试验一煤燃烧特性的热重分析

试验一煤燃烧特性的热重分析
试验一煤燃烧特性的热重分析

实验一燃烧特性的热重分析

一、实验目的

1.了解热重分析仪的基本结构,掌握仪器操作;

2.学会应用热重法分析煤/生物质的燃烧特性。

二、实验内容及要求

1.熟悉热重分析工作原理;

2.学会处理煤/生物质燃烧热失重曲线,求解典型燃烧特性参数,并分析燃烧特性。

三、实验步骤

1.试样、气体准备,如预先干燥、磨制、筛分、称量试样等,罐装所需浓度和纯度的保护气体和反应气体。检查仪器放置平稳、管路气密性及电源连接完好等。

2.开启系统:(1)打开恒温水浴槽(温度设定:22℃);(2)接通气体(氮气流量:30ml/min;空气流量:100ml/min);(3)待恒温水浴槽达到设定温度

和气流稳定后,打开TGA 主机;(4)打开计算机进入Windows NT,双击“STAR e”

图标打开STAR e软件。

3.根据软件建立试验方法,设置升温速率10℃~30℃/min、最大温度900℃,完毕后按提示放置样品,按提示开始、结束(重新开始)试验。

4.根据随机软件进行数据处理。

5.关闭系统:(1)须在TGA 主机的炉温低于300℃后关闭恒温水浴槽;(2)关闭TGA 主机;(3)关闭气体;(4)关闭计算机。

四、实验报告

1.热重燃烧特性指标的含义和求解方法;

2.热重燃烧条件下各燃烧特性参数代表的意义;

3.求解煤/生物质燃烧特性参数;

4.结合所得数据分析燃烧特性。

瑞士Mettler-Toledo公司的TGA/SDTA851e热分析系统

图1、图2为热分析系统原理图。该系统包括热重/差热同步分析仪,热重天平和高温恒温浴槽。

具体参数如下:型号:TGA/SDTA851e;温度范围:室温~1600℃;大测试炉:直径12mm,容积900μl;温度准确度:±0.25℃;温度重复性:±0.15℃;线性升温速率:0.01~100℃/min;SDTA分辨率:0.005℃。

图1中,天平和测试炉组成的测试单元是热重/差热同步分析的核心,采用平行支架微量/超微量天平,称量不受样品支架长度变化(如热胀冷缩效应)的影响;内置砝码全自动校准;称量部件处于恒温室内(22.0±0.1℃),不受环境因素的影响。其中的测试炉采用水平结构,可最大限度地消除可能产生的气体紊流的影响,克服热气体对流上升容易产生的“烟囱效应”。该系统采用单坩埚结构,使样品处于测试炉的几何对称中心,在升温室得到均匀加热。测量样品的温度传感器直接安装于坩埚底部,能准确测取样品温度。加热炉内可通入需要的各种反应气体,同时为了保护天平免受反应气体的腐蚀,需要通入保护气体。

图1 热分析系统示意图

图2 TGA/SDTA851e原理图

1—隔热挡板;2—反应性气体毛细管;3—石英护套;4—气体排出阀门(偶联接口);5—样品温度传感器;6—加热炉;7—炉温传感器;8—电源接点;9—真空和清洁气体管;10—恒温天平室;11—平行导向超微量天平;12—样品室开启装置;13—冷却水管道;14—保护气体入口;15—反应气体入口;16—真空连接和清洁气体入口

1)热重测量法:在程序控制温度下,测量物质质量随温度变化的一种技术。

2)差热分析:在程序控制温度下,测量物质与参比物之间的温度差随温度变化的一种技术。

3)热膨胀法:在程序控制温度下,测量物质在可忽略的负荷下的尺寸随温度变化的一种技术。

4)差示扫描量热法:在程序控温下,测量加入物质在与参比物之间的能量差随温度变化的一种技术

TG(热重)、DTG(微分热重)、SDTA(同步差热分析)

Thermo-gravimetric

Differential thermo-gravimetric

simultaneous differential thermal analysis

Differential Scanning Calorimeter (DSC) 差示扫描量热分析技术

DTG 曲线是TG曲线的微分,SDTA曲线记录的是样品温度与程序温度的温度差。

1煤的热重燃烧实验和结果

取下列煤为实验物料,试验前将各种试样磨细至74 μm~89 μm,在120℃条件下烘干,存入干燥器皿中待用。热分析实验条件:样品质量:10±0.1mg;升温速率:10℃/min;

