(完整版)超几何分布典型例题(附答案)

(完整版)超几何分布典型例题(附答案)
(完整版)超几何分布典型例题(附答案)

1.20世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染。人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.

罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:

(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;

(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ.

【分析】①不放回→超几何分布

②N=15,汞含量超标的鱼为X,则X服从一个参数为15(N).5(M).3(n)的超几何分布

③由频率估计概率/由样本估计总体 2句都等价于将N无限化→不是超几何分布

④做n次独立重复实验,每次实验成功的概率都相同→二项分布

法2:设3条鱼中汞含量超标的鱼的条数为X.则X服从一个参数为15、5、3的超几何分布

∴P(X=1)=

(每个概率的求得过程必须有公式和最简结果,再画表格)

设“学生持满意态度”为事件A,由题意可知该事件满足古典概型。

∴P(A)=

(Ⅱ)由题意可知,服从参数为14、3、4的超几何分布.

(右上角为4-k)

(1)解:设“扫黑除恶利国利民”的卡片有M张

设抽取2张卡片中“扫黑除恶利国利民·”的卡片数为X,则X服从参数为9、M、2的超几何分布。

故由题意可得,即解得M=4

则抽奖者获奖的概率为

(为防止与第二问雷同,将X改为Y)(2)【分析】甲乙丙三人在抽奖过程中互不影响,各自独立,可看作3次独立重复实验,故为二项分布解:设中奖为事件A(下求中奖的概率)

则X服从参数为3(抽奖的人数)、5/9(中奖概率)的二项分布.

补充:数学期望

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

初一几何典型例题难题

初一几何典型例题 1、如图,/ AOB=90 , 0M 平分/ AOB ,将直角三角尺的顶点P 在射线0M 上移动,两直角分别与 0A , 0B 相较于C , D 两点, 则PC 与PD 相等吗?试说明理由。 PC=PD 证明:作PE 丄0A 于点 V 0M 是角平分线 ??? PE=PF / EPF=90 V/ CPD=90 ???/ CPE= / DPF V/ PEC= / PFD=90 ???△ PCEPDF ??? PC=PD AF 丄 BE 证明: V CD=CE , CA=CB , / ACD= / BCE=90 ???△ ACD 尢 BCE ???/ CBE= / CAD V/ CBE+ / BEC=90 ???/ EAF+ / AEF=90 ???/ AFE=90 ??? AF 丄 BE E , PF 丄0B 于点F D 在BC 上,连接AD 、BE , AD 的延长线交BE 于点F 。试判断AF 与 0 D 2、如图,把两个含有45°角的三角尺按图所示的方式放置, BE 的位置关系。并说明理由。

3、如图,已知直线11 II 12,且13和11、12分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出/ 1、/ 2、/ 3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究/ 1、/ 2、/ 3之间的关系,请画出图形,并说明理由。解:(1)/ 1 + / 2= / 3; 理由:过点P作11的平行线PQ, V 11 // 12, ???11 // 12 / PQ, ? / 1 = / 4,/ 2= / 5. V/ 4+/ 5= / 3,(2)同理:理由:当点? / 1 + / 2= / 3; / 1-/2= / 3 或/2- / 1 = / 3. P在下侧时,过点P作11的平行线PQ, V 11 // 12 ? 11 // 12 / PQ, ?/ 2=/ 4,/ 1= / 3+/ 4, ?/ 1-/2= / 3; 当点P在上侧时,同理可得/ 2- / 1 = / 3 ? 4、D、E是三角形^ ABC内的两点,连接BD、DE、EC,求证AB+AC > BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GOEC 所以FB+FD+FA+AG+EG+GOBD+FG+EC

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

概率论及数理统计 练习题及答案

练习 1.写出下列随机试验的样本空间 (1)把一枚硬币连续抛掷两次.观察正、反面出现的情况; (2)盒子中有5个白球,2个红球,从中随机取出2个,观察取出两球的颜色; (3)设10件同一种产品中有3件次品,每次从中任意抽取1件,取后不放回,一直到3件次品都被取出为止,记录可能抽取的次数;(4)在一批同型号的灯泡中,任意抽取1只,测试它的使用寿命. 解:(1)U={正正正反反正反反} (2)U={白白白红红白红红} (3)U={1,4,5,6,7,8,9,10} (4)U={t>0} 2.判断下列事件是不是随机事件 (1)一批产品有正品,有次品,从中任意抽出1件是正品; (2)明天降雨; (3)十字路口汽车的流量; (4)在北京地区,将水加热列100℃,变成蒸汽; (5y掷一枚均匀的骰子,出现1点. 解:(1)(2)(3)(5)都是随机事件,(4)不是随机事件。 3.设A,B为2个事件,试用文字表示下列各个事件的含义 (1)A+B;(2)AB;(3)A-B;(4)A-AB;(5)AB; (6)AB AB .

