束锻造之前,金属还应有足够的塑性,以锻后能获得再结晶组织,没有加工硬化现象为原则。过高的终锻温度会使锻件晶粒在冷却过程中继续长大,从而降低机械性能;过低终锻温度,由于塑性极低造成加工硬化现象,甚至产生裂纹。 锻造比:是表示金属变形程度大小的指标,它关系着铸造粗大晶粒的破碎,内部缺陷的锻合,是保证锻件内部质量和满足性能要求的重要依据。 1、镦粗比的计算:镦粗的目的是为了增大横截面积,打碎金属内 部粗大晶粒结构,获得较好的内部质量。Y镦=(S后/S前截面积)(H ) 前/H后高度 2、拔长锻造比的计算:拔长目的在于减小截面尺寸,增大长度尺 寸。Y拔=(S前/S后)(L后/L前长度) 3、有镦粗和拔长,两者叠加。 锻造比的选择:由于标志金属变形程度的大小。 钢锭作为锻造坯料时:碳素钢Y≥3;合金钢Y≈3~4。 轧材或锻坯作坯料时:Y≥1.5。 镦粗前坯料的高度与直径之比,应控制2~2.5,最大不超过3。 工艺: 1、热锻:是目前应用最广的一种锻造工艺。经过热锻,内部组织发

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围 本熔炼工艺适用于砂型和金属型铸造ZL101A合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存 工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。 工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3 工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1 铝合金料熔化设备 规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。 对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易

超750℃,熔化过程的铝液吸气倾向较大。 3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 图1 新坩埚使用前烘干工艺 上述所选择的工具,使用前均需涂刷涂料,涂刷涂料前要对坩埚及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1所示,使用前涂料需预热到50~90 ℃。 3.1.3炉料的存放与处理,

液态金属成型

金属液态成型论文 作者:刘永星 摘要:金属液态成型又称为铸造,是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件,即铸件的方法,它是成形毛坯或机器零件的重要方法之一。工程材料除切削加工以外有各种成型方法,包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。材料成型技术主要讲述金属材料成型和非金属材料成型,现对金属液态成型进行详细论述。 关键词:金属液态成型、成型方法、生产流程、成型原理、选择成型依据 一、金属液态成形 金属材料在液态下成形,具有很多优点:(1)最适合铸造形状复杂、特别是复杂内腔的铸件。(2)适应性广,工艺灵活性大。(3)成本较低。但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能、特别是冲击性能低于塑形成行件;铸件涉及的工序很多,不易精确控制,铸件质量不稳定;由于目前仍以砂型铸造为主,自动化程度还不够高,工作环境较差;大多数铸件只是毛坯件,需经过切削加工才能成为零件。砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。砂型铸造的工艺过

程称为造型。造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。手工造型时,填砂、紧实和起模都用手工和手动完成。其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。但生产效率低、劳动强度大、铸件质量不易保证。故手工造型只适用于单件、小批量生产。机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。特种铸造包括熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、实型铸造、挤压铸造等。各种特种铸造方法均有其突出的特点和一定的局限性,对铸件结构也各有各自的特殊要求。 二、金属液态成形方法 铸造工艺可分为重力铸造、压力铸造、砂型铸造、压铸、熔模铸造和消失模铸造。铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造等。各种特种铸造方法均有其突出的特点和一定的局限性,对铸件结构也各有各自的特殊要求。 其中砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型铸造用的模具,以前多用木材制

相关文档
最新文档