氮气保护气流量:40ml/min;空气流量:100ml/min;工作温度:室温~900℃

1.1煤的燃烧过程分析

表1.1 煤的工业分析、元素分析及硫形态分析

煤种煤样

标识

工业分析/% 元素分析/% 硫组成/% Q

net,ar

MJ·kg-1 M ad A ad V ad FC ad w(C ad)w(H ad)w(O ad)w(N ad)S t S s S p S o

邹县ZX 2.98 19.56 33.93 43.53 61.65 4.27 9.99 0.87 0.68 0.01 0.38 0.29 22.54 黄台HT 1.14 32.31 14.41 52.14 58.96 2.93 1.80 0.98 1.88 0.06 1.16 0.66 20.70 聊城OC 1.12 27.11 12.74 59.03 64.18 2.81 3.21 1.20 0.37 0.01 0.22 0.14 23.71

图1.1~图1.3为三种煤的热重TG、热重微分DTG和差热SDTA曲线。由于煤样经过干燥,内在水分较少,所以初始阶段,煤中水分析出不明显。300℃以后,煤中挥发分和固定碳剧烈燃烧,TG曲线表现出剧烈下降;在500℃~700℃的温度区间内,固定碳基本燃尽,TG曲线趋于平直,HT、LC和ZX煤的燃烧失重率分别为:66%、79%和79%。DTG一般出现较明显的两个峰,一个水分析出峰,对应于100 ℃左右;另一个为可燃质剧烈燃烧峰,该峰对应于300℃~700℃。HT、LC和ZX煤的燃烧失重速率分别为:5.5×10-31/℃、5.5×10-31/℃和5.7×10-31/℃。ZX燃烧峰出现在502℃,明显比HT(545℃)、LC(528℃)提前。由图2.3差热曲线可看出,HT、LC和ZX煤的燃烧放热峰分别为:5.29℃、4.66℃和4.54℃,对应于温度分别为:543℃、528℃和508℃。

1.2煤的燃烧特性指标

(1)着火特性温度t i

着火特性温度t i定义如图4.4所示,在DTG曲线上过燃烧峰值点A,作垂线与TG曲线的倾斜段交于一点B,过B点作TG曲线的初试水平段的延长线交于一点C,则C点所对应的温度定义为着火特性温度t i。

(2)最大燃烧平均速率(dW/dτ)80

最大平均燃烧速率(dW/dτ)80定义为DTG燃烧附近80℃温度区内煤样最大燃烧速率的平均值。其对褐煤和烟煤强调了燃烧反应强度,同时又考虑了水分和灰分的影响,对无烟煤

则强调了着火性能。因为(dW/d τ)max 除与煤质特性有关外,易受到取样均匀性和燃烧空气动力特性等因素的影响。所以采用最大燃烧平均速率(dW/d τ)80比较合理,更能准确表达煤

质燃烧特性[37、

51]。

可燃性指数可表示为:

80273

(2)1000

(/)i T i

dW d C T τ-+

=

其中T i >500 (4.1)

(3)固定碳燃尽率

固定碳燃尽率Bc 反映了原煤中固定碳的燃尽程度,其值与水分、挥发分和灰分含量无关。根据常规灰分示踪法,认为煤样在燃烧过程前后灰分质量守恒,即M 0A 0=M 1A 1,则原煤的固定碳燃尽率即实际烧掉的固定碳占原煤所含全部固定碳的百分数:

010

00010010

000

00max

()

()/100()PC PC C PC M M M FC A M FC A M M B M M FC FC FC A TG FC -+-+-==

=

+-+=

(4.2)

式中:M 0、M 1分别为原煤样在燃烧前后的质量(mg ,mg );

0PC M 和1PC M 分别为原煤样在燃烧前后的固定碳含量(mg ,mg )

; FC 0和A 0分别为原煤样在燃烧前所含固定碳和灰分的工业分析值(%,%);

(TG)max 为原煤样的最大燃烧失重率(包括水分、挥发分和已燃尽的固定碳)(%)。

100

200

300

400

500

600

700

800

900

-90

-80-70-60-50-40-30-20-10

0煤样燃烧失重率/%

炉温 /℃

HT

LC ZX

图1.1 煤的燃烧失重曲线

0100200300400500600700800900

-0.006

-0.005-0.004-0.003-0.002-0.0010.0000.001煤样燃烧失重速率 D T G /%·℃ -

1炉温 /℃

HT

LC ZX

图1.2煤的燃烧失重微分曲线

0100200300400500600700800900

-2

02468

10煤样与参考样之间的差热 S D T A /℃

炉温 T/℃

HT LC ZX

图1.3 煤的燃烧差热曲线

质量百分率/%

炉温 /℃

煤样燃烧失重速率

图1.4着火特性温度定义示意图

煤的燃烧特征参数列于表1.2中,可以看出,随挥发分增加,煤的TG 失重开始温度降低,而失重结束温度也降低,对应DTG 、SDTA 峰值温度也降低。

表1.2煤的燃烧特征参数

煤样 TG 燃烧失重开始温度 TG 燃烧失重结束温度 DTG 峰值温度 SDTA 峰值温度 (TG )max (%) DTG 峰值(10-3·1/℃)