解:(1)A ,B 至少有一个发生;(2) A ,B 都发生;(3) A 发生而B 不发生;(4) A 发生而B 不发生;(5)A ,B 都不发生;(6)A ,B 中恰有一个发生(或只有一个发生)。 4.设A,B,C 为3个事件,试用A,B,C 分别表示下列各事件 (1)A ,B ,C 中至少有1个发生; (2)A ,B ,C 中只有1个发生; (3)A ,B ,C 中至多有1个发生; (4)A ,B ,C 中至少有2个发生; (5)A ,B ,C 中不多于2个发生; (6)A ,B ,C 中只有C 发生. 解: (1)A B C, (2)AB C A B C A B C, (3)AB C ABC A B C A B C, (4)ABC ABC ABC ABC AB BC AC, (5)ABC A B C, (6)A B C ++?+??+???++??+??+++++++??或或 练习 1.下表是某地区10年来新生婴儿性别统计情况: 出生年份 1990 1991 1992 1993 1094 1995 1996 1997 1998 1999 总计 男 3 011 2 531 3 031 2 989 2 848 2 939 3 066 2 955 2 967 2 97 4 29 311 女 2 989 2 352 2 944 2 837 2 784 2 854 2 909 2 832 2 878 2 888 28

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

概率论例题

概率论例题 例1.设某班车起点站上车人数X 服从参数为λ(λ>0)的泊松分布,并且中途不再有人上车。而车上每位乘客在中途下车的概率为p )1p 0(<<,且中途下车与否相互独立,以Y 表示在中途下车的人数。试求(1)(X,Y )的联合概率分布律;(2)求Y 的分布律(列)。 解:X 可能的取值是0,1,2,…..,k ,…,n ,... P{X =k }= ! k e k λ λ- Y 可能的取值是0,1,2,…,r ,…,k P{x =k, y =r }=P{x=k}P{y=r/x=k}= ! k e k λ λ-r k r r k q p C - r=0,1,2,…,k 当r>k 时,P{x=k, y=r}=0, Y 的边缘分布 P{Y = r }=∑+∞ ===0 },{k r y k x P =∑+∞ ====0 }/{}{k k x r y P k x P =∑ +∞ =--r k r k r r k k q p C e k λλ! =∑+∞ =--+--r k r k r q r r k k k k p e )(!) 1()1(! 1) (λλλ =∑+∞=---r k r k r rq r k r p e )()! (1!1)(λλ =rq r e r p e --!1)(λλ=rp r e r p -!)(λ r = 0, 1, 2, … , 验证Y 的分布律 ∑+∞ ==0 }{r r y P = 1 ? 例2. 解 因为η只取非负值,所以当0y ≤时, 2()() () F y P y P y ηηξ=<=< = 当 0y >时

2()()()) F y P y P y y y ηηξξ=<=<=< 2 2 2 2 12()t t t dt dt dt ξ--=== 2 20 u u y y e - -= =? ? 所以 20 ,0()0,0u y y F y y η-?>?=??≤?? 1 y --?

(完整版)初一上册几何练习题50道

.选择题 1. 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是( ) (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 2. 下列给出的各组线段中,能构成三角形的是( ) (A)5 , 12 , 13 (B)5 , 12 , 7 (C)8 , 18 , 7 (D)3 , 4, 8 3 .一个三角形的三边长分别是15 , 20和25 ,则它的最大边上的高为( ) (A) 12 (B) 10 (C) 8 (D) 5 4. 两条边长分别为2和8 ,第三边长是整数的三角形一共有( ) (A)3个(B)4个(C)5个(D)无数个 5. 下列图形中,不是轴对称图形的是( ) (A)线段MN (B)等边三角形(C)直角三角形(D) 钝角ZAOB 6. 直角三角形两锐角的平分线相交所夹的钝角为( ) (A)125 0(B)135 0(C)145 °(D)150 0 7. 已知Z a , Z 3是某两条平行线被第三条直线所截得的同旁内角,若Za= 50°,则Z。葡) A . 40 ° B. 50 ° C. 130 ° D . 140 ° 8. 如图,下列推理中正确的是(

A. 若Z 1 = Z2,贝U AD //BC B. 若Z 1 = Z2 ,贝U AB //DC C. 若Z A = Z3,贝U AD //BC D. 若Z3 = Z4,贝U AB // DC 9. 下列图形中,可以折成长方体的是( D. 10. 一个几何体的三视图如图所示,那么这个几何体是( ) A. B. C_ D 11. 如图1,在AABC中,AB = AC,点D在AC边上,且BD = BC = AD,则Z A的度数为( ) A . 30 ° B . 36 ° C . 45 ° D . 70 ° 12. 、如图2 , AB II CD , AC ± BC于C,贝U图中与/ CAB互余的角有()

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( ) (A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A ) 365 (B )364 (C )363 (D )36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P 4.随机变量X 的概率密度为???<≥=-00 )(2x x ce x f x ,则=EX ( ) (A )21 (B )1 (C )2 (D )4 1 5.下列各函数中可以作为某随机变量的分布函数的是( ) (A )+∞<<∞-+=x x x F ,11)(2 1 (B )?????≤>+=0 001)(2 x x x x x F (C )+∞<<∞-=-x e x F x ,)(3 (D ) +∞<<∞-+=x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为( )

(A ))2(2y f X - (B ))2(y f X - (C ))2 (21y f X -- (D ))2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 61818121321,且X 与Y 相互独立,则=h ( ) (A )81 (B )8 3 (C )4 1 (D )3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( ) (A )3 (B )6 (C )10 (D )12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若 EY EX EXY ?=,则下列结论不正确的是( ) (A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)( 答案: 1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++

概率论习题及答案

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率 . 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为 .. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11 ()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2 (),1,2,3,3 i P A i == 则123,,A A A 最多出现一个的概 率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) .()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A --=-?=??=? ?-=-?=若且则

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

有关二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布” 问题举例 一.基本概念 1.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件 X=k 发生的概率为:P(X=k)= n N k n M N k M C C C --?,k= 0,1,2,3,,m ; 其中,m = min M,n ,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n M N 2.二项分布

在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为: P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布. 记作:X B(n,p),EX= np 3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件 每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次

试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数. (2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布; (3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.事实上,对于“超几何 分布”中,若p= M N ,则EX= ∑ = - - ? ? n i n N k n M N k M C C C k 1 =

相关文档
最新文档