DTA 峰值(℃) HT 361 661 545 545 66 5.5 5.29 LC 355 652 528 530 79 5.5 4.66 ZX

325

622

502

508

79

5.7

4.54

从表1.3可以看出随着煤阶增加,着火特性温度增大,最大平均燃烧速率减小,可燃性指数也相应减小。

表1.3 煤的燃烧特性指标

煤样 着火特性温度t i (℃)

最大平均燃烧速率 (dW/d τ)80(mg/min )

可燃性指数C mg/(min ·K) 固定碳燃尽率 Bc (%) HT 481 0.488 3.5×10-8 97.13 LC 452 0.501 4.8×10-8 93.80 ZX

427

0.535

6.6×10-8

97.66

1.3混煤的燃烧特性

混煤热重分析TG 、热重微分DTG 和差热SDTA 曲线分别见图1.5、图1.6和图1.7。从图中直观地看出,随着混煤配比的变化,曲线变化呈现出明显的规律性。即随着LC 煤配比增加,混煤的燃烧特性逐渐凸现LC 煤的燃烧特性,ZX 煤的燃烧特性逐渐减弱。

煤样燃烧失重率/%

炉温/℃

图4.5 混煤的燃烧失重曲线

煤样燃烧失重速率D T G /%·℃ -1

炉温/℃

图4.6混煤的燃烧失重微分曲线

-2

024681012

煤样与参考样之间的差热S D T A /℃

炉温/℃

图4.7 混煤的燃烧差热曲线

从表1.4列出燃烧特征参数可以清晰地看出,混煤配比对燃烧特性的影响。随LC 煤增加,TG 燃烧失重温度逐渐升高,其结束温度也随之升高,且在单煤燃烧特性参数范围内。说明配比与混煤燃烧特征参数间存在着密切关系。SDTA 峰值变化却与配比无明显规律。

表1.4煤的燃烧特征参数

混煤煤样TG燃烧失

重开始温度

TG燃烧失重结

束温度

DTG峰值温

SDTA峰值

温度

(TG)max

(%)

DTG峰值

(10-31/℃)

SDTA峰值

(℃)

LC15ZX85 327 635 508 511 77 5.3 4.77

LC50ZX50 340 640 520 516 77 5.6 4.95

LC70ZX30 345 643 522 520 78 5.7 4.68

LC85ZX15 357 647 526 527 82 6.0 4.86 混煤的燃烧特性指标呈现出与特征参数类似的规律性,燃烧特性指标介于组分煤的变化范围内,且随LC煤配比增加,指标靠近LC煤各项指标。说明混煤燃烧特性与组分煤燃烧特性存在一定的加和性。由于试验没有对混煤进行工业分析,使得无法计算固定碳燃尽率,所以无法看出掺混过程对煤的燃尽特性的影响。程军[51]在研究中得到混煤燃尽率与掺配比没有明显的规律性,但没有给出机理性解释,这还需在以后的研究工作中进行试验证实和机理探讨。

表1.5 煤的燃烧特性指标

混煤煤样着火特性温度t i(℃)

最大平均燃烧速率

(dW/dτ)80(mg/min)

可燃性指数C

mg/(min·K)

LC15ZX85 429 0.490 5.97×10-8

LC50ZX50 438 0.507 5.70×10-8

LC70ZX30 445 0.507 5.30×10-8

LC85ZX15 451 0.526 5.20×10-8

2、生物质热重燃烧实验与结果

试验样品选择玉米秸、麦秸、杨木屑、花生壳为实验物料。试验前将各种试样磨细至74 μm~89 μm,在120℃条件下烘干,存入干燥器皿中待用。实验具体方案:称取10 mg生物质样品放人氧化铝坩埚内,将坩埚置于热重分析仪的分析室内。热分析仪通入燃烧氧气流量:20 mL/min,高纯氮气保护气流量:80 mL/min。程序升温速率分别30 ℃/min,温度范围为:25℃~1000℃。

表2.1 生物质分析

试样标识

工业分析/% 元素分析/%Q net,ar

MJ·kg-1 M ad A ad V ad FC ad C ad H ad O ad N ad S ad

木屑poplar 2.71 0.92 84.04 12.33 47.28 6.29 41.4 1.4 0.01 17.106 玉米秸cornstalk 5.95 17.61 62.62 13.82 41.38 4.92 28.74 1.40 0.00 15.055 麦秸straw 7.56 7.36 67.96 17.12 41.20 5.10 37.27 1.39 0.12 16.582 花生壳peanut shell 2.38 4.14 73.74 19.74 47.26 6.10 38.7 1.37 0.05 18.965

4种生物质的热重-同步差热分析曲线见图2.1。可以看出4种生物质在着火温度、燃烧速率和燃烧放热量等存在较大差异。根据文献[生物质燃烧模式及燃烧特性的研究]分析方法所得燃烧特性参数列于表2。其中着火温度T i采用外推法求得。T v、T c分别为生物质挥发分和固定碳燃烧速率最大时对应的温度。T o为燃尽温度,对应于TG(热重)和DTG(微分热重)曲线不再有质量变化。V v、V c分别为生物质挥发分和固定碳最大燃烧速率,分别对应于DTG曲线上各自峰顶值。ΔT v、ΔT c分别为生物质挥发分和固定碳燃烧放热时与参比物间的最大温度差,对应于生物质

燃烧SDTA (同步差热分析)曲线峰顶值,它反映了燃烧反应放热量的大小和剧烈程度。

W

T , K

V , m g ·s -1

(a )?T , K

T , K

(b )

图2.1 生物质燃烧TG 、DTG 和SDTA 曲线

根据燃烧特性参数可看出玉米秸和麦秸的着火温度较低,挥发分燃烧速率大,燃烧温度低,挥发分燃烧放热大,而花生壳着火温度稍高,对应挥发分燃烧速率较小,放热较大。杨木着火温度最高,虽然挥发分燃烧速率较大,但对应燃烧温度较高,放热小。杨木和花生壳固定碳含量相对较高,两者对应固定碳燃烧放热较大,而玉米秸和麦秸的固定碳燃烧放热较小。

表1.2 生物质燃烧特性参数

Table 1.2 Combustion characteristics parameters of biomass

试样 T i / K T v /K T c /K T o /K V v /mg·s -1 V c /mg·s -1 ΔT v /K ΔT c /K cornstalk 537 559 725 736 0.090 0.022 17.6 9.6 straw 544 554 715 724 0.110 0.007 20.3 7.3 poplar 579 602 668 700 0.106 0.032 15.6 17.4 peanut shell

561

588

690

724

0.066

0.026

18.4

14.5

参考文献:闵凡飞,张明旭,朱惠臣,煤工业分析和燃烧特性的TG-DTG-DTA 研究,煤炭科学技术

热重分析实验报告

热重分析实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

材料与建筑工程学院实验报告 课程名称: 材料物理性能 专业:材料科学与工程 班级: 2013级本科 姓名:张学书 学号: 3

指导老师:谢礼兰老师 贵州师范大学学生实验报告 成绩 实验一:STA449F3同步热分析仪的结构原理及操作方法 一、实验目的 1、熟悉同步热分析仪的基本原理。 2、了解STA449 F3型同步热分析仪的构造原理及性能。 3、学习STA449 F3型同步热分析仪的操作方法。 二、实验原理 差示扫描量热法(DSC)是指在加热的过程中,测量被测物质与参比物之间的能量差与温度之间的关系的一种方法技术。图1-1为功率补偿式DSC仪器示意图:

图1-1 功率补偿式D SC 示意图 1.温度程序控制器; 2.气氛控制;3.差热放大器;4.功率补偿放大器;5.记录仪 当试样发生热效应时,譬如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势U ΔT ,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流Is减小,参比物下面的电流IR 增大,而Is +IR 保持恒定。降低试样的温度,增高参比物的温度,使试样和参比物之间的温差ΔT 趋于零。上述热量补偿能及时,迅速完成,使试样和参比物的温度始终维持相同。 设两边的补偿加热丝的电阻值相同,即RS =RR=R,补偿电热丝上的电功率为PS=IR 和P R=IR 。当样品没有热效应时,PS=P R;当样品存在热效应时,PS 和PR 的差ΔP能反映样品放(吸)热的功率: ΔP= PS-PR= IR -IR=(I S+IR)( I S-IR)R =(IS+IR ) ΔV =I ΔV? (1) 由于总电流IS+IR 为恒定,所以样品的放(吸)热的功率ΔP只和ΔV 成正比, 3 1 2 4 5

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

热重分析

高聚物的差热热重分析DTA/TG原理 高聚物的差热热重分析DTA/TG原理 差热分析,简称DTA,是将被测试样加热或冷却时,由于温度导致试样内部产生物理或化学变化,追踪热量变化的一种分析方法。热重分析,简称TG,是将被测试样加热,由于温度导致试样重量变化的分析方法。综合热分析仪是具有微机数据处理系统的热重—差热联用热分析仪器,是一种在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。常用以测定物质在熔融、相变、分解、化合、凝固、脱水、蒸发、升华等特定温度下发生的热量和质量变化,广泛应用于无机、有机、石化、建材、化纤、冶金、陶瓷、制药等领域,是国防、科研、大专院校、工矿企业等单位研究不同温度下物质物理、化学变化的重要分析仪器。差热分析作为一种重要的热分析手段已广为应用,它可以研究高聚物对热敏感的各种化学及物理过程,物理变化如:玻璃化转变、晶型转变、结晶过程、熔融、纯度变化等;化学变化如:加聚反应、缩聚反应、硫化、环化、交联、固化、氧化、热分解、辐射变化等。需指出,由于高聚物的物理或化学变化对热敏感的特性是很复杂的,所以常需要结合其它实验方法如动态力学试验、气质联用等对差热分析热谱图进行深入研究,从而进一步探讨高聚物的结构和性能间的关系。 仪器由热天平主机、加热炉、冷却风扇、微机温控单元、天平放大单元、微分单元、差热放大单元、接口单元、气氛控制单元、PC微机、打印机等组成。 实验时,将试样和惰性参比物(在测定的温度范围内不产生热效应的热惰性物质,常用?-氧化铝、石英粉、硅油等)置于温度均匀分布的坩埚(样品池)的适当位置,将坩埚(样品池)组合于加热炉中,控制其等速升温或降温。在此变温过程中,若试样发生物理或化学变化,则在对应的温度下吸收或放出热量改变其温度,使试样和参比物之间产生一定的温度(ΔT)。将ΔT 放大,记录试样与参比物的温度ΔT随温度T的变化,即ΔT~T曲线。此曲线通常称为差热曲线或差热热谱。 刚开始加热时,试样和参比物以相同温度升温,不产生温度差ΔT=0,差热曲线上为平直的基线。当温度上升到试样产产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,因而试样的温度落后于参比物的温度,产生了温度差,于是差热曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时试样温度较参比物上升快,差热曲线上表现为放热峰。再进一步加热,晶体开始熔融面需要吸收热量,试样温度暂时停止上升,与参比物之间产生了温度差,其差热曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能在使试样温度升高,直到等于参比物的温度,于是二者的温度差又为零,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据差热曲线可以确定高聚物的转变和特征温度。

实验7 聚合物的热重分析(TGA)

实验7 聚合物的热重分析(TGA) 热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。此外,也可在恒定温度下,将失重作为时间的函数进行测定。应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。 1. 实验目的 (1)了解热重分析法在高分子领域的应用。 (2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度T d。 2. 实验原理 热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。 温度/℃ 图2-40 TGA谱图 开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。 TGA在高分子科学中有着广泛的应用。例如,高分子材料热稳定性的评定,共聚物和共

最新差热分析DTA实验报告

差热分析DTA 一、实验目的 掌握热分析方法─差热分析法基本原理和分析方法。 了解差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析基本原理 差热分析法(Differential Thermal Analysis,DTA)是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA 信号)经检测和放大

以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差DT10,差热电偶的电势信号经放大和A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的形状和个数,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA 曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与

热重分析及其在高分子材料方面的应用

热重分析方法在高分子材料领域的应用 [摘要]热分析是研究物质的物理化学性质随温度变化的一类技术,随着计算机在线分析和反馈控制技术的发展及多种手段联用技术的发展,热分析技术也得到了显著的发展。热分析是高分子的常规表征手段,可用于表征结构相变,分析残余单体和溶剂含量,添加剂的检测,热降解的研究;同时被用于产品质量的检测,生产过程的优化及考察外因对高分子性质的影响等。热重法定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。热重法测定的结果与实验条件有关,为了得到准确性和重复性好的热重曲线,我们有必要对各种影响因素进行仔细分析。影响热重测试结果的因素,基本上可以分为三类:仪器因素、实验条件因素和样品因素。 [关键词]热重分析法;质谱;联用技术 根据热分析协会(ICTA)的归纳分类,目前热分析法共分为9 类 17 种,其中主要和常用的热分析方法是热重法(Thermogravimetry,TG),差热分析法(Differential Thermal Analysis,DTA),差示扫描热量法(Differential Scanning

Calorimetry,DSC)。热重法是在程序控温下,测量物质的质量与温度的关系,通常热重法分为非等温热重法和等温热重法。它具有操作简便、准确度高、灵敏快速以及试样微量化等优点。但热重分析法无法对体系在受热过程中逸出的挥发性组分加以检测,这严重阻碍了热分析技术的应用与发展。因此,将 TG 法与其它先进的检测系统联用,如 TG/MS、 TG/FTIR 等,是现代热分析仪器的一个发展趋势。 1 热分析技术发展简史 热分析方法是仪器分析方法之一,它与紫外分光光度法、红外光谱分析法、原子吸收光谱法、核磁共振波谱法、电子能谱分析法、扫描电子显微镜法、质谱分析法和色谱分析法等相互并列和互为补充的一种仪器分析方法。 热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化。由此进一步研究物质的结构和性能之间的关系;研究反应规律;制订工艺条件等。最早发现的一种热分析现象是热失重,由英国人Edgwood 在 1786 年研究陶瓷粘土时首先观察到的,他注意到加热陶瓷粘土到达暗红色时有明显的失重,而在其前后的失重都极小。 1887 年法国的 Le chatelier 使用了热电偶测量温度的方法对试样进行升温或降温来研究粘土类矿物的热性能 研究,获得了一系列粘土试样的加热和冷却曲线,根据这些曲线去鉴

实验六 差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程 一、实验目的 1. 掌握差热分析法的基本原理。 2. 了解热分析仪的结构,掌握仪器的基本操作。 3. 利用差热分析技术研究草酸钙的热分解过程。 二、实验原理 热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。程序控制温度一般是指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。物质性质包括质量、温度、热焓变化、尺寸、机械特性、声学特性、电学和磁学特性等等。 在热分析技术中,热重法是指在程序控制温度下,测量物质质量与温度关系的一种技术,被测参数为质量(通常为重量),检测装置为“热天平”,热重法测试得到的曲线称为热重曲线(TG)。热重曲线以质量作为纵坐标,可以用重量、总重量减少的百分数、重量剩余百分数或分解分数表示。曲线从上往下表示质量减少,以温度(或时间)作横坐标,从左向右表示温度(或时间)增加,所得到的重量变化对温度的关系曲线则称之为热重曲线。 热重法的主要特点是定量性强,能准确地测量物质质量变化及变化的速率。在正常的情况下,热重曲线的水平部分看作是恒定重量的特征,变化最陡峭的部分,可以给出重量变化的斜率,曲线的形状和解析取决于试验条件的稳定性。热重曲线开始偏离水平部分的温度为反应的起始温度,测量物质的质量是在加热情况下测量试样随温度的变化,如含水和化合物的脱水,无机和有机化合物的热分解。物质在加热过程中与周围气氛的作用,固体或液体物质的升华和蒸发等,都是在加热过程中伴随有重量的变化。 从热重法派生出微商热重法(DTG)和二阶微商法(DDTG),前者是TG 曲线对温度(或时间)的一阶导数,后者是TG 曲线的二阶导数。 差热分析(DTA)是在程序控制温度下,测量物质与参比物之间的温度差与温度函数关系的一种技术,只要被测物质在所用的温度范围内具有热活性,则热效应联系着物理或化学变化,在所记录的差热曲线上呈现一系列的热效应峰,峰

热重分析仪方法

热重分析仪方法 当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O 中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以像碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

热重分析

第三节 热重分析(TG ) 一、基本原理 热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。 如图1所示。一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。第三个台阶发生在高温是属于试样本体的分解。为了清楚地观察到每阶段失重最快的温度。经常用微分热重曲线DTG (如图1b )。这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。对于分解不完全的物质常常留下残留物W R 。 在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。另外目前又出现了一种等温TG 曲线。这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即: W=f (t )(温度为定值) W 0 W 1 W 2 W 3 重 量 图1 热重分析曲线(a )与微商热重曲线(b )

炉子 它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。 二、基本结构 热重法的仪器称为热天平,给出的曲线为热重曲线。热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。热天平的示意图如图2-1所示。通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成 温度。 三、影 响因素 虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下: 1.坩埚的影响 坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。坩埚和试样间必须无任何化学反应。一般来说坩埚是由铂、铝、石英或陶瓷制成的。石英和陶瓷将与碱性试样反应而改变TG 曲线,聚四氟乙烯在一定条件下与之生成四氟化硅。铂对某些物质有催化作用,而且不适合于含磷、硫和卤素的高聚物。因此坩埚的选择对实验结果尤为重要。 2.挥发物冷凝的影响 样品在升温加热时,分解或升华产生的挥发物可能会产生冷凝的现象,而使实验结果产生偏差。为此试样用量尽可能少,并使气体流量合适。 3.升温速率的影响 由于试样要从外面炉体和容器等传入热量,所以必然形成温差。升温速率过快,有时会掩盖相邻的失重反应,甚至把本来应出现平台的曲线变成折线,同时TG 曲线有向高温推移的现象。但速度太慢又会降低实验效率。一般以5℃/min 为宜,有时需要选择更民的速度。

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

热重分析仪

热重分析仪 热重分析仪 热重分析仪(Thermo Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。 热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪原理 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记

录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率 升温速度越快,温度滞后越严重,如聚苯乙烯在N2中分解,当分解程度都取失重10%时,用1℃/min测定为357℃,用5℃/min测定为394℃相差3 7℃。升温速度快,使曲线的分辨力下降,会丢失某些中间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物。 气氛的影响 热天平周围气氛的改变对TG曲线影响显著,CaCO3在真空、空气和CO 2三种气氛中的TG曲线,其分解温度相差近600℃,原因在于CO2是CaCO 3分解产物,气氛中存在CO2会抑制CaCO3的分解,使分解温度提高。 聚丙烯在空气中,150~180℃下会有明显增重,这是聚丙烯氧化的结果,在N2中就没有增重。气流速度一般为40ml/min,流速大对传热和溢出气体扩散有利。 挥发物的冷凝 分解产物从样品中挥发出来,往往会在低温处再冷凝,如果冷凝在吊丝式

差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法

差热与热重分析研究CuSO4?5H20的脱水过程与差示扫描量热法 一.实验目的 (1)掌握差热分析法和热重法的基本原理和分析方法,了解差热分析仪,热重分析仪,差热热重联用仪的基本结构,熟练掌握仪器操作。 (2)运用分析软件对测得数据进行分析,研究CuSO4?5H20的脱水过程。 (3)了解差示扫描量热法的基本原理和差示扫描量热仪的基本结构,熟练掌握仪器操作。 二.实验原理 1.差热分析法 物质在受热或冷却过程中,当达到某一温度时,往往回发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着焓的改变,因而产生热效应,其表现为体系与环境(样品与参比物)之间有温度差。差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系。在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应的物质,均可运用差热分析法进行鉴定。 2.热重法 物质受热时,发生化学反应,质量也随之改变,测定物质质量的变化就可研究其过程。热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。 热重法的主要特点是定量强,能准确地测量物质的变化及变化的速率。 从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。DTG 曲线能精确地反映出起始反应温度,达到最大反应速率的温度和反应终止温度。在TG曲线上,对应于整个变化过程中各阶段的变化互相衔接而不易分开,同样的变化过程在DTG曲线上能呈现出明显的最大值,故DTG能很好地显示出重叠反应,区分各个反应阶段,而且DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定量分析。 现在发展起来的差热-热重(DTA-TG)联用仪,是将DTA与TG的样品室相连,在同样气氛中,控制同样的升温速率进行测试,同时得到DTA和TG曲线,从而一次测试得到更多的信息,对照进行研究。 3.差示扫描量热法 差示扫描量热法(简称DSC)是在程序升温的条件下,测量试样与参比物之间的能量差 随温度变化的一种分析方法。是为克服DTA在定量测量方面的不足而发展起来的一种新 技术。 差示扫描量热法有功率补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。 DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重 现性也比DTA好,因此DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可 以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便从而更适和测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 三.仪器与试剂 1.仪器 日本岛津公司DTA-50差热分析仪;TGA-50热重分析仪;DTG60H差热-热重联用仪;日本岛津公司DSC60差示扫描量热仪;TA-60WS工作站;电子天平;SSC-30 压样机;FC60A气体流量控制器等。 2.试剂

草酸钙的热重-差热分析

综合热分析法测定草酸钙 【实验目的】 (1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。 (2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。 (3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。 【实验原理】 热分析是物理化学分析的基本方法之一。综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。 (1)热重分析 热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。热重法实验得到的曲线称为热重(TG)曲线。TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。微分热重曲线能很好地显示这些速率地变化。

热重分析

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。进行热重 分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。 通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。 从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。 DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。 热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。图中给出可用热重法来检测的物理变化和化学变化过程。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。 热重法测定的结果与实验条件有关,为了得到准确性和重复性好的热重曲线,我们有必要对各种影响因素进行仔细分析。影响热重测试结果的因素,基本上可以分为三类:仪器因素、实验条件因素和样品因素。 仪器因素包括气体浮力和对流、坩埚、挥发物冷凝、天平灵敏度、样品支架和热电偶等。对于给定的热重仪器,天平灵敏度、样品支架和热电偶的影响是固定不变的,我们可以通过质量校正和温度校正来减少或消除这些系统误差。 气体浮力和对流的影响 气体浮力的影响:气体的密度与温度有关,随温度升高,样品周围的气体密度发生变化,从而气体的浮力也发生变化。所以,尽管样品本身没有质量变化,但由于温度的改变造成气体浮力的变化,使得样品呈现随温度升高而质量增加,这种现象称为表观增重。表观增重量可用公式进行计算。式中p为气体在273K时的密度,V为样品坩埚和支架的体积。 对流的影响:它的产生,是常温下,试样周围的气体受热变轻形成向上的热气流,作用在热天平上,引起试样的表观质量损失。 热重法的应用主要在金属合金,地质,高分子材料研究,药物研究等方面。金属与气体反应的测定 金属和气体的反应是气相-固相反应,可用热重法测定反应过程的质量变化与温度的关系,

热重分析的应用发展及其实验影响因素

热重分析的应用发展及其实验影响因素 钱晶莹10050935 精细优050 摘要:作为一种便捷的分析手段,热重分析技术已在材科学、生命科学、物理和化学科学等研究领域得到了广泛的应用。本文主要介绍这种方法的具体应用实例和在热重分析实验中,对实验结果可能产生影响的因素。 关键词:热重分析应用影响因素 热重分析是在程序控制温度下,测量物质的质量质与温度关系的一种技术。通过所得曲线,对不同的物质,可以判断其使用温度特性、反应性、氧化、分解、吸附、燃烧等情况。 一、热重分析在各个领域中的应用 1、表征高聚物的热分解特性 收集不同生胶和塑料样品,绘制它们的TG和DTG谱图,整理出各材质DTG峰和结炭率。从数据可以看出各种聚合物的裂解是不同的。它们的图形和DTG峰温不同,有的一步分解,有的两步分解(出现二个失重过程,有两个DTG峰)。这些数据可以帮助我们了解聚合物的裂解机理。比较它们的耐热特性,对于定性定量分析未知胶样也是十分有用的。 2、测定烟炱含量 热重法测定烟炱含量基于油中的炭状沉积物——烟炱与氧气在高温下结合,生成二氧化碳而引起一定量的失重来测定烟炱的含量。因在650℃之前内燃机中的大部分组分除烟炱和杂质外均已蒸发及分解,所以在650~750℃之间失重只能是炭状沉积物——烟炱与氧气在高温下结合,生成二氧化碳而引起的失重。 3、药品稳定牲及预测存放期的确定 药品的稳定性和存放期的确定在研究、生产当中有是一个很重要的问题,它直接影响药品的正常安全使用.保障人们的身体健康。而药品的热稳定性和它的热氧降解历程在某种程度上与药品的稳定性有密切关系,也与药品的存放期有很大关连。根据TG曲线数据选择合适的计算热降解的动力学方法,进行动力学参数计算,确定动力学参数n、E、A等。然后根据热降解活化能E的数值大小确定药品的稳定性。一般活化能在几十KJ/mol以上的可认为是稳定的。 4、分析煤的特性 Rosenvold[1]等对21种烟煤作了热分析研究,结果表明利用非等温热重法所测定的挥发分和灰分的含量与美国材料实验标准值(ASTM)很一致。国内的研究也表明,利用TGA法,选择一定的条件,可以进行煤的快速工业分析,其误差在标准方法规定的误差范围之内。清华大学曾利用Dupont1901热分析仪进行了煤的工业分析测定工作,取得了满意的结果。20世纪70年代起,国内外学者普遍采用TGA分析方法判定煤的着火特性、稳燃特性及燃尽特性。热重分析与差热分析或差示扫描量热的结合可以在煤燃烧的全过程中连续得到温度、质量、差热、热量扫描等多种信息。 5、研究模化城市生活垃圾燃烧和热解特性 应用热重分析方法可以模拟出各种工况对生活垃圾(MMSW)的燃烧和热解特性进行研究,比较MMSW 在燃烧和热解条件下特性的异同,以期获得MMSW 燃烧和热解条件下的动力学参数,为城市生活垃圾热处理工艺过程,尤其是反应器设计和优化操作条件提供一定的参数依据。在研究我国城市垃圾组成特点并参考其他各国垃圾组成的基础上,确定、并

热分析仪实验报告

差热分析实验报告 一、实验目的 1、掌握差热分析的基本原理及测量方法 2、学会差热分析仪的操作,并绘制玻璃样品的差热图。 3、掌握差热曲线的处理方法,对实验结果进行分析。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析(Differentiai Thermal Analysis,简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图1)。两支笔记录的时间—温度(温差)图就称为差热图(见图2),或称为热谱图。 图1 差热分析原理图 图2 典型的差热图 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件

下,峰面积大的表示热效应也大。在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 三、仪器与试剂 试剂:玻璃粉末,参比物:α-Al2O3,仪器:差热分析仪(HCT-1/2)一台,计算机一台。 四、实验步骤 1、开启仪器电源,预热20分钟 2、装入实验样品 升起加热炉,露出支撑杆(热电偶组件)。将参比物样品与实验样品分别装入陶瓷坩埚中(Al2O3),平稳放置在热电偶板上,双手降下加热炉体。 3、检查冷却循环水 4、检查仪器主机与计算机数据传输线连接情况 5、检查仪器注意气氛控制单元与外接气源连接情况 注意:在使用流动气氛进行实验时应先做一次或二次流动气氛的热重基线漂移实验,通过改变各路进气流量的方法,使热重基线稳定,漂移最小,为正式试验提供最佳的试验条件。同时,还应注意输入气体管路的欲通气体纯净,在正式试验前,让欲通气体流通约25分钟。 6、运行工作站软件,进入新采集设置界面进行参数设定,输入初始温度(25℃)、终止温度(1000℃)、升温速率(10℃/min)等参数。 7、点“采集”按钮后,系统自动执行实验数据采集命令。 8、到达终止温度后,仪器自动停止采集,将数据存盘。 7、利用Origin画出DTA图,并标出热效应的起始和终止温度以及峰顶温度。 五、数据记录和处理

相关文档
最新